edexcel

Mark Scheme (Results)

Summer 2016

Pearson Edexcel GCE in Core Mathematics 4 (6666/01)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2016
Publications Code 6666_01_1606_MS
All the material in this publication is copyright
© Pearson Education Ltd 2016

www.igexams.com

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

www.igexams.com

PEARSON EDEXCEL GCE MATHEMATI CS

General I nstructions for Marking

1. The total number of marks for the paper is 75
2. The Edexcel Mathematics mark schemes use the following types of marks:

- M marks: Method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- B marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.

3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod - benefit of doubt
- ft - follow through
- the symbol $\sqrt{ }$ will be used for correct ft
- cao - correct answer only
- cso - correct solution only. There must be no errors in this part of the question to obtain this mark
- isw - ignore subsequent working
- awrt - answers which round to
- SC: special case
- oe - or equivalent (and appropriate)
- d... or dep - dependent
- indep - independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper or ag- answer given
- \square or d... The second mark is dependent on gaining the first mark

www.igexams.com

4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft.
5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
6. If a candidate makes more than one attempt at any question:

- If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
- If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.

7. Ignore wrong working or incorrect statements following a correct answer.

www.igexams.com

General Principles for Core Mathematics Marking

(But note that specific mark schemes may sometimes override these general principles).

Method mark for solving 3 term quadratic:

1. Factorisation

$\left(x^{2}+b x+c\right)=(x+p)(x+q)$, where $p q|=|c|$, leading to $\mathrm{x}=\ldots$
$\left(a x^{2}+b x+c\right)=(m x+p)(n x+q)$, where $p q|=|c|$ and $| m n|=|a|$, leading to $\mathrm{x}=\ldots$

2. Formula

Attempt to use the correct formula (with values for a, b and c).

3. Completing the square

Solving $x^{2}+b x+c=0:\left(x \pm \frac{b}{2}\right)^{2} \pm q \pm c=0, \quad q \neq 0$, leading to $x=\ldots$

Method marks for differentiation and integration:

1. Differentiation

Power of at least one term decreased by 1. $\left(x^{n} \rightarrow x^{n-1}\right)$

2. Integration

Power of at least one term increased by $1 .\left(x^{n} \rightarrow x^{n+1}\right)$

Use of a formula

www.igexams.com

Where a method involves using a formula that has been learnt, the advice given in recent examiners' reports is that the formula should be quoted first.

Normal marking procedure is as follows:

Method mark for quoting a correct formula and attempting to use it, even if there are small errors in the substitution of values.

Where the formula is not quoted, the method mark can be gained by implication from correct working with values, but may be lost if there is any mistake in the working.

Exact answers

Examiners' reports have emphasised that where, for example, an exact answer is asked for, or working with surds is clearly required, marks will normally be lost if the candidate resorts to using rounded decimals.

Question Number	W Wratigexams.com	Notes	Marks
$\begin{gathered} 1 . \\ \text { Way } 1 \end{gathered}$	$\left\{\frac{1}{(2+5 x)^{3}}=\right\}(2+5 x)^{-3}$	Writes down $(2+5 x)^{-3}$ or uses power of -3	M1
	$=\underline{(2)^{-3}}\left(1+\frac{5 x}{2}\right)^{-3}=\frac{1}{8}\left(1+\frac{5 x}{2}\right)^{-3}$	$\underline{2^{-3}}$ or $\frac{1}{8}$	B1
	$=\left\{\frac{1}{8}\right\}\left[1+(-3)(k x)+\frac{(-3)(-4)}{2!}(k x)^{2}+\frac{(-3)(-4)(-5)}{3!}(k x)^{3}+\ldots\right]$	see notes	M1 A1
	$=\left\{\frac{1}{8}\right\}\left[1+(-3)\left(\frac{5 x}{2}\right)+\frac{(-3)(-4)}{2!}\left(\frac{5 x}{2}\right)^{2}+\frac{(-3)(-4)(-5)}{3!}\left(\frac{5 x}{2}\right)^{3}+\ldots\right]$		
	$=\frac{1}{8}\left[1-\frac{15}{2} x+\frac{75}{2} x^{2}-\frac{625}{4} x^{3}+\ldots\right]$		
	$=\frac{1}{8}\left[1-7.5 x+37.5 x^{2}-156.25 x^{3}+\ldots\right]$		
	$\begin{aligned} & =\frac{1}{8}-\frac{15}{16} x ;+\frac{75}{16} x^{2}-\frac{625}{32} x^{3}+\ldots \\ & \text { or } \frac{1}{8}-\frac{15}{16} x ;+4 \frac{11}{16} x^{2}-19 \frac{17}{32} x^{3}+\ldots \end{aligned}$		A1; A1
			[6]
			6
Way 2	$f(x)=(2+5 x)^{-3}$	Writes down $(2+5 x)^{-3}$ or uses power of -3	M1
	$\mathrm{f}^{\prime \prime}(x)=300(2+5 x)^{-5}, \mathrm{f}^{\prime \prime \prime}(x)=-7500(2+5 x)^{-6}$	Correct $\mathrm{f}^{\prime \prime}(x)$ and $\mathrm{f}^{\prime \prime \prime}(x)$	B1
	$\mathrm{f}^{\prime}(x)=-15(2+5 x)^{-4}$	$\pm a(2+5 x)^{-4}, a \neq \pm 1$	M1
	$f^{\prime}(x)=-15(2+5 x)$	$-15(2+5 x)^{-4}$	A1 oe
	$\left\{\therefore \mathrm{f}(0)=\frac{1}{8}, \mathrm{f}^{\prime}(0)=-\frac{15}{16}, \mathrm{f}^{\prime \prime}(0)=\frac{75}{8}\right.$ and $\left.\mathrm{f}^{\prime \prime \prime}(0)=-\frac{1875}{16}\right\}$		
	So, $\mathrm{f}(x)=\frac{1}{8}-\frac{15}{16} x ;+\frac{75}{16} x^{2}-\frac{625}{32} x^{3}+\ldots$	Same as in Way 1	A1; A1
			[6]
Way 3	$(2+5 x)^{-3}$	Same as in Way 1	M1
	$=\underline{(2)^{-3}}+(-3)(2)^{-4}(5 x)+\frac{(-3)(-4)}{2!}(2)^{-5}(5 x)^{2}+\frac{(-3)(-4)(-5)}{3!}(2)^{-6}(5 x)^{3}$	Same as in Way 1	B1
		Any two terms correct	M1
		All four terms correct	A1
	$=\frac{1}{8}-\frac{15}{16} x ;+\frac{75}{16} x^{2}-\frac{625}{32} x^{3}+\ldots$	Same as in Way 1	A1; A1
	Note: Terms can be simplified or un-simplified for B1 $2^{\text {nd }}$ M1 $1^{\text {st }}$ A1		[6]
	$\begin{aligned} & \text { Note: The terms in } \mathrm{C} \text { need to be evaluated } \\ & \text { So }{ }^{-3} \mathrm{C}_{0}(2)^{-3}+{ }^{-3} C_{1}(2)^{-4}(5 x)+{ }^{-3} C_{2}(2)^{-5}(5 x)^{2}+{ }^{-3} C_{3}(2)^{-6}(5 x)^{3} \\ & \text { without further working is B0 } 1^{\text {st }} \mathrm{M} 01^{\text {st }} \mathrm{A} 0 \end{aligned}$		

WWW.igexarnifqotem		
1.	$1^{\text {st }}$ M1	mark can be implied by a constant term of (2) ${ }^{-3}$ or $\frac{1}{8}$
	B1	2^{-3} or $\frac{1}{8}$ outside brackets or $\frac{1}{8}$ as candidate's constant term in their binomial expansion.
	$2^{\text {nd }}$ M1	Expands $(\ldots+k x)^{-3}, k=$ a value $\neq 1$, to give any 2 terms out of 4 terms simplified or unsimplified, Eg: $\quad 1+(-3)(k x)$ or $\frac{(-3)(-4)}{2!}(k x)^{2}+\frac{(-3)(-4)(-5)}{3!}(k x)^{3} \quad$ or $1+\ldots+\frac{(-3)(-4)}{2!}(k x)^{2}$ or $\frac{(-3)(-4)}{2!}(k x)^{2}+\frac{(-3)(-4)(-5)}{3!}(k x)^{3}$ are fine for M1.
	$\mathbf{1 s t}^{\text {st }}$ A1	A correct simplified or un-simplified $1+(-3)(k x)+\frac{(-3)(-4)}{2!}(k x)^{2}+\frac{(-3)(-4)(-5)}{3!}(k x)^{3}$ expansion with consistent $(k x)$. Note that $(k x)$ must be consistent and $k=$ a value $\neq 1$. (on the RHS, not necessarily the LHS) in a candidate's expansion.
	Note	You would award B1M1A0 for $\frac{1}{8}\left[1+(-3)\left(\frac{5 x}{2}\right)+\frac{(-3)(-4)}{2!}(5 x)^{2}+\frac{(-3)(-4)(-5)}{3!}\left(\frac{5 x}{2}\right)^{3}+\ldots\right]$ because $(k x)$ is not consistent.
	Note	$\text { Incorrect bracketing: }=\left\{\frac{1}{8}\right\}\left[1+(-3)\left(\frac{5 x}{2}\right)+\frac{(-3)(-4)}{2!}\left(\frac{5 x^{2}}{2}\right)+\frac{(-3)(-4)(-5)}{3!}\left(\frac{5 x^{3}}{2}\right)+\ldots\right]$ is M1A0 unless recovered.
	$2^{\text {nd }}$ A1	For $\frac{1}{8}-\frac{15}{16} x$ (simplified) or also allow $0.125-0.9375 x$.
	$3^{\text {rd }}$ A1	Accept only $\frac{75}{16} x^{2}-\frac{625}{32} x^{3}$ or $4 \frac{11}{16} x^{2}-19 \frac{17}{32} x^{3}$ or $4.6875 x^{2}-19.53125 x^{3}$
	SC	If a candidate would otherwise score $2^{\text {nd }} \mathrm{A} 0, \mathrm{~J}^{\text {rd }} \mathrm{A} 0$ then allow Special Case $2^{\text {nd }}$ A1 for either
		SC: $\frac{1}{8}\left[1-\frac{15}{2} x ; \ldots\right]$ or SC: $\frac{1}{8}\left[1+\ldots+\frac{75}{2} x^{2}+\ldots\right]$ or SC: $\frac{1}{8}\left[1+\ldots-\frac{625}{4} x^{3}+\ldots\right]$
		SC: $\lambda\left[1-\frac{15}{2} x+\frac{75}{2} x^{2}-\frac{625}{4} x^{3}+\ldots\right]$ or SC: $\left[\lambda-\frac{15 \lambda}{2} x+\frac{75 \lambda}{2} x^{2}-\frac{625 \lambda}{4} x^{3}+\ldots\right]$
		(where λ can be 1 or omitted), where each term in the $[\ldots . .$.$] is a simplified fraction or a decimal$
	SC	Special case for the $\mathbf{2}^{\text {nd }}$ M1 mark Award Special Case $2^{\text {nd }}$ M1 for a correct simplified or un-simplified $1+n(k x)+\frac{n(n-1)}{2!}(k x)^{2}+\frac{n(n-1)(n-2)}{3!}(k x)^{3}$ expansion with their $n \neq-3, n \neq$ positive integer and a consistent $(k x)$. Note that $(k x)$ must be consistent (on the RHS, not necessarily the LHS) in a candidate's expansion. Note that $k \neq 1$.
	Note	Ignore extra terms beyond the term in χ^{3}
	Note	You can ignore subsequent working following a correct answer.

2. (a)	B1	0.6595 correct Whe igenestion 2 Notes 0.6595 correct answer only. L8000r firis onthe aberr in the candidate's working.
(b)	B1	Outside brackets $\frac{1}{2} \times(0.2)$ or $\frac{1}{2} \times \frac{1}{5}$ or $\frac{1}{10}$ or equivalent.
	$\begin{gathered} \text { M1 } \\ \text { Note } \end{gathered}$	For structure of trapezium rule $[\ldots \ldots \ldots . .$. No errors are allowed [eg. an omission of a y-ordinate or an extra y-ordinate or a repeated y ordinate].
	A1 Note	anything that rounds to 1.083 Working must be seen to demonstrate the use of the trapezium rule. (Actual area is $1.070614704 \ldots$...)
	Note	Full marks can be gained in part (b) for using an incorrect part (a) answer of 0.6594
	Note	Award B1M1A1 for $\frac{1}{10}(2.7726)+\frac{1}{5}(0.2625+$ their $0.6595+1.2032+1.9044)=$ awrt 1.083
	Bracketing mistake: Unless the final answer implies that the calculation has been done correctly Award B1M0A0 for $\frac{1}{2}(0.2)+2(0.2625+$ their $0.6595+1.2032+1.9044)+2.7726$ (answer of 10.9318) Award B1M0A0 for $\frac{1}{2}(0.2)(2.7726)+2(0.2625+$ their $0.6595+1.2032+1.9044) \quad$ (answer of 8.33646$)$	
	$\text { Area } \approx 0.2 \times\left[\frac{0+0.2625}{2}+\frac{0.2625+" 0.6595 "}{2}+\frac{" 0.6595 "+1.2032}{2}+\frac{1.2032+1.9044}{2}+\frac{1.9044+2.7726}{2}\right]$	
	B1	0.2 and a divisor of 2 on all terms inside brackets
	M1	First and last ordinates once and two of the middle ordinates inside brackets ignoring the 2
	A1	anything that rounds to 1.083
(c)	A1 Note Note	Exact answer needs to be a two term expression in the form $a \ln b+c$ Give A1 e.g. $\frac{8}{3} \ln 2-\frac{7}{9}$ or $\frac{1}{9}(24 \ln 2-7)$ or $\frac{4}{3} \ln 4-\frac{7}{9}$ or $\frac{1}{3} \ln 256-\frac{7}{9}$ or $-\frac{7}{9}+\frac{8}{3} \ln 2$ or $\ln 2^{\frac{8}{3}}-\frac{7}{9}$ or equivalent. Give final A0 for a final answer of $\frac{8 \ln 2-\ln 1}{3}-\frac{7}{9}$ or $\frac{8 \ln 2}{3}-\frac{1}{3} \ln 1-\frac{7}{9}$ or $\frac{8 \ln 2}{3}-\frac{8}{9}+\frac{1}{9}$ or $\frac{8}{3} \ln 2-\frac{7}{9}+c$
	Note	$\left[\frac{x^{3}}{3} \ln x-\frac{x^{3}}{9}\right]_{1}^{2}$ followed by awrt 1.07 with no correct answer seen is dM1A0
	Note	Give dM0A0 for $\left[\frac{x^{3}}{3} \ln x-\frac{x^{3}}{9}\right]_{1}^{2} \rightarrow\left(\frac{8}{3} \ln 2-\frac{8}{9}\right)-\frac{1}{9} \quad$ (adding rather than subtracting)
	Note	Allow dM1A0 for $\left[\frac{x^{3}}{3} \ln x-\frac{x^{3}}{9}\right]_{1}^{2} \rightarrow\left(\frac{8}{3} \ln 2-\frac{8}{9}\right)-\left(0+\frac{1}{9}\right)$
	SC	A candidate who uses $u=\ln x$ and $\frac{\mathrm{d} v}{\mathrm{~d} x}=x^{2}, \frac{\mathrm{~d} u}{\mathrm{~d} x}=\frac{\alpha}{x}, v=\beta x^{3}$, writes down the correct "by parts" formula but makes only one error when applying it can be awarded Special Case $1^{\text {st }} \mathrm{M} 1$.

www.igexams.com

	Question 3 Notes Continued	
3. (a) Way 1	M1	Differentiates implicitly to include either $2 x^{2} \frac{\mathrm{~d} y}{\mathrm{~d} x}$ or $4 y \rightarrow 4 \frac{\mathrm{~d} y}{\mathrm{~d} x}$ or $-\cos (\pi y) \rightarrow \pm \lambda \sin (\pi y) \frac{\mathrm{d} y}{\mathrm{~d} x}$ (Ignore $\left(\frac{\mathrm{d} y}{\mathrm{~d} x}=\right)$). λ is a constant which can be 1.
	$\mathbf{1}^{\text {st }} \mathbf{A 1}$ Note	$\begin{aligned} & 2 x+4 y-\cos (\pi y)=17 \rightarrow 2+4 \frac{\mathrm{~d} y}{\mathrm{~d} x}+\pi \sin (\pi y) \frac{\mathrm{d} y}{\mathrm{~d} x}=0 \\ & 4 x y+2 x^{2} \frac{\mathrm{~d} y}{\mathrm{~d} x}+2+4 \frac{\mathrm{~d} y}{\mathrm{~d} x}+\pi \sin (\pi y) \frac{\mathrm{d} y}{\mathrm{~d} x} \rightarrow 2 x^{2} \frac{\mathrm{~d} y}{\mathrm{~d} x}+4 \frac{\mathrm{~d} y}{\mathrm{~d} x}+\pi \sin (\pi y) \frac{\mathrm{d} y}{\mathrm{~d} x}=-4 x y-2 \end{aligned}$ will get $1^{\text {st }} \mathrm{A} 1$ (implied) as the " $=0$ " can be implied by the rearrangement of their equation.
	B1	$2 x^{2} y \rightarrow 4 x y+2 x^{2} \frac{2}{d y}$
	Note	If an extra term appears then award ${ }^{\text {st }} \mathrm{A} 0$.
	dM1	Dependent on the first method mark being awarded. An attempt to factorise out all the terms in $\frac{\mathrm{d} y}{\mathrm{~d} x}$ as long as there are at least two terms in $\frac{\mathrm{d} y}{\mathrm{~d} x}$ ie. $\frac{\mathrm{d} y}{\mathrm{~d} x}\left(2 x^{2}+4+\pi \sin (\pi y)\right)+\ldots=\ldots$
	Note	Writing down an extra $\frac{\mathrm{d} y}{\mathrm{~d} x}=\ldots$ and then including it in their factorisation is fine for dM 1 .
	Note	Final A1 cso: If the candidate's solution is not completely correct, then do not give this mark.
	Note	Final A1 isw: You can, however, ignore subsequent working following on from correct solution.
(a)	Way 2	Apply the mark scheme for Way 2 in the same way as Way 1.
(b)	$\mathbf{1}^{\text {st }}$ M1	M1 can be gained by seeing at least one example of substituting $x=3$ and at least one example of substituting $y=\frac{1}{2}$. E.g. " $-4 x y^{\prime \prime} \rightarrow "-6$ " in their $\frac{\mathrm{d} y}{\mathrm{~d} x}$ would be sufficient for M1, unless it is clear that they are instead applying $x=\frac{1}{2}, y=3$.
	$3^{\text {rd }}$ M1	is dependent on the first M1.
	Note	The $2^{\text {nd }}$ M1 mark can be implied by later working. Eg. Award $2^{\text {nd }} \mathbf{M} 13^{\text {rd }} \mathbf{M} 1$ for $\frac{\frac{1}{2}}{3-x}=\frac{-1}{\text { their } m_{T}}$
	Note	We can accept $\sin \pi$ or $\sin \left(\frac{\pi}{2}\right)$ as a numerical value for the $2^{\text {nd }} \mathrm{M} 1$ mark. But, $\sin \pi$ by itself or $\sin \left(\frac{\pi}{2}\right)$ by itself are not allowed as being in terms of π for the $3^{\text {rd }} \mathrm{M} 1$ mark. The $3^{\text {rd }}$ M1 can be accessed for terms containing $\pi \sin \left(\frac{\pi}{2}\right)$.

www.igexams.com

Question Number	Scheme	Notes	Marks
5.	$x=4 \tan t, \quad y=5 \sqrt{3} \sin 2 t, \quad 0 \leqslant t<\frac{\pi}{2}$		
(a) Way 2	$\tan t=\frac{x}{4} \Rightarrow \sin t=\frac{x}{\sqrt{\left(x^{2}+16\right)}}, \cos t=\frac{4}{\sqrt{\left(x^{2}+16\right)}} \Rightarrow y=\frac{40 \sqrt{3} x}{x^{2}+16}$	$=\frac{40 \sqrt{3} x}{x^{2}+16}$	
	$\left\{\begin{array}{rlrl}u & =40 \sqrt{3} x & & v=x^{2}+16 \\ \frac{\mathrm{~d} u}{\mathrm{~d} x}=40 \sqrt{3} & & \frac{\mathrm{~d} v}{\mathrm{~d} x}=2 x\end{array}\right\}$		
	$\left.\underline{\mathrm{d} y}=\frac{40 \sqrt{3}\left(x^{2}+16\right)-2 x(40 \sqrt{3} x)}{2(2)}=\frac{40 \sqrt{3}\left(16-x^{2}\right)}{\left(x^{2}+16\right)^{2}}\right\}$	$\frac{ \pm A\left(x^{2}+16\right) \pm B x^{2}}{\left(x^{2}+16\right)^{2}}$	M1
	$\overline{\mathrm{d} x}=\frac{\left(x^{2}+16\right)^{2}}{=}$	Correct $\frac{\mathrm{d} y}{\mathrm{~d} x}$; simplified or un-simplified	A1
	$\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{40 \sqrt{3}(48+16)-80 \sqrt{3}(48)}{(48+16)^{2}}$	dependent on the previous M mark Some evidence of substituting $x=4 \sqrt{3} \text { into their } \frac{\mathrm{d} y}{\mathrm{~d} x}$	dM1
	$\frac{\mathrm{d} y}{\mathrm{~d} x}=-\frac{5}{16} \sqrt{3}$ or $-\frac{15}{16 \sqrt{3}}$	$-\frac{5}{16} \sqrt{3} \text { or }-\frac{15}{16 \sqrt{3}}$ from a correct solution only	A1 cso
			[4]
(a) Way 3	$y=5 \sqrt{3} \sin \left(2 \tan ^{-1}\left(\frac{x}{4}\right)\right)$		
	$\frac{\mathrm{d} y}{\mathrm{~d} x}=5 \sqrt{3} \cos \left(2 \tan ^{-1}\left(\frac{x}{4}\right)\right)\left(\frac{2}{1+\left(\frac{x}{}\right)^{2}}\right)\left(\frac{1}{4}\right)$	$\frac{\mathrm{d} y}{\mathrm{~d} x}= \pm A \cos \left(2 \tan ^{-1}\left(\frac{x}{4}\right)\right)\left(\frac{1}{1+x^{2}}\right)$	M1
	$\mathrm{d} x$	Correct $\frac{\mathrm{d} y}{\mathrm{~d} x}$; simplified or un-simplified.	A1
	$\frac{\mathrm{d} y}{\mathrm{~d} x}=5 \sqrt{3} \cos \left(2 \tan ^{-1}(\sqrt{3})\right)\left(\frac{2}{1+3}\right)\left(\frac{1}{4}\right)\left\{=5 \sqrt{3}\left(-\frac{1}{2}\right)\left(\frac{1}{2}\right.\right.$	$\left.\left(\frac{1}{4}\right)\right\}$ dependent on the previous M mark Some evidence of substituting $x=4 \sqrt{3}$ into their $\frac{\mathrm{d} y}{\mathrm{~d} x}$	dM1
	$\frac{\mathrm{d} y}{\mathrm{~d} x}=-\frac{5}{16} \sqrt{3} \text { or }-\frac{15}{16 \sqrt{3}}$	$-\frac{5}{16} \sqrt{3} \text { or }-\frac{15}{16 \sqrt{3}}$ from a correct solution only	A1 cso
			[4]

www.igexams.com

WWW.igexterinit fotem		
6. (i)	$\mathbf{1}^{\text {st }}$ M1	Writing $\frac{3 y-4}{y(3 y+2)} \equiv \frac{A}{y}+\frac{B}{(3 y+2)}$ and a complete method for finding the value of at least one of their A or their B.
	Note	M1A1 can be implied for writing down either $\frac{3 y-4}{y(3 y+2)} \equiv \frac{-2}{y}+\frac{\text { their } B}{(3 y+2)}$ or $\frac{3 y-4}{y(3 y+2)} \equiv \frac{\text { their } A}{y}+\frac{9}{(3 y+2)}$ with no working.
	Note	Correct bracketing is not necessary for the penultimate A1ft, but is required for the final A1 in (i)
	Note	Give $2^{\text {nd }} \mathrm{M} 0$ for $\frac{3 y-4}{y(3 y+2)}$ going directly to $\pm \alpha \ln \left(3 y^{2}+2 y\right)$
	Note	...but allow $2^{\text {nd }} \mathrm{M} 1$ for either $\frac{M(6 y+2)}{3 y^{2}+2 y} \rightarrow \pm \alpha \ln \left(3 y^{2}+2 y\right)$ or $\frac{M(3 y+1)}{3 y^{2}+2 y} \rightarrow \pm \alpha \ln \left(3 y^{2}+2 y\right)$
6. (ii)(a)	$\mathbf{1}^{\text {st }} \text { M1 }$ Note Note	Substitutes $x=4 \sin ^{2} \theta$ and their $\mathrm{d} x\left(\right.$ from their correctly rearranged $\left.\frac{\mathrm{d} x}{\mathrm{~d} \theta}\right)$ into $\sqrt{\left(\frac{x}{4-x}\right)} \mathrm{d} x$ $\mathrm{d} x \neq \lambda \mathrm{d} \theta$. For example $\mathrm{d} x \neq \mathrm{d} \theta$ Allow substituting $\mathrm{d} x=4 \sin 2 \theta$ for the $1^{\text {st }} \mathrm{M} 1$ after a correct $\frac{\mathrm{d} x}{\mathrm{~d} \theta}=4 \sin 2 \theta$ or $\mathrm{d} x=4 \sin 2 \theta \mathrm{~d} \theta$
	$2^{\text {nd }} \mathbf{M 1}$ Note	Applying $x=4 \sin ^{2} \theta$ to $\sqrt{\left(\frac{x}{4-x}\right)}$ to give $\pm K \tan \theta$ or $\pm K\left(\frac{\sin \theta}{\cos \theta}\right)$ Integral sign is not needed for this mark.
	$\mathbf{1}^{\text {st }}$ A1	Simplifies to give $\int 8 \sin ^{2} \theta \mathrm{~d} \theta$ including $\mathrm{d} \theta$
	$2^{\text {nd }} \mathbf{B 1}$	Writes down a correct equation involving $x=3$ leading to $\theta=\frac{\pi}{3}$ and no incorrect work seen regarding limits
	Note	Allow $2^{\text {nd }} \mathrm{B} 1$ for $x=4 \sin ^{2}\left(\frac{\pi}{3}\right)=3$ and $x=4 \sin ^{2} 0=0$
	Note	Allow $2^{\text {nd }} \mathrm{B} 1$ for $\theta=\sin ^{-1}\left(\sqrt{\frac{x}{4}}\right)$ followed by $x=3, \theta=\frac{\pi}{3} ; x=0, \theta=0$
(ii)(b)	M1	Writes down a correct equation involving $\cos 2 \theta$ and $\sin ^{2} \theta$ E.g.: $\cos 2 \theta=1-2 \sin ^{2} \theta$ or $\sin ^{2} \theta=\frac{1-\cos 2 \theta}{2}$ or $K \sin ^{2} \theta=K\left(\frac{1-\cos 2 \theta}{2}\right)$ and applies it to their integral. Note: Allow M1 for a correctly stated formula (via an incorrect rearrangement) being applied to their integral.
	M1	Integrates to give an expression of the form $\pm \alpha \theta \pm \beta \sin 2 \theta$ or $k(\pm \alpha \theta \pm \beta \sin 2 \theta)$, $\alpha \neq 0, \beta \neq 0$ (can be simplified or un-simplified).
	$\mathbf{1 s t}^{\text {st }}$ A1	Integrating $\sin ^{2} \theta$ to give $\frac{1}{2} \theta-\frac{1}{4} \sin 2 \theta$, un-simplified or simplified. Correct solution only. Can be implied by $k \sin ^{2} \theta$ giving $\frac{k}{2} \theta-\frac{k}{4} \sin 2 \theta$ or $\frac{k}{4}(2 \theta-\sin 2 \theta)$ un-simplified or simplified.
	$2^{\text {nd }}$ A1	A correct solution in part (ii) leading to a "two term" exact answer of e.g. $\frac{4}{3} \pi-\sqrt{3}$ or $\frac{8}{6} \pi-\sqrt{3}$ or $\frac{4}{3} \pi-\frac{2 \sqrt{3}}{2}$ or $\frac{1}{3}(4 \pi-3 \sqrt{3})$
	Note	A decimal answer of 2.456739397... (without a correct exact answer) is A0.
	Note	Candidates can work in terms of λ (note that λ is not given in (ii)) and gain the $1^{\text {st }}$ three marks (i.e. M1M1A1) in part (b).
	Note	If they incorrectly obtain $\int_{0}^{\frac{\pi}{3}} 8 \sin ^{2} \theta \mathrm{~d} \theta$ in part (i)(a) (or correctly guess that $\lambda=8$) then the final A1 is available for a correct solution in part (ii)(b).

www.igexams.com

www.igexams.com

www.igexams.com

www.igexams.com

8. (a)	Question 8 Notes			
	B1	Allow $A(3,5,0)$ or $3 \mathbf{i}+5 \mathbf{j}$ or $3 \mathbf{i}+5 \mathbf{j}+0 \mathbf{k}$ or $\left(\begin{array}{l}3 \\ 5 \\ 0\end{array}\right)$ or benefit of the doubt $\begin{aligned} & 3 \\ & 5 \\ & 0\end{aligned}$		
(b)	A1	Correct vector equation using $\mathbf{r}=$ or $l=$ or $l_{2}=$ or Line $2=$ i.e. Writing $\mathbf{r}=\left(\begin{array}{l}1 \\ 5 \\ 2\end{array}\right)+\lambda\left(\begin{array}{r}-5 \\ 4 \\ 3\end{array}\right)$ or $\mathbf{r}=\left(\begin{array}{l}1 \\ 5 \\ 2\end{array}\right)+\lambda \mathbf{d}$, where dis a multiple of $\left(\begin{array}{r}-5 \\ 4 \\ 3\end{array}\right)$.		
	Note	Allow the use of parameters μ or t instead of λ.		
(c)	M1	Finds the difference between $\overrightarrow{O P}$ and their $\overrightarrow{O A}$ and applies Pythagoras to the result to find $A P$		
	Note	Allow M1A1 for $\left(\begin{array}{l}2 \\ 0 \\ 2\end{array}\right)$ leading to $A P=\sqrt{(2)^{2}+(0)^{2}+(2)^{2}}=\sqrt{8}=2 \sqrt{2}$.		
(d)	Note	For both the M1 and dM1 marks $\overrightarrow{A P}$ (or $\overrightarrow{P A}$) must be the vector used in part (c) or the difference $\overrightarrow{O P}$ and their $\overrightarrow{O A}$ from part (a).		
	Note	Applying the dot product formula correctly without $\cos \theta$ as the subject is fine for M1dM1		
	Note	Evaluating the dot product (i.e. (-2)(-5) + (0)(4) + (2)(3)) is not required for M1 and dM1 marks.		
	Note	In part (d) allow one slip in writing $\overrightarrow{A P}$ and \mathbf{d}_{2}		
	Note	$\cos \theta=\frac{-10+0-6}{\sqrt{8} \cdot \sqrt{50}}=-\frac{4}{5}$ followed by $\cos \theta=\frac{4}{5}$ is fine for A1 cso		
	Note	Give M1dM1A1 for $\{\cos \theta=\}=\frac{\left(\begin{array}{r}-2 \\ 0 \\ 2\end{array}\right) \cdot\left(\begin{array}{c}-10 \\ 8 \\ 6\end{array}\right)}{\sqrt{8} .10 \sqrt{2}}=\frac{20+12}{40}=\frac{4}{5}$		
	Note	Allow final A1 (ignore subsequent working) for $\cos \theta=0.8$ followed by $36.869 . .$. .		
	Alternative Method: Vector Cross Product			
	Only apply this scheme if it is clear that a candidate is applying a vector cross product method.			
	$\overrightarrow{A P} \times \mathbf{d}_{2}=\left(\begin{array}{r} -2 \\ 0 \\ 2 \end{array}\right) \times\left(\begin{array}{r} -5 \\ 4 \\ 3 \end{array}\right)=\left\{\left(\left.\begin{array}{ccc} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ -2 & 0 & 2 \\ -5 & 4 & 3 \end{array} \right\rvert\,=-8 \mathbf{i}-4 \mathbf{j}-8 \mathbf{k}\right\}\right.$		Realisation that the vector cross product is required between their $(\overrightarrow{A P}$ or $\overrightarrow{P A})$ and $\pm K \mathbf{d}_{2}$ or $\pm K \mathbf{d}_{1}$	M1
	$\sin \theta=\frac{\sqrt{(-8)^{2}+(-4)^{2}+(-8)^{2}}}{\sqrt{(-2)^{2}+(0)^{2}+(2)^{2}} \cdot \sqrt{(-5)^{2}+(4)^{2}+(3)^{2}}}$		Applies the vector product formula between their $(\overrightarrow{A P}$ or $\overrightarrow{P A})$ and $\pm K \mathbf{d}_{2}$ or $\pm K \mathbf{d}_{1}$	dM1
		$\sin \theta=\frac{12}{\sqrt{8} \cdot \sqrt{50}}=\frac{3}{5} \Rightarrow \underline{\cos \theta=\frac{4}{5}}$	$\cos \theta=\frac{4}{5}$ or 0.8 or $\frac{8}{10}$ or $\frac{16}{20}$	A1
(e)	Note	Allow M1;A1 for $\frac{1}{2}(2 \sqrt{2})^{2} \sin \left(36.869 \ldots{ }^{\circ}\right)$ or $\frac{1}{2}(2 \sqrt{2})^{2} \sin \left(180^{\circ}-36.869 \ldots{ }^{\circ}\right)$; $=$ awrt 2.40		
	Note	Candidates must use their θ from part (d) or apply a correct method of finding their $\sin \theta=\frac{3}{5}$ from their $\cos \theta=\frac{4}{5}$		

	WWW dereximindeseonimed		
8. (f)	Note	Allow the first M1A1 for deducing $\lambda=\frac{2}{5}$ or $\lambda=-\frac{2}{5}$ from no incorrect working	
	SC	Allow special case $1^{\text {st }} \mathrm{M} 1$ for $\lambda=2.5$ from comparing lengths or from no working	
	Note	Give $1^{\text {st }} \mathrm{M} 1$ for $\sqrt{(-5 \lambda)^{2}+(4 \lambda)^{2}+(3 \lambda)^{2}}=$ (their $2 \sqrt{2}$)	
	Note	Give $1^{\text {st }} \mathrm{M} 0$ for $(-5 \lambda)^{2}+(4 \lambda)^{2}+(3 \lambda)^{2}=($ their $2 \sqrt{2})$ or equivalent	
	Note	Give $1^{\text {st }}$ M1 for $\lambda=\frac{\text { their } A P=2 \sqrt{2} "}{\sqrt{(-5)^{2}+(4)^{2}+(3)^{2}}}$ and $1^{\text {st }}$ A1 for $\lambda=\frac{2 \sqrt{2}}{5 \sqrt{2}}$	
	Note	So $\left\{\hat{\mathbf{d}}_{1}=\frac{1}{5 \sqrt{2}}\left(\begin{array}{r}-5 \\ 4 \\ 3\end{array}\right) \Rightarrow\right\}$ "vector" $=\frac{2 \sqrt{2}}{5 \sqrt{2}}\left(\begin{array}{r}-5 \\ 4 \\ 3\end{array}\right)$ is M1A1	
	Note	The $2^{\text {nd }} \mathrm{dM} 1$ in part (f) can be implied for at least 2 (out of 6) correct x, y, z ordinates from their values of λ.	
	Note	Giving their "coordinates" as a column vector or position vector is fine for the final A1A1.	
	CAREFUL	Putting l_{2} equal to A gives $\left(\begin{array}{l} 1 \\ 5 \\ 2 \end{array}\right)+\lambda\left(\begin{array}{r} -5 \\ 4 \\ 3 \end{array}\right)=\left(\begin{array}{l} 3 \\ 5 \\ 0 \end{array}\right) \rightarrow\left(\begin{array}{c} \lambda=\frac{2}{5} \\ \lambda=0 \\ \lambda=-\frac{2}{3} \end{array}\right)$	Give M0 dM0 for finding and using $\lambda=\frac{2}{5}$ from this incorrect method.
	CAREFUL	Putting $\lambda \mathbf{d}_{2}=\overrightarrow{A P}$ gives $\lambda\left(\begin{array}{c} -5 \\ 4 \\ 3 \end{array}\right)=\left(\begin{array}{c} 2 \\ 0 \\ -2 \end{array}\right) \rightarrow\left(\begin{array}{c} \lambda=-\frac{2}{5} \\ \lambda=0 \\ \lambda=-\frac{2}{3} \end{array}\right)$	using $\lambda=-\frac{L^{2}}{5}$ from M0 dM0 for inco
	General	You can follow through the part (c) answer of their $A P=2 \sqrt{2}$ for (d) M1dM1, (e) M1, (f) M1dM1	
	General	You can follow through their \mathbf{d}_{2} in part (b) for (d) M1dM1, (f) M1dM1.	

www.igexams.com

