Mark Scheme (Results)

Summer 2014

Pearson Edexcel GCE in Core Mathematics 4 (6666/01)

www.igexams.com

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please visit our website at www.edexcel.com.

Our website subject pages hold useful resources, support material and live feeds from our subject advisors giving you access to a portal of information. If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.
www.edexcel.com/contactus

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2014
Publications Code UA038467
All the material in this publication is copyright
© Pearson Education Ltd 2014

www.igexams.com

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

www.igexams.com

EDEXCEL GCE MATHEMATICS

General I nstructions for Marking

1. The total number of marks for the paper is 75 .
2. The Edexcel Mathematics mark schemes use the following types of marks:

- M marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- B marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.

3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod - benefit of doubt
- ft - follow through
- the symbol $\sqrt{ }$ will be used for correct ft
- cao - correct answer only
- cso - correct solution only. There must be no errors in this part of the question to obtain this mark
- isw - ignore subsequent working
- awrt - answers which round to
- SC: special case
- oe - or equivalent (and appropriate)
- dep - dependent
- indep - independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper
- \square The second mark is dependent on gaining the first mark
- dM1 denotes a method mark which is dependent upon the award of the previous method mark.

4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.

www.igexams.com

6. If a candidate makes more than one attempt at any question:

- If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
- If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.

7. Ignore wrong working or incorrect statements following a correct answer.

www.igexams.com

General Principles for Core Mathematics Marking

(But note that specific mark schemes may sometimes override these general principles).

Method mark for solving 3 term quadratic:

1. Factorisation

$\left(x^{2}+b x+c\right)=(x+p)(x+q)$, where $|p q|=|c|$, leading to $x=\ldots$
$\left(a x^{2}+b x+c\right)=(m x+p)(n x+q)$, where $|p q|=|c|$ and $|m n|=|a|$, leading to $\mathrm{x}=\ldots$

2. Formula

Attempt to use the correct formula (with values for a, b and c).

3. Completing the square

Solving $x^{2}+b x+c=0:\left(x \pm \frac{b}{2}\right)^{2} \pm q \pm c=0, \quad q \neq 0$, leading to $x=\ldots$

Method marks for differentiation and integration:

1. Differentiation

Power of at least one term decreased by 1. $\left(x^{n} \rightarrow x^{n-1}\right)$

2. I ntegration

Power of at least one term increased by $1 .\left(x^{n} \rightarrow x^{n+1}\right)$

www.igexams.com

Use of a formula

Where a method involves using a formula that has been learnt, the advice given in recent examiners' reports is that the formula should be quoted first.

Normal marking procedure is as follows:

Method mark for quoting a correct formula and attempting to use it, even if there are small errors in the substitution of values.

Where the formula is not quoted, the method mark can be gained by implication from correct working with values, but may be lost if there is any mistake in the working.

Exact answers

Examiners' reports have emphasised that where, for example, an exact answer is asked for, or working with surds is clearly required, marks will normally be lost if the candidate resorts to using rounded decimals.

www.igexams.com

Question Number		Scheme	Marks
1.	$x^{3}+2 x y-x-y^{3}-20=0$		
(a)		$\begin{gathered} \left\{\frac{d x}{d x} x\right\} \quad \frac{3 x^{2}}{}+\left(\underline{\underline{2 y+2 x \frac{d y}{d} x}}\right) \underline{-1-3 y^{2} \frac{\mathrm{~d} y}{\mathrm{~d} x}=0} \\ 3 x^{2}+2 y-1+\left(2 x-3 y^{2}\right) \frac{\mathrm{d} y}{\mathrm{~d} x}=0 \\ \frac{\mathrm{~d} y}{\mathrm{~d} x}=\frac{3 x^{2}+2 y-1}{3 y^{2}-2 x} \quad \text { or } \quad \frac{1-3 x^{2}-2 y}{2 x-3 y^{2}} \end{gathered}$	M1 $\underline{\text { A1 }} \underline{\underline{B}}$ dM1 A1 cso
(b)	At $P(3,-2), \quad m(\mathbf{T})=\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{3(3)^{2}+2(-2)-1}{3(-2)^{2}-2(3)} ;=\frac{22}{6}$ or $\frac{11}{3}$ and either $\mathbf{T}: y--2=\frac{11}{3}(x-3)$ see notes or $\quad(-2)=\left(\frac{11}{3}\right)(3)+c \Rightarrow c=\ldots$,		M1
	T: $11 x-3 y-39=0$ or $K(11 x-3 y-39)=0$		A1 cso
			[2] 7
(a)	$\begin{gathered} \text { Alternative method for part (a) } \\ \left\{\begin{array}{c} \left\{\begin{array}{l} \frac{2 x}{x x} \\ x \end{array}\right\} \frac{3 x^{2} \frac{\mathrm{~d} x}{\mathrm{~d} y}}{}+\left(\begin{array}{l} 2 y \frac{\mathrm{~d} x}{\mathrm{~d} y}+2 x \end{array}\right)-\frac{\mathrm{d} x}{\mathrm{~d} y}-3 y^{2}=0 \\ 2 x-3 y^{2}+\left(3 x^{2}+2 y-1\right) \frac{\mathrm{d} x}{\mathrm{~d} y}=0 \end{array}\right. \\ \frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{3 x^{2}+2 y-1}{3 y^{2}-2 x} \quad \text { or } \frac{1-3 x^{2}-2 y}{2 x-3 y^{2}} \end{gathered}$		M1 A1 $\underline{\underline{\mathrm{B}}}$ dM1 A1 cso
	Question 1 Notes		
(a) General	Note Note Note	Writing down $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{3 x^{2}+2 y-1}{3 y^{2}-2 x}$ or $\frac{1-3 x^{2}-2 y}{2 x-3 y^{2}}$ from no working is full marks. Writing down $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{3 x^{2}+2 y-1}{2 x-3 y^{2}}$ or $\frac{1-3 x^{2}-2 y}{3 y^{2}-2 x}$ from no working is M1A0B0M1A0 Few candidates will write $3 x^{2}+2 y+2 x \mathrm{~d} y-1-3 y^{2} \mathrm{~d} y=0$ leading to $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{3 x^{2}+2 y-1}{3 y^{2}-2 x}$, o.e. This should get full marks.	
1. (a)	M1 A1 B1 Note	Differentiates implicitly to include either $2 x \frac{\mathrm{~d} y}{\mathrm{~d} x}$ or $-y^{3} \rightarrow \pm k y^{2} \frac{\mathrm{~d} y}{\mathrm{~d} x}$. (Ignore $\left(\frac{\mathrm{d} y}{\mathrm{~d} x}=\right)$). $\begin{aligned} & x^{3} \rightarrow 3 x^{2} \text { and }-x-y^{3}-20=0 \rightarrow-1-3 y^{2} \frac{\mathrm{~d} y}{\mathrm{~d} x}=0 \\ & 2 x y \rightarrow 2 y+2 x \frac{\mathrm{~d} y}{\mathrm{~d} x} \end{aligned}$ If an extra term appears then award $1^{\text {st }} \mathrm{A} 0$.	

| 1. (a) |
| :--- | :--- | :--- |
| ctd | Note $3 x^{2}+2 y+2 x \frac{\mathrm{~d} y}{\mathrm{~d} x}-1-3 y^{2} \frac{\mathrm{~d} y}{\mathrm{~d} x} \rightarrow 3 x^{2}+2 y-1=3 y^{2} \frac{\mathrm{~d} y}{\mathrm{~d} x}-2 x \frac{\mathrm{~d} y}{\mathrm{~d} x}$ will get $1^{\text {st }} \mathrm{A} 1$ (implied) as the " $=0$ "can be implied by rearrangement of their equation.

dM1
dependent on the first method mark being awarded.
An attempt to factorise out all the terms in $\frac{\mathrm{d} y}{\mathrm{~d} x}$ as long as there are at least two terms in $\frac{\mathrm{d} y}{\mathrm{~d} x}$. ie. $. . .+\left(2 x-3 y^{2}\right) \frac{\mathrm{d} y}{\mathrm{~d} x}=\ldots$
Note Placing an extra $\frac{\mathrm{d} y}{\mathrm{~d} x}$ at the beginning and then including it in their factorisation is fine for dM 1 .
A1 For $\frac{1-2 y-3 x^{2}}{2 x-3 y^{2}}$ or equivalent. Eg: $\frac{3 x^{2}+2 y-1}{3 y^{2}-2 x}$
cso: If the candidate's solution is not completely correct, then do not give this mark.
isw: You can, however, ignore subsequent working following on from correct solution.

1. (b) M1

Some attempt to substitute both $x=3$ and $y=-2$ into their $\frac{\mathrm{d} y}{\mathrm{~d} x}$ which contains both x and y to find m_{T} and

- either applies $y--2=\left(\right.$ their $\left.m_{T}\right)(x-3)$, where m_{T} is a numerical value.
- or finds c by solving $(-2)=\left(\right.$ their $\left.m_{T}\right)(3)+c$, where m_{T} is a numerical value.

Note
Using a changed gradient (i.e. applying $\frac{-1}{\text { their } \frac{d y}{d x}}$ or $\frac{1}{\text { their } \frac{d y}{d x}}$ is M0).
A1 Accept any integer multiple of $11 x-3 y-39=0$ or $11 x-39-3 y=0$ or $-11 x+3 y+39=0$, where their tangent equation is equal to 0 .
cso A correct solution is required from a correct $\frac{\mathrm{d} y}{\mathrm{~d} x}$.
isw You can ignore subsequent working following a correct solution.

Alternative method for part (a): Differentiating with respect to y

1. (a) M1 Differentiates implicitly to include either $2 y \frac{\mathrm{~d} x}{\mathrm{~d} y}$ or $x^{3} \rightarrow \pm k x^{2} \frac{\mathrm{~d} x}{\mathrm{~d} y}$ or $-x \rightarrow-\frac{\mathrm{d} x}{\mathrm{~d} y}$
(Ignore $\left(\frac{\mathrm{d} x}{\mathrm{~d} y}=\right)$).
A1
$x^{3} \rightarrow 3 x^{2} \frac{\mathrm{~d} x}{\mathrm{~d} y}$ and $-x-y^{3}-20=0 \rightarrow-\frac{\mathrm{d} x}{\mathrm{~d} y}-3 y^{2}=0$
B1
$2 x y \rightarrow 2 y \frac{\mathrm{~d} x}{\mathrm{~d} y}+2 x$
dM1

A1
dependent on the first method mark being awarded.
An attempt to factorise out all the terms in $\frac{\mathrm{d} x}{\mathrm{~d} y}$ as long as there are at least two terms in $\frac{\mathrm{d} x}{\mathrm{~d} y}$.
For $\frac{1-2 y-3 x^{2}}{2 x-3 y^{2}}$ or equivalent. Eg: $\frac{3 x^{2}+2 y-1}{3 y^{2}-2 x}$
cso: If the candidate's solution is not completely correct, then do not give this mark.

www.igexams.com

$\begin{array}{l}\text { 3. (b) } \\ \text { contd }\end{array}$	Note	Award B1M1A1 for $\frac{1}{2}(1.42857+0.55556)+(0.90326+$ their 0.68212$)=2.577445$

Bracketing mistake: Unless the final answer implies that the calculation has been done correctly award B1M0A0 for $\frac{1}{2} \times 1+1.42857+2(0.90326+$ their 0.68212$)+0.55556$ (nb: answer of 5.65489).
award B1M0A0 for $\frac{1}{2} \times 1(1.42857+0.55556)+2(0.90326+$ their 0.68212$)$ (nb: answer of 4.162825$)$.

Alternative method: Adding individual trapezia

Area $\approx 1 \times\left[\frac{1.42857+0.90326}{2}+\frac{0.90326+" 0.68212 "}{2}+\frac{" 0.68212 "+0.55556}{2}\right]=2.577445$
B1 B1: 1 and a divisor of 2 on all terms inside brackets.
M1 M1: First and last ordinates once and two of the middle ordinates twice inside brackets ignoring the 2 .
(c) \quad B1 \quad Overestimate and either trapezia lie above curve or a diagram that gives reference to the extra area
eg. This diagram is sufficient. It must show the top of a trapezium lying above the curve.

or concave or convex or $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}>0$ (can be implied) or bends inwards or curves downwards.

Note

(d)

B1
.
$\frac{\mathrm{d} u}{\mathrm{~d} x}=\frac{1}{2} x^{-\frac{1}{2}}$ or $\mathrm{d} u=\frac{1}{2 \sqrt{x}} \mathrm{~d} x$ or $2 \sqrt{x} \mathrm{~d} u=\mathrm{d} x$ or $\mathrm{d} x=2 u \mathrm{~d} u$ or $\frac{\mathrm{d} x}{\mathrm{~d} u}=2 u$ o.e.
M1
Applying the substitution and achieving $\left\{\int\right\} \frac{ \pm k u}{\alpha u^{2} \pm \beta u}\{\mathrm{~d} u\}$ or $\left\{\int\right\} \frac{ \pm k}{u\left(\alpha u^{2} \pm \beta u\right)}\{\mathrm{d} u\}$,
$k, \alpha, \beta \neq 0$. Integral sign and $\mathrm{d} u$ not required for this mark.
Cancelling u and integrates to achieve $\pm \lambda \ln (2 u+5)$ or $\pm \lambda \ln \left(u+\frac{5}{2}\right), \lambda \neq 0$ with no other terms.
cso. Integrates $\frac{20}{2 u+5}$ to give $\frac{20}{2} \ln (2 u+5)$ or $10 \ln \left(u+\frac{5}{2}\right)$, un-simplified or simplified.
Note
BE CAREFUL! Candidates must be integrating $\frac{20}{2 u+5}$ or equivalent.
So $\int \frac{10}{2 u+5} \mathrm{~d} u=10 \ln (2 u+5)$ WOULD BE A0 and final A0.
M1 Applies limits of 2 and 1 in u or 4 and 1 in x in their (i.e. any) changed function and subtracts the correct way round.
Exact answers of either $10 \ln 9-10 \ln 7$ or $10 \ln \left(\frac{9}{7}\right)$ or $20 \ln 3-10 \ln 7$ or $20 \ln \left(\frac{3}{\sqrt{7}}\right)$ or $\ln \left(\frac{9^{10}}{7^{10}}\right)$ or equivalent. Correct solution only.
Note Note

You can ignore subsequent working which follows from a correct answer.
A decimal answer of $2.513144283 \ldots$ (without a correct exact answer) is A0.

www.igexams.com

Question Number	Scheme	Marks
5.	$x=4 \cos \left(t+\frac{\pi}{6}\right), \quad y=2 \sin t$	
(a)	Main Scheme $x=4\left(\cos t \cos \left(\frac{\pi}{6}\right)-\sin t \sin \left(\frac{\pi}{6}\right)\right)$ $\cos \left(t+\frac{\pi}{6}\right) \rightarrow \cos t \cos \left(\frac{\pi}{6}\right) \pm \sin t \sin \left(\frac{\pi}{6}\right)$ So, $\{x+y\}=4\left(\cos t \cos \left(\frac{\pi}{6}\right)-\sin t \sin \left(\frac{\pi}{6}\right)\right)+2 \sin t$ Adds their expanded x (which is in terms of t) to $2 \sin t$ $=4\left(\left(\frac{\sqrt{3}}{2}\right) \cos t-\left(\frac{1}{2}\right) \sin t\right)+2 \sin t$ $=2 \sqrt{3} \cos t *$ Correct proof	M1 oe dM1 A1 *
(a)	Alternative Method 1 $\begin{aligned} x & =4\left(\cos t \cos \left(\frac{\pi}{6}\right)-\sin t \sin \left(\frac{\pi}{6}\right)\right) \quad \cos \left(t+\frac{\pi}{6}\right) \rightarrow \cos t \cos \left(\frac{\pi}{6}\right) \pm \sin t \sin \left(\frac{\pi}{6}\right) \\ & =4\left(\left(\frac{\sqrt{3}}{2}\right) \cos t-\left(\frac{1}{2}\right) \sin t\right)=2 \sqrt{3} \cos t-2 \sin t \end{aligned}$ So, $x=2 \sqrt{3} \cos t-y$ Forms an equation in x, y and t. $x+y=2 \sqrt{3} \cos t *$ Correct proof	M1 oe dM1 A1 * [3]
(b)	Main Scheme $\begin{aligned} & \left(\frac{x+y}{2 \sqrt{3}}\right)^{2}+\left(\frac{y}{2}\right)^{2}=1 \\ & \Rightarrow \quad \frac{(x+y)^{2}}{12}+\frac{y^{2}}{4}=1 \\ & \Rightarrow \quad(x+y)^{2}+3 y^{2}=12 \end{aligned}$ Applies $\cos ^{2} t+\sin ^{2} t=1$ to achieve an equation containing only x 's and y 's. $\begin{array}{r} (x+y)^{2}+3 y^{2}=12 \\ \{a=3, b=12\} \end{array}$	M1 A1 [2]
(b)	Alternative Method 1 $(x+y)^{2}=12 \cos ^{2} t=12\left(1-\sin ^{2} t\right)=12-12 \sin ^{2} t$ So, $(x+y)^{2}=12-3 y^{2}$ Applies $\cos ^{2} t+\sin ^{2} t=1$ to achieve an equation containing only x 's and y 's. $\Rightarrow(x+y)^{2}+3 y^{2}=12$ $(x+y)^{2}+3 y^{2}=12$	M1 A1 [2]
(b)	Alternative Method 2 $(x+y)^{2}=12 \cos ^{2} t$ As $12 \cos ^{2} t+12 \sin ^{2} t=12$ then $(x+y)^{2}+3 y^{2}=12$	$\begin{array}{\|r} \hline \text { M1, A1 } \\ {[2]} \\ \hline \end{array}$

	Question 5 Notes	
5. (a)	$\begin{gathered} \text { M1 } \\ \text { Note } \end{gathered}$	$\cos \left(t+\frac{\pi}{6}\right) \rightarrow \cos t \cos \left(\frac{\pi}{6}\right) \pm \sin t \sin \left(\frac{\pi}{6}\right) \quad$ or $\quad \cos \left(t+\frac{\pi}{6}\right) \rightarrow\left(\frac{\sqrt{3}}{2}\right) \cos t \pm\left(\frac{1}{2}\right) \sin t$ If a candidate states $\cos (A+B)=\cos A \cos B \pm \sin A \sin B$, but there is an error in its application then give M1. Awarding the dM1 mark which is dependent on the first method mark
Main	dM1 Note	Adds their expanded x (which is in terms of t) to $2 \sin t$ Writing $x+y=\ldots$ is not needed in the Main Scheme method.
Alt 1	dM1	Forms an equation in x, y and t.
(b)	A1* Note M1 A1 SC Note Note Note	Evidence of $\cos \left(\frac{\pi}{6}\right)$ and $\sin \left(\frac{\pi}{6}\right)$ evaluated and the proof is correct with no errors. $\{x+y\}=4 \cos \left(t+\frac{\pi}{6}\right)+2 \sin t$, by itself is MOMOA 0. Applies $\cos ^{2} t+\sin ^{2} t=1$ to achieve an equation containing only x 's and y 's. leading $(x+y)^{2}+3 y^{2}=12$ Award Special Case B1B0 for a candidate who writes down either - $(x+y)^{2}+3 y^{2}=12$ from no working - $\quad a=3, b=12$, but does not provide a correct proof. Alternative method 2 is fine for M1 A1 Writing $(x+y)^{2}=12 \cos ^{2} t$ followed by $12 \cos ^{2} t+a\left(4 \sin ^{2} t\right)=b \Rightarrow a=3, b=12$ is SC: B1B0 Writing $(x+y)^{2}=12 \cos ^{2} t$ followed by $12 \cos ^{2} t+a\left(4 \sin ^{2} t\right)=b$ - states $a=3, b=12$ - and refers to either $\cos ^{2} t+\sin ^{2} t=1$ or $12 \cos ^{2} t+12 \sin ^{2} t=12$ - and there is no incorrect working would get M1A1

www.igexams.com

\begin{tabular}{|c|c|c|}
\hline \begin{tabular}{l}
Question \\
Number
\end{tabular} \& Scheme \& Marks \\
\hline 6. (i)

(ii) \& \[
$$
\begin{array}{rlr}
\int x \mathrm{e}^{4 x} \mathrm{~d} x= & \frac{1}{4} x \mathrm{e}^{4 x}-\int \frac{1}{4} \mathrm{e}^{4 x}\{\mathrm{~d} x\} & \pm \alpha x \mathrm{e}^{4 x}-\int \beta \mathrm{e}^{4 x}\{\mathrm{~d} x\}, \quad \alpha \neq 0, \beta>0 \\
= & \frac{1}{4} x \mathrm{e}^{4 x}-\frac{1}{16} \mathrm{e}^{4 x}\{+c\} & \frac{1}{4} x \mathrm{e}^{4 x}-\int \frac{1}{4} \mathrm{e}^{4 x}\{\mathrm{~d} x\} \\
\frac{1}{4} x \mathrm{e}^{4 x}-\frac{1}{16} \mathrm{e}^{4 x} \\
\int \frac{8}{(2 x-1)^{3}} \mathrm{~d} x=\frac{8(2 x-1)^{-2}}{(2)(-2)}\{+c\} & \pm \lambda(2 x-1)^{-2} \\
\left\{=-2(2 x-1)^{-2}\{+c\}\right\} & \frac{8(2 x-1)^{-2}}{(2)(-2)} \text { or equivalent. } \\
\text { \{Ignore subsequent working\}. }
\end{array}
$$

\] \& | M1 |
| :--- |
| A1 |
| A1 |
| [3] |
| M1 |
| A1 |
| [2] |

\hline (iii) \& $$
\frac{\mathrm{d} y}{\mathrm{~d} x}=\mathrm{e}^{x} \operatorname{cosec} 2 y \operatorname{cosec} y \quad y=\frac{\pi}{6} \text { at } x=0
$$ \&

\hline \& \& | B1 oe |
| :--- |
| M1 |
| M1 |
| A1 |
| B1 |
| M1 |
| A1 |

\hline \& Alternative Method 1 \& | B1 oe |
| :--- |
| M1 |
| M1 |
| A1 |
| B1 |
| M1 |
| A1 |

\hline \& \& 12

\hline
\end{tabular}

www.igexams.com

	Question 7 Notes	
7. (a)	$\begin{gathered} \mathbf{1}^{\text {st }} \mathrm{M} 1 \\ \mathrm{SC} \\ \mathbf{1}^{\text {st }} \mathrm{A} 1 \\ 2^{\text {nd }} \mathrm{M} 1 \end{gathered}$	Applies their $\frac{\mathrm{d} y}{\mathrm{~d} \theta}$ divided by their $\frac{\mathrm{d} x}{\mathrm{~d} \theta}$ or applies $\frac{\mathrm{d} y}{\mathrm{~d} \theta}$ multiplied by their $\frac{\mathrm{d} \theta}{\mathrm{d} x}$ Award Special Case $1^{\text {st }} \mathbf{M 1}$ if both $\frac{\mathrm{d} x}{\mathrm{~d} \theta}$ and $\frac{\mathrm{d} y}{\mathrm{~d} \theta}$ are both correct. Correct $\frac{\mathrm{d} y}{\mathrm{~d} x}$ i.e. $\frac{-8 \cos \theta \sin \theta}{3 \sec ^{2} \theta}$ or $-\frac{8}{3} \cos ^{3} \theta \sin \theta$ or $-\frac{4}{3} \sin 2 \theta \cos ^{2} \theta$ or any equivalent form. Some evidence of substituting $\theta=\frac{\pi}{4}$ or $\theta=45^{\circ}$ into their $\frac{\mathrm{d} y}{\mathrm{~d} x}$
(b)	Note $\begin{aligned} & 3^{\text {rd }} \text { M1 } \\ & 4^{\text {th }} \text { M1 } \end{aligned}$ Note	For $3^{\text {rd }} \mathrm{M} 1$ and $4^{\text {th }} \mathrm{M} 1, m(\mathbf{T})$ must be found by using $\frac{\mathrm{d} y}{\mathrm{~d} x}$. applies $m(\mathbf{N})=\frac{-1}{m(\mathbf{T})}$. Numerical value for $m(\mathbf{N})$ is required here. - Applies $y-2=\left(\right.$ their $\left.m_{N}\right)(x-3)$, where $\mathrm{m}(\mathbf{N})$ is a numerical value, - or finds \boldsymbol{c} by solving $2=\left(\right.$ their $\left.m_{N}\right) 3+c$, where $\mathrm{m}(\mathbf{N})$ is a numerical value, and $m_{N}=-\frac{1}{\text { their } \mathrm{m}(\mathbf{T})}$ or $m_{N}=\frac{1}{\text { their } \mathrm{m}(\mathbf{T})}$ or $m_{N}=-$ their $\mathrm{m}(\mathbf{T})$. This mark can be implied by subsequent working.
	$2^{\text {nd }}$ A1	$x=\frac{5}{3}$ or $1 \frac{2}{3}$ or awrt 1.67 from a correct solution only.
	Note Note $1^{\text {st }}$ A1 Note $2^{\text {nd }}$ A1 $2^{\text {nd }}$ M1	Applying $\int y^{2} \mathrm{~d} x$ as $y^{2} \frac{\mathrm{~d} x}{\mathrm{~d} \theta}$ with their $\frac{\mathrm{d} x}{\mathrm{~d} \theta}$. Ignore π or $\frac{1}{3} \pi$ outside integral. You can ignore the omission of an integral sign and/or $\mathrm{d} \theta$ for the $1^{\text {st }} \mathrm{M} 1$. Allow $1^{\text {st }} \mathrm{M} 1$ for $\int\left(\cos ^{2} \theta\right)^{2} \times$ "their $3 \sec ^{2} \theta$ " $\mathrm{d} \theta$ or $\int 4\left(\cos ^{2} \theta\right)^{2} \times$ "their $3 \sec ^{2} \theta$ " $\mathrm{d} \theta$ Correct expression $\left\{\pi \int y^{2} \mathrm{~d} x\right\}=\pi \int\left(4 \cos ^{2} \theta\right)^{2} 3 \sec ^{2} \theta\{\mathrm{~d} \theta\}$ (Allow the omission of $\mathrm{d} \theta$) IMPORTANT: The π can be recovered later, but as a correct statement only. $\left\{\int y^{2} \mathrm{~d} x\right\}=\int 48 \cos ^{2} \theta\{\mathrm{~d} \theta\}$. (Ignore $\mathrm{d} \theta$). Note: 48 can be written as $24(2)$ for example. Applies $\cos 2 \theta=2 \cos ^{2} \theta-1$ to their integral. (Seen or implied.)
	$3^{\text {rd }}$ dM1*	which is dependent on the $\mathbf{1}^{\text {st }}$ M1 mark. Integrating $\cos ^{2} \theta$ to give $\pm \alpha \theta \pm \beta \sin 2 \theta, \alpha \neq 0, \beta \neq 0$, un-simplified or simplified.
	$3^{\text {rd }} \mathbf{A 1}$ $4^{\text {th }} \mathbf{d M} 1$	which is dependent on the $3^{\text {rd }}$ M1 mark and the $1^{\text {st }} \mathrm{M} 1$ mark. Integrating $\cos ^{2} \theta$ to give $\frac{1}{2} \theta+\frac{1}{4} \sin 2 \theta$, un-simplified or simplified. This can be implied by $k \cos ^{2} \theta$ giving $\frac{k}{2} \theta+\frac{k}{4} \sin 2 \theta$, un-simplified or simplified. which is dependent on the $3^{\text {rd }}$ M1 mark and the $1^{\text {st }}$ M1 mark. Some evidence of applying limits of $\frac{\pi}{4}$ and 0 (0 can be implied) to an integrated function in θ
	$5^{\text {th }}$ M1	Applies $V_{\text {cone }}=\frac{1}{3} \pi(2)^{2}(3-$ their part (a) answer).
	Note $4^{\text {th }} \mathrm{A} 1$ Note Note	Also allow the $5^{\text {th }}$ M1 for $V_{\text {cone }}=\pi \int_{\text {their } \frac{5}{3}}^{3}\left(\frac{3}{2} x-\frac{5}{2}\right)^{2}\{d x\}$, which includes the correct limits. $\frac{92}{9} \pi+6 \pi^{2} \text { or } 10 \frac{2}{9} \pi+6 \pi^{2}$ A decimal answer of $91.33168464 \ldots$ (without a correct exact answer) is A0. The π in the volume formula is only needed for the $1^{\text {st }} \mathrm{A} 1$ mark and the final accuracy mark.

www.igexams.com

7.		Working with a Cartesian Equation A cartesian equation for C is $y=\frac{36}{x^{2}+9}$
(a)	$\begin{gathered} \mathbf{1}^{\text {st }} \text { M1 } \\ \mathbf{1}^{\text {st }} \mathbf{A 1} \\ 2^{\text {nd }} \mathbf{d M 1} \end{gathered}$	$\frac{\mathrm{d} y}{\mathrm{~d} x}= \pm \lambda x\left(\pm \alpha x^{2} \pm \beta\right)^{-2} \text { or } \frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{ \pm \lambda x}{\left(\pm \alpha x^{2} \pm \beta\right)^{2}}$ $\frac{\mathrm{d} y}{\mathrm{~d} x}=-36\left(x^{2}+9\right)^{-2}(2 x) \quad$ or $\quad \frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{-72 x}{\left(x^{2}+9\right)^{2}}$ un-simplified or simplified. Dependent on the $\mathbf{1}^{\text {st }}$ M1 mark if a candidate uses this method For substituting $x=3$ into their $\frac{\mathrm{d} y}{\mathrm{~d} x}$ i.e. at $P(3,2), \frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{-72(3)}{\left(3^{2}+9\right)^{2}}\left\{=-\frac{2}{3}\right\}$ From this point onwards the original scheme can be applied.
(b)	$\mathbf{1}^{\text {st }} \text { M1 }$ A1	For $\int\left(\frac{ \pm \lambda}{ \pm \alpha x^{2} \pm \beta}\right)^{2}\{\mathrm{~d} x\} \quad$ (π not required for this mark) For $\pi \int\left(\frac{36}{x^{2}+9}\right)^{2}\{\mathrm{~d} x\} \quad(\pi$ required for this mark) To integrate, a substitution of $x=3 \tan \theta$ is required which will lead to $\int 48 \cos ^{2} \theta \mathrm{~d} \theta$ and so from this point onwards the original scheme can be applied.
(a)	$\begin{gathered} \mathbf{1}^{\text {st }} \text { M1 } \\ \mathbf{1}^{\text {st }} \mathbf{A 1} \\ \mathbf{2}^{\text {nd }} \mathbf{d M 1} \end{gathered}$	Another cartesian equation for C is $x^{2}=\frac{36}{y}-9$ $\begin{aligned} & \pm \alpha x= \pm \frac{\beta}{y^{2}} \frac{\mathrm{~d} y}{\mathrm{~d} x} \text { or } \pm \alpha x \frac{\mathrm{~d} x}{\mathrm{~d} y}= \pm \frac{\beta}{y^{2}} \\ & 2 x=-\frac{36}{y^{2}} \frac{\mathrm{~d} y}{\mathrm{~d} x} \quad \text { or } 2 x \frac{\mathrm{~d} x}{\mathrm{~d} y}=-\frac{36}{y^{2}} \end{aligned}$ Dependent on the $1^{\text {st }}$ M1 mark if a candidate uses this method For substituting $x=3$ to find $\frac{\mathrm{d} y}{\mathrm{~d} x}$ i.e. at $P(3,2), 2(3)=-\frac{36}{4} \frac{\mathrm{~d} y}{\mathrm{~d} x} \Rightarrow \frac{\mathrm{~d} y}{\mathrm{~d} x}=\ldots$ From this point onwards the original scheme can be applied.

8. (f)		
	$\overrightarrow{P A}=\overrightarrow{C B}=\left(\begin{array}{r}-2 \\ 2 \\ 4\end{array}\right)$ and $\overrightarrow{A B}=\left(\begin{array}{r}1 \\ -1 \\ 1\end{array}\right)$, so $B C \perp A B \quad \begin{array}{r}\text { Candidates do not need to } \\ \text { prove this result for part (f) }\end{array}$	
$\begin{aligned} & \text { 8. (f) } \\ & \text { Way } 2 \end{aligned}$	$\left.\begin{array}{rlr} h=\|\overrightarrow{C B}\|=\sqrt{(-2)^{2}+(2)^{2}+(4)^{2}}=\sqrt{24}=2 \sqrt{6}=4.8989 \ldots & \text { Attempts }\|\overrightarrow{P A}\| \text { or }\|\overrightarrow{C B}\| \\ \text { Area } A B C D & =\frac{1}{2} \sqrt{24}(\sqrt{3}+2 \sqrt{3}) \text { or } & \frac{1}{2} \sqrt{24} \sqrt{3}+\sqrt{24} \sqrt{3} \end{array} \quad \frac{1}{2} h(\text { their } A B+\text { their } C D) .\|\overrightarrow{C B}\|=\sqrt{24}\right)$	M1 A1 oe dM1 oe A1 cso
Way3 8. (f)	Finds the area of either triangle APB or APD or BCP and triples the result. $\begin{array}{rlrl} \text { Area } \triangle A P B & =\frac{1}{2} \sqrt{3}(3 \sqrt{3}) \sin \theta & \text { Attempts } \frac{1}{2}(\text { their } A B)(\text { their } P B) \sin \theta \\ & =\frac{1}{2} \sqrt{3}(3 \sqrt{3}) \sin (70.5 \ldots) & \frac{1}{2} \sqrt{3}(3 \sqrt{3}) \sin (70.5 \ldots) \text { or } 3 \sqrt{2} \\ \text { Area } A B C D & =3(3 \sqrt{2}) & & \text { or awrt } 4.24 \text { or equivalent } \\ & =9 \sqrt{2} & & \text { Area of } \triangle A P B \end{array}$	M1 A1 dM1 A1 cso

	Question 8 Notes		
8. (a)	M1	$\mathbf{i}-\mathbf{j}+\mathbf{k}$ or $\left(\begin{array}{r}1 \\ -1 \\ 1\end{array}\right)$ or $(1,-1,1)$ or benefit of the doubt $\begin{array}{r}1 \\ -1\end{array}$	
(b)	B1	$\{\mathbf{r}\}=\left(\begin{array}{r}-2 \\ 4 \\ 7\end{array}\right)+\lambda\left(\begin{array}{r}1 \\ -1 \\ 1\end{array}\right) \quad$ or $\{\mathbf{r}\}=\left(\begin{array}{r}-1 \\ 3 \\ 8\end{array}\right)+\lambda\left(\begin{array}{r}1 \\ -1 \\ 1\end{array}\right)$, with $\overrightarrow{A B}$ or $\overrightarrow{B A}$ correctly followed through from (a).	
	Not	$\mathbf{r}=\text { is not needed. }$	
(c)	M1	An attempt to find either the vector $\overrightarrow{P B}$ or $\overrightarrow{B P}$. If no "subtraction" seen, you can award M1 for 2 out of 3 correct components of the difference.	
	M1	Applies dot product formula between their $(\overrightarrow{A B}$ or $\overrightarrow{B A})$ and their $(\overrightarrow{P B}$ or $\overrightarrow{B P})$.	
	A1	Obtains $\{\cos \theta\}=\frac{1}{3}$ by correct solution only.	
	Not	If candidate starts by applying $\frac{\overrightarrow{A B} \bullet \overrightarrow{P B}}{\|\overrightarrow{A B}\| \cdot\|\overrightarrow{P B}\|}$ correctly (without reference to $\cos \theta=\ldots$) they can gain both $2^{\text {nd }} \mathrm{M} 1$ and A 1 mark.	
	Not	Award the final A1 mark if candidate achieves $\{\cos \theta\}=\frac{1}{3}$ by either taking the dot produ (i) $\left(\begin{array}{r}1 \\ -1 \\ 1\end{array}\right)$ and $\left(\begin{array}{r}-1 \\ 1 \\ 5\end{array}\right)$ or (ii) $\left(\begin{array}{r}-1 \\ 1 \\ -1\end{array}\right)$ and $\left(\begin{array}{r}1 \\ -1 \\ -5\end{array}\right)$. Ignore if any of these vectors are labelle	t between incorrectly.
	Not	Award final A0, cso for those candidates who take the dot product between (iii) $\left(\begin{array}{r}1 \\ -1 \\ 1\end{array}\right)$ and $\left(\begin{array}{r}1 \\ -1 \\ -5\end{array}\right)$ or (iv) $\left(\begin{array}{r}-1 \\ 1 \\ -1\end{array}\right)$ and $\left(\begin{array}{r}-1 \\ 1 \\ 5\end{array}\right)$ They will usually find $\{\cos \theta\}=-\frac{1}{3}$ or may fudge $\{\cos \theta\}=\frac{1}{3}$. If these candidates give a convincing detailed explanation which must include reference to of their vectors then this can be given A1 cso	the direction
(c)	Alternative Method 1: The Cosine Rule		
	$\overrightarrow{P B}=\overrightarrow{O B}-\overrightarrow{O P}=\left(\begin{array}{r} -1 \\ 3 \\ 8 \end{array}\right)-\left(\begin{array}{l} 0 \\ 2 \\ 3 \end{array}\right)=\left(\begin{array}{r} -1 \\ 1 \\ 5 \end{array}\right) \text { or } \overrightarrow{B P}=\left(\begin{array}{r} 1 \\ -1 \\ -5 \end{array}\right) \quad \begin{aligned} & \text { Mark in the same way } \\ & \text { as the main scheme. } \end{aligned}$		M1
	$\begin{aligned} & (\sqrt{24})^{2}=(\sqrt{27})^{2}+(\sqrt{3})^{2}-2(\sqrt{27})(\sqrt{3}) \cos \theta \\ & \cos \theta=\frac{27+3-24}{18}=\frac{1}{3} \end{aligned}$ Applies the cosine rule the correct way round Correct proof		M1 oe A1 cso

\begin{tabular}{|c|c|c|c|}
\hline 8. (c) \& \begin{tabular}{l}
Altern \\
\(\overrightarrow{P B}=\) \\
Either \\
or \(\overline{A B}\) \\
So, \(\{\)
\end{tabular} \& \begin{tabular}{l}
tive Method 2: Right-Angled Trigonometry
\[
\begin{aligned}
\& \vec{B}-\overrightarrow{O P}=\left(\begin{array}{r}
-1 \\
3 \\
8
\end{array}\right)-\left(\begin{array}{l}
0 \\
2 \\
3
\end{array}\right)=\left(\begin{array}{r}
-1 \\
1 \\
5
\end{array}\right) \text { or } \overrightarrow{B P}=\left(\begin{array}{r}
1 \\
-1 \\
-5
\end{array}\right) \\
\& \sqrt{24})^{2}+(\sqrt{3})^{2}=(\sqrt{27})^{2} \\
\& \cdot \overrightarrow{P A}=\left(\begin{array}{r}
1 \\
-1 \\
1
\end{array}\right) \bullet\left(\begin{array}{r}
-2 \\
2 \\
4
\end{array}\right)=-2-2+4=0 \\
\& \left.\sin =\frac{A B}{P B} \Rightarrow\right\} \cos \theta=\frac{\sqrt{3}}{\sqrt{27}}=\frac{1}{3}
\end{aligned}
\] \\
Mark in the same wa as the main scheme \\
Confirms \(\triangle P A B\) is right-angle
\end{tabular} \& \begin{tabular}{l}
M1 \\
M1 \\
A1 cso
\end{tabular} \\
\hline (d)
(e) \& \begin{tabular}{l}
M1 \\
A1ft \\
Note \\
Note \\
M1 \\
Note \\
A1ft \\
A1ft \\
Note
\end{tabular} \& \multicolumn{2}{|l|}{\begin{tabular}{l}
or a multiple of their \(\overrightarrow{A B}\) found in part (a). \\
Writing \(\left(\begin{array}{l}0 \\ 2 \\ 3\end{array}\right)+\mu\left(\begin{array}{r}1 \\ -1 \\ 1\end{array}\right)\) or \(\left(\begin{array}{l}0 \\ 2 \\ 3\end{array}\right)+\mu \mathbf{d}\), where \(\mathbf{d}=\) their \(\overrightarrow{A B}\) or a multiple of their \(\overrightarrow{A B}\) found in part (a). \(\mathbf{r}=\) is not needed. \\
Using the same scalar parameter as in part (b) is fine for A1. \\
Either \(\overrightarrow{O P}+\) their \(\overrightarrow{A B}\) or \(\overrightarrow{O P}\) - their \(\overrightarrow{A B}\). \\
This can be implied at least two out of three correct components for either their \(C\) or their \(D\). \\
At least one set of coordinates are correct. Ignore labelling of \(C, D\) \\
Both sets of coordinates are correct. Ignore labelling of \(C, D\) \\
You can follow through either or both accuracy marks in this part using their \(\overrightarrow{A B}\) from part (a).
\end{tabular}} \\
\hline \multirow[t]{3}{*}{(f)} \& M1

Note \& | Way 1: $\frac{h}{\text { their }\|\overrightarrow{P B}\|}=\sin \theta$ |
| :--- |
| Way 2: Attempts $\|\overrightarrow{P A}\|$ or $\|\overrightarrow{C B}\|$ |
| Way 3: Attempts $\frac{1}{2}$ (their $P B$)(their $\left.A B\right) \sin \theta$ |
| Finding $A D$ by itself is M0. | \&

\hline \& A1 \& | Either |
| :--- |
| - $h=\sqrt{27} \sin (70.5 \ldots$..) or $\|\overrightarrow{P A}\|=\|\overrightarrow{C B}\|=\sqrt{24}$ or equivalent. (See Way 1 and Wa or |
| - the area of either triangle $A P B$ or $A P D$ or $B D P=\frac{1}{2} \sqrt{3}(3 \sqrt{3}) \sin (70.5 \ldots)$ | \& Way 3).

\hline \& | dM1 |
| :--- |
| A1 |
| Note | \& | which is dependent on the $1^{\text {st }}$ M1 mark. |
| :--- |
| A full method to find the area of trapezium $A B C D$. (See Way 1, Way 2 and Way 3). |
| $9 \sqrt{2}$ from a correct solution only. |
| A decimal answer of $12.7279 \ldots$ (without a correct exact answer) is A0. | \&

\hline
\end{tabular}

www.igexams.com

