

Mark Scheme (FINAL)

Summer 2017

Pearson Edexcel GCE In Core Mathematics 4 (6666/01)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2017
Publications Code xxxxxxxx*

All the material in this publication is copyright
© Pearson Education Ltd 2017

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

www.igexams.com PEARSON EDEXCEL GCE MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 75
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- M marks: Method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- **B** marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.

3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol $\sqrt{}$ will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- d... or dep dependent
- indep independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper or ag- answer given
- L or d... The second mark is dependent on gaining the first mark
- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft.
- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.

- 6. If a candidate makes more than one attempt at any question:
 - If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
 - If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.
- 7. Ignore wrong working or incorrect statements following a correct answer.

General Principles for Lore Mathematics Marking

(But note that specific mark schemes may sometimes override these general principles).

Method mark for solving 3 term quadratic:

1. Factorisation

$$(x^2+bx+c)=(x+p)(x+q)$$
, where $|pq|=|c|$, leading to $x=...$
 $(ax^2+bx+c)=(mx+p)(nx+q)$, where $|pq|=|c|$ and $|mn|=|a|$, leading to $x=...$

2. Formula

Attempt to use the correct formula (with values for *a*, *b* and *c*).

3. Completing the square

Solving
$$x^2 + bx + c = 0$$
: $\left(x \pm \frac{b}{2}\right)^2 \pm q \pm c = 0$, $q \neq 0$, leading to $x = \dots$

Method marks for differentiation and integration:

1. Differentiation

Power of at least one term decreased by 1. ($x^n \rightarrow x^{n-1}$)

2. Integration

Power of at least one term increased by 1. $(x^n \rightarrow x^{n+1})$

Use of a formula

Where a method involves using a formula that has been learnt, the advice given in recent examiners' reports is that the formula should be quoted first.

Normal marking procedure is as follows:

<u>Method mark</u> for quoting a correct formula and attempting to use it, even if there are small errors in the substitution of values.

Where the formula is <u>not</u> quoted, the method mark can be gained by implication from <u>correct</u> working with values, but may be lost if there is any mistake in the working.

Exact answers

Examiners' reports have emphasised that where, for example, an exact answer is asked for, or working with surds is clearly required, marks will normally be lost if the candidate resorts to using rounded decimals.

Question Number	Scheme WWW.	igexams.com _{Notes}	Marks	
1.	$x = 3t - 4$, $y = 5 - \frac{6}{t}$, $t > 0$			
(a)	$\frac{\mathrm{d}x}{\mathrm{d}t} = 3, \frac{\mathrm{d}y}{\mathrm{d}t} = 6t^{-2}$			
	$\frac{dy}{dx} = \frac{6t^{-2}}{3} \left\{ = \frac{6}{3t^2} = 2t^{-2} = \frac{2}{t^2} \right\}$ or	their $\frac{dy}{dt}$ divided by their $\frac{dx}{dt}$ to give $\frac{dy}{dx}$ in terms of t their $\frac{dy}{dt}$ multiplied by their $\frac{dt}{dx}$ to give $\frac{dy}{dx}$ in terms of t	M1	
	-	$\frac{dt^{-2}}{3}$, simplified or un-simplified, in terms of <i>t</i> . See note.	A1 isw	
	Award Special Case 1st M1 if bot	h $\frac{dx}{dt}$ and $\frac{dy}{dt}$ are stated correctly and explicitly.	[2]	
		ver the work for part (a) in part (b).		
(a)	$y = 5 - \frac{18}{x+4} \Rightarrow \frac{dy}{dx} = \frac{18}{(x+4)^2} = \frac{18}{(3t)^2}$	Writes $\frac{dy}{dx}$ in the form $\frac{\pm \lambda}{(x+4)^2}$, and writes $\frac{dy}{dx}$ as a	M1	
Way 2	$x+4$ dx $(x+4)^2$ $(3t)^2$	function of <i>t</i> . Correct un-simplified or simplified answer, in terms of <i>t</i> . See note.	A1 isw	
			[2]	
(b)	$\left\{t = \frac{1}{2} \Longrightarrow \right\} P\left(-\frac{5}{2}, -7\right)$	$x = -\frac{5}{2}, y = -7$ or $P(-\frac{5}{2}, -7)$ seen or implied.	B1	
	$\begin{cases} t = \frac{1}{2} \implies P\left(-\frac{5}{2}, -7\right) \\ \frac{dy}{dx} = \frac{2}{\left(\frac{1}{2}\right)^2} \text{and either} \end{cases}$	Some attempt to substitute $t = 0.5$ into their $\frac{dy}{dx}$		
	• $y - "-7" = "8" \left(x - "-\frac{5}{2}"\right)$	which contains t in order to find $m_{\rm T}$ and either		
	• $y 7 = 8 \left(x \frac{1}{2} \right)$	applies y - (their y_p) = (their m_T)(x - their x_p)	M1	
	• "-7" = ("8")("- $\frac{5}{2}$ ") + <i>c</i>	or finds c from (their y_p) = (their m_r)(their x_p) + c		
	So, $y = (\text{their } m_{\Gamma})x + "c"$	and uses their numerical c in $y = (\text{their } m_T)x + c$		
	T: $y = 8x + 13$	y = 8x + 13 or $y = 13 + 8x$	A1 cso	
	Note: their y_p , their y_p and their y_p	n_T must be numerical values in order to award M1	[3]	
		An attempt to eliminate <i>t</i> . See notes.	M1	
(c) Way 1	$\left\{ t = \frac{x+4}{3} \implies \right\} \ y = 5 - \frac{6}{\left(\frac{x+4}{3}\right)}$	Achieves a correct equation in x and y only	A1 o.e.	
	$\Rightarrow y = 5 - \frac{18}{x+4} \Rightarrow y = \frac{5(x+4)-18}{x+4}$			
	So, $y = \frac{5x+2}{x+4}$, $\{x > -4\}$	$y = \frac{5x + 2}{x + 4}$ (or implied equation)	A1 cso	
			[3]	
(c)	$\begin{cases} t = \frac{6}{3} \implies x = \frac{18}{3} - 4 \end{cases}$	An attempt to eliminate <i>t</i> . See notes.	M1	
Way 2	$\left\{ t = \frac{6}{5 - y} \Rightarrow \right\} x = \frac{18}{5 - y} - 4$	Achieves a correct equation in x and y only		
	$(x + 4)(5 - y) = 18 \rightarrow 5x - xy + 20$	- 4 <i>y</i> = 18		
	$\{ \triangleright 5x + 2 = y(x+4) \}$ So, $y = \frac{5x+2}{x+4}$, $\{x > -4\}$ $y = \frac{5x+2}{x+4}$ (or implied equation)			
			[3]	
	Note: Some or all of the work for	or part (c) can be recovered in part (a) or part (b)	8	

Question Number		Sche Weww.igexams.c	om Notes	Marks		
1. (c)	3at -	$\frac{4a+b}{4+4} = \frac{3at}{3t} - \frac{4a-b}{3t} = a - \frac{4a-b}{3t} \Rightarrow a = 5$	A full method leading to the value of <i>a</i> being found	M1		
Way 3	$y - \frac{1}{3t - t}$	$\frac{4+4}{4+4} = \frac{3t}{3t} = \frac{3t}{3t} = \frac{3t}{3t} = \frac{3t}{3t}$	$y = a - \frac{4a - b}{3t} \text{and} a = 5$	A1		
	$\frac{4a-b}{3} = 6$	$b \Rightarrow b = 4(5) - 6(3) = 2$	Both $a = 5$ and $b = 2$	A1		
				[3]		
		Question 1 No	tes			
1. (a)	Note	Condone $\frac{dy}{dx} = \frac{\left(\frac{6}{t^2}\right)}{3}$ for A1				
	Note	You can ignore subsequent working following on from a correct expression for $\frac{dy}{dx}$ in terms of t.				
(b)	Note	Using a changed gradient (i.e. applying $\frac{-1}{\text{their } \frac{dy}{dx}}$	or $\frac{1}{\text{their } \frac{dy}{dx}}$ or $-\left(\text{their } \frac{dy}{dx}\right)$ is M0.			
	Note	Note Final A1: A correct solution is required from a correct $\frac{dy}{dx}$.				
	Note	Final A1: You can ignore subsequent working t				
(c)	Note					
	Note	Award M1A1 for $\frac{6}{5-y} = \frac{x+4}{3}$ or equivalent.				

0			www.igex	ams.com	<u> </u>	
Question Number			Scheme		Notes	Marks
2.	$\left\{ (2+k.\right.$	$x)^{-3} = 2^{-3} \left(1 + \frac{k}{2}\right)^{-3}$	$\left(\frac{x}{2}\right)^{-3} = \frac{1}{8} \left(1 + (-3)\left(\frac{kx}{2}\right)\right)$	$ + \frac{(-3)(-3-1)}{2!} \left(\frac{kx}{2}\right)^2 + \dots \right) \right\}, k$	z > 0	
(a)	A = A	1 8	$\frac{1}{8}$ or 2^{-3} or 0.125, clea	arly identified as A or as their ans	wer to part (a)	B1 cao
				2		[1]
		Uses the x^2 term of the binomial expansion to give				
			either $\frac{(-3)}{2}$	$\frac{9(-4)}{2!}$ or $\left(\frac{k}{2}\right)^2$ or $\left(\frac{kx}{2}\right)^2$ or $\frac{4}{2}$	$\frac{-3)(-4)}{2}$ or 6	M1
(b)	$\left(\frac{1}{8}\right)^{\frac{(-3)}{2}}$	$\frac{2)(-4)}{2!} \left(\frac{k}{2}\right)^2$	either (their A	$(-3)(-4)\left(\frac{k}{2}\right)^2$ or (their A)	(-)	M1 o.e.
	or $\frac{3}{16}k^2$ or $\frac{3}{16}k^2x^2$ or $(2^{-5})\frac{(-3)(-4)}{2!}(kx)^2$ or $(2^{-5})\frac{(-3)(-4)}{2!}(k)^2$					
	$\int_{S_0} \left(\frac{1}{2} \right)$	(-3)(-4)(k)	$\frac{1}{16} = \frac{243}{16} \Rightarrow \frac{3}{16}k^2 = \frac{243}{16}$	$3 \rightarrow k^2 - 81$		
	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	3) $2!$ (2)	16 16 16 16	J 7 K -01		
	So, k		1 0 11 0		k = 9 cao	A1 cso
(-)		No		erence to $k = 9$ only is A0	4	[3]
(c)				term of the binomial expansion	-	
	$\left(\frac{1}{8}\right)^{"}$	$-3)\left(\frac{k}{2}\right)$	(their A)(-3) $\left(\frac{k}{2}\right)$ or (their A)(-3) $\left(\frac{kx}{2}\right)$; where (their A) 1,			
			or $(2)^{-4}(-3)(k)$ or $(2)^{-4}(-3)(kx)$ or $-\frac{3k}{16}$			
	$\begin{cases} So, B = \\ \end{cases}$	$= \left(\frac{1}{8}\right)(-3)\left(\frac{9}{2}\right)$	$\Rightarrow \begin{cases} B = -\frac{27}{16} \end{cases}$	$-\frac{27}{16}$ or $-1\frac{11}{16}$		A1 cso
						[2]
			One	estion 2 Notes		6
	NOTE	IN THIS QUI		BELLING AND MARK ALL P	ARTS TOGE	THER.
	Note		/	$= \frac{1}{8} - \frac{3}{16}kx + \frac{3}{16}k^2x^2 + \dots$		
	Note	Writing down	$\left\{ \left(1 + \frac{kx}{2} \right)^{-3} \right\} = 1 + (-3)$	$(\frac{kx}{2}) + \frac{(-3)(-3-1)}{2!} \left(\frac{kx}{2}\right)^2 + \dots$		
		gets (b) 1st M1	,			
	Note	Writing down	$\left\{ (2+kx)^{-3} \right\} = \frac{1}{8} \left(1 + (-1)^{-3} \right)$	$3)\left(\frac{kx}{2}\right) + \frac{(-3)(-3-1)}{2!}\left(\frac{kx}{2}\right)^2 + \dots$)	
		gets (b) 1 st M1 2 nd M1 and (c) M1				
	Note	(-3)(-4)				
			$1 2^{\text{nd}} \text{ M1}$ and (c) M1	2		
	Note			$\left(1+(-3)\left(\frac{kx}{2}\right)+\frac{(-3)(-3-1)}{2!}\right)$	$\left(\frac{kx}{2}\right)^2 + \dots$	
		where (their A	$(1)^{-1} 1$, gets (b) $1^{st} M1 2$	nd M1 and (c) M1		

		www.igexams.com
2. (b), (c)	Note	(their A) is defined as either
		• their answer to part (a)
		• their stated $A =$
		• their "2 ⁻³ " in their stated $2^{-3} \left(1 + \frac{kx}{2}\right)^{-3}$
	Note	Give 2^{nd} M0 in part (b) if (their A) = 1
	Note	Give M0 in part (c) if (their A) = 1
2. (c)	Note	Allow M1 for (their A)(-3) $\left(\frac{\text{their } k \text{ from (b)}}{2}\right)$
	Note	Award A0 for $B = -\frac{27}{16}x$ Allow A1 for $B = -\frac{27}{16}x$ followed by $B = -\frac{27}{16}$ or $-1\frac{11}{16}$ or -1.6875
	Note	Allow A1 for $B = -\frac{27}{16}x$ followed by $B = -\frac{27}{16}$ or $-1\frac{11}{16}$ or -1.6875
	Note	$k = -9$ leading to $B = \frac{27}{16}$ or $1\frac{11}{16}$ or 1.6875 is A0
	Note	Give A0 for finding both $B = -\frac{27}{16}$ and $B = \frac{27}{16}$ (without rejecting $B = \frac{27}{16}$) as their final answer.
	Note	The A1 mark in part (c) is for a correct solution only.
	Note	Be careful! It is possible to award M0A0 in part (c) for a solution leading to $B = -\frac{27}{16}$. E.g.
		$f(x) = (2+kx)^{-3} = 2^{-3}(1+kx)^{-3} = \frac{1}{8}\left(1+(-3)(kx)+\frac{(-3)(-4)}{2!}(kx)^2+\ldots\right) = \frac{1}{8}-\frac{3k}{8}x+\frac{3k^2}{4}x^2+\ldots$
		leading to (a) $A = \frac{1}{8}$, (b) $k = \frac{9}{2}$, (c) $B = -\frac{27}{16}$, gets (a) B1, (b) M1M0A0 (c) M0A0
2. (b), (c)	Note	$^{-3}C_0(2)^{-3} + ^{-3}C_1(2)^{-4}(kx) + ^{-3}C_2(2)^{-5}(kx)^2$ with the C terms not evaluated
		gets (b) 1 st M0 2 nd M0 and (c) M0

Overtion	www.igexams.com					Ī	
Question Number	So	cheme	O		No	otes	Marks
3.	x 0 0.2 y 2 1.862542	0.4 26 1.718		0.8	1 1.27165	$y = \frac{6}{(2 + e^x)}$	
(a)	$\begin{cases} y \mid 2 & 1.862542 \\ \text{At } x = 0.2, \end{cases} y = 1.86254$	· ·	330 1.30961	1.41774	1.2/103	1.86254	B1 cao
(a)	,		alue on the give	n table or in t	their workin		[1]
	2,0000 =00		<u> 8 8</u>			1	[-]
					Outside	brackets $\frac{1}{2} \times (0.2)$	B1 o.e.
(b)	$\frac{1}{2}(0.2) \left[\underbrace{2 + 1.27165 + 2 \left(\text{their } 1.86254 + 1.71830 + 1.56981 + 1.41994 \right)}_{\text{or } \frac{1}{10} \text{ or } \frac{1}{2} \times \frac{1}{5} \right]$						
	For structure of []					M1	
	$\left\{ = \frac{1}{10} (16.41283) \right\} = 1.641283 = 1.6413 (4 \text{ dp})$ anything that rounds to 1.6413					A1	
							[3]
(c)	$\left\{ u = e^x \text{ or } x = \ln u \triangleright \right\}$						
	$\frac{\mathrm{d}u}{\mathrm{d}x} = \mathrm{e}^x \text{ or } \frac{\mathrm{d}u}{\mathrm{d}x} = u \text{ or } \frac{\mathrm{d}x}{\mathrm{d}u}$	$=\frac{1}{u}$ or du	u = u dx etc., ar	$\frac{6}{(e^x + 2)}$	$\int dx = \hat{0} \frac{1}{(u - 1)^2}$	$\begin{array}{c c} 6 & \mathbf{See} \\ + 2)u & \mathbf{notes} \end{array}$	B1 *
	$\{x=0\} \bowtie a=e^0 \bowtie \underline{a=1}$				a=1 ar	and $b = e$ or $b = e^1$	B1
	$\{x=1\} \triangleright b = e^1 \triangleright \underline{b} = \underline{e}$					$0 \rightarrow 1$ and $1 \rightarrow e$	
			ANNOT be recovered to the contract of the cont				[2]
(d) Way 1	$\frac{6}{u(u+2)} \circ \frac{A}{u} + \frac{B}{(u+2)}$ $\triangleright 6 \circ A(u+2) + Bu$	Writing	$\frac{6}{u(u+2)}$ \circ $\frac{A}{u}$ +	$\frac{B}{(u+2)}$, o.e thod for find	e. or $\frac{1}{u(u+2)}$ ing the value	$\frac{P}{(u+2)} \circ \frac{P}{u} + \frac{Q}{(u+2)}$, e of at least one of	M1
		Roth t	hoir $A = 3$ and			heir P or their Q) $P = \frac{1}{2} \text{ and their}$	
	$u = 0 \bowtie A = 3$ $u = -2 \bowtie B = -3$	Dom t				of the integral sign)	A1
	$\int \frac{6}{u(u+2)} \mathrm{d}u = \int \left(\frac{3}{u} - \frac{3}{u}\right) \mathrm{d}u$		•	two term pa	urtial fractio	$\frac{1}{k}$, M , N , k ¹ 0; m) to obtain either m); l , m , a , b ¹ 0	M1
	$= 3\ln u - 3\ln u$ or $= 3\ln 2u - 3$	` ,		both terms i	s correctly	followed through and from their <i>N</i> .	A1 ft
	$\begin{cases} \text{So} \left[3 \ln u - 3 \ln(u+2) \right]_{1}^{e} \end{cases}$ $= \left(3 \ln(e) - 3 \ln(e+2) \right) - \left(3 \ln 1 - 3 \ln 3 \right)$ [Note: A proper consideration of the limit of $u=1$ is required for this mark] $\begin{cases} \text{Or their } b \text{ and their } a, \text{ where } b > 0, b^{-1} 1, a > 0 \text{ in } u \text{ or applies limits of 1 and 0 in } x \text{ and subtracts the correct way round.} \end{cases}$				dM1		
	$= 3 - 3\ln(e+2) + 3\ln 3 \text{or} \\ \text{or} 3\ln\left(\frac{e}{e+2}\right) - 3\ln\left(\frac{1}{3}\right) \\ \text{or} \\ \text{or} $					$\frac{1}{3}$ see notes	A1 cso
			in place of e fo				[6]
	Note: Give final A0 for 3						12
	Note: Give final A0 for 3						-
	Note: Give final A0 for $3 \ln e - 3 \ln (e + 2) + 3 \ln 3$, where $3 \ln e$ has not been simplified to 3						

		www.igexams.com Question 3 Notes
3. (b)		M1: Do not allow an extra y-value or a repeated y value in their [] Do not allow an omission of a y-ordinate in their [] for M1 unless they give the correct answer of
		awrt 1.6413, in which case both M1 and A1 can be scored.
		A1: Working must be seen to demonstrate the use of the trapezium rule. (Actual area is 1.64150274)
	Note	Full marks can be gained in part (b) for awrt 1.6413 even if B0 is given in part (a)
		Award B1M1A1 for
		$\frac{1}{10}(2+1.27165) + \frac{1}{5}(\text{their } 1.86254 + 1.71830 + 1.56981 + 1.41994) = \text{awrt } 1.6413$
	Bracke	ting mistakes: Unless the final answer implies that the calculation has been done correctly
	Award 1	B1M0A0 for $\frac{1}{2}(0.2) + 2 + 2$ (their 1.86254 + 1.71830 + 1.56981 + 1.41994) + 1.27165 (=16.51283)
	Award 1	B1M0A0 for $\frac{1}{2}(0.2)(2 + 1.27165) + 2(\text{their } 1.86254 + 1.71830 + 1.56981 + 1.41994) $ (=13.468345)
		B1M0A0 for $\frac{1}{2}(0.2)(2) + 2$ (their 1.86254 + 1.71830 + 1.56981 + 1.41994) + 1.27165 (=14.61283)
		ntive method: Adding individual trapezia
	Area ≈ 0	$0.2 \times \left[\frac{2 + "1.86254"}{2} + \frac{"1.86254" + 1.71830}{2} + \frac{1.71830 + 1.56981}{2} + \frac{1.56981 + 1.41994}{2} + \frac{1.41994 + 1.27165}{2} \right]$
	= 1	1.641283
	B1	0.2 and a divisor of 2 on all terms inside brackets
	M1	First and last ordinates once and two of the middle ordinates inside brackets ignoring the 2
3. (c)	A1 1st B1	anything that rounds to 1.6413 Must start from either
3. (c)	1. PI	
		• $\hat{0} y dx$, with integral sign and dx
		• $\hat{0}\frac{6}{(e^x+2)} dx$, with integral sign and dx
		• $\hat{0} \frac{6}{(e^x + 2)} \frac{dx}{du} du$, with integral sign and $\frac{dx}{du} du$
		and state either $\frac{du}{dx} = e^x$ or $\frac{du}{dx} = u$ or $\frac{dx}{du} = \frac{1}{u}$ or $du = u dx$
		and end at $\int \frac{6}{u(u+2)} du$, with integral sign and du , with no incorrect working.
	Note	So, just writing $\frac{du}{dx} = e^x$ and $\hat{0} \frac{6}{(e^x + 2)} dx = \hat{0} \frac{6}{u(u + 2)} du$ is sufficient for 1st B1
	Note	Give 2^{nd} B0 for $b = 2.718$, without reference to $a = 1$ and $b = e$ or $b = e^1$
	Note	You can also give the 1 st B1 mark for using a reverse process. i.e.
		Proceeding from $\hat{0} \frac{6}{u(u+2)} du$ to $\hat{0} \frac{6}{(e^x+2)} dx$, with no incorrect working,
		and stating either $\frac{du}{dx} = e^x$ or $\frac{du}{dx} = u$ or $\frac{dx}{du} = \frac{1}{u}$ or $du = u dx$ Give final A0 for $3 - 3\ln(e + 2) + 3\ln 3$ simplifying to $1 - \ln(e + 2) + \ln 3$
3. (d)	Note	Give final A0 for $3 - 3\ln(e + 2) + 3\ln 3$ simplifying to $1 - \ln(e + 2) + \ln 3$
		(i.e. dividing their correct final answer by 3)
		Otherwise, you can ignore incorrect working (isw) following on from a correct exact value.
	Note	A decimal answer of 1.641502724 (without a correct exact answer) is final A0
	Note	$\left[-3\ln(u+2) + 3\ln u\right]_{1}^{e}$ followed by awrt 1.64 (without a correct exact answer) is final M1A0

		Question 3 Notes Continued
3. (d)	Note	BE CAREFUL! Candidates will assign their own "A" and "B" for this question.
	Note	Writing down $\frac{6}{(u+2)u}$ in the form $\frac{A}{(u+2)} + \frac{B}{u}$ with at least one of A or B correct is 1 st M1
	Note	Writing down $\frac{6}{(u+2)u}$ as $\frac{-3}{(u+2)} + \frac{3}{u}$ is 1 st M1 1 st A1.
	Note	Condone $\int \left(\frac{3}{u} - \frac{3}{(u+2)}\right) du$ to give $3\ln u - 3\ln u + 2$ (poor bracketing) for 2^{nd} A1.
	Note	Award M0A0M1A1ft for a candidate who writes down
		e.g. $\int \frac{6}{u(u+2)} du = \int \left(\frac{6}{u} + \frac{6}{(u+2)}\right) du = 6\ln u + 6\ln(u+2)$
		AS EVIDENCE OF WRITING $\frac{6}{u(u+2)}$ AS PARTIAL FRACTIONS.
	Note	Award M0A0M0A0 for a candidate who writes down
		WITHOUT ANY EVIDENCE OF WRITING $\frac{6}{u(u+2)}$ as partial fractions.
	Note	Award M1A1M1A1 for a candidate who writes down
		$ \grave{0}\frac{6}{u(u+2)}du = 3\ln u - 3\ln(u+2) $
		WITHOUT ANY EVIDENCE OF WRITING $\frac{6}{u(u+2)}$ as partial fractions.
	Note	If they lose the "6" and find $\hat{0}_{1}^{\circ} \frac{1}{u(u+2)} du$ we can allow a maximum of M1A0M1A1ftM1A0

			Question	3 Notes Contin	nued		
3. (d) Way 2	$ \begin{cases} $	$du - \int u$	$\frac{6u}{u^2 + 2u} du$	>			
	$= \int \frac{3(2u+2)}{u^2+2u} du - \int \frac{6}{u+2} du$	и	$\hat{0}^{\pm a}$	$\frac{\partial(2u+2)}{u^2+2u}\left\{\mathrm{d}u\right\} =$	$\pm \grave{0} \frac{\mathcal{O}}{u+2} \{ \mathrm{d}u \},$	$\alpha, \beta, \delta \neq 0$	M1
	$\int u + 2u$ $\int u + 2$				Correc	t expression	A1
		egrates $\frac{\pm N}{n}$	$\frac{M(2u+2)}{u^2+2u} \pm \frac{M(2u+2)}{u^2}$	$\frac{N}{k}$, M , N , k^{-1}	0, to obtain	M1	
`	$= 3\ln(u^2 + 2u) - 6\ln(u + 2)$	$= 3\ln(u^2 + 2u) - 6\ln(u + 2)$			$\pm 2u$) or $\pm m \ln 2u$	$(b(u \pm k));$	M1
		tion of both	n terms is corre	ctly followed th their <i>M</i> and f	_	A1 ft	
	$\left\{ \text{So,} \left[3\ln(u^2 + 2u) - 6\ln(u + 2) \right]_1^e \right\}$			•	Applies limit for their b and th $b > 0, b^{-1}$ 1.	ts of e and 1 eir a, where	dM1
	$= (3\ln(e^2 + 2e) - 6\ln(e + 2))$	- (3ln3	- 6ln3)	or applies limits of 1 and 0 in <i>x</i> and subtracts the correct way round.			
	$= 3\ln(e^2 + 2e) - 6\ln(e + 2) +$	- 3ln 3		$3\ln(e^2 + 2e) - 6\ln(e + 2) + 3\ln 3$			A1 o.e.
	A 1 ' " 1					1	[6]
3. (d)	Applying $u = q - 1$						
Way 3	$\left\{ \int_{1}^{e} \frac{6}{u(u+2)} du = \right\} \int_{2}^{1+e} \frac{6}{(\theta-1)(\theta+1)} d\theta = \int_{2}^{1+e} \frac{6}{(\theta-1)(\theta+1)(\theta+1)} d\theta = \int_{2}^{1+e} \frac{6}{(\theta-1)(\theta+1)(\theta+1)} d\theta = \int_{2}^{1+e} \frac{6}{(\theta-1)(\theta+1)($			$\frac{6}{\theta^2 - 1} \mathrm{d}u = \left[3\ln \frac{1}{2} \right]$	$\left(\frac{\theta-1}{\theta+1}\right)\bigg]_2^{1+e}$		M1A1M1A1
	$= 3\ln\left(\frac{1+e-1}{e+1+1}\right) - 3\ln\left(\frac{2-1}{2+1}\right)$	$\left(\frac{1}{1}\right) = 3\ln x$	$n\left(\frac{e}{e+2}\right)$ –	$3\ln\left(\frac{1}{3}\right)$	3 rd M mark i	s dependent 2 nd M mark	dM1A1
							[6]

	· · · · · · · · · · · · · · · · · · ·					
Question Number	Scheme			Notes	Marks	
4.	$4x^2 - y^3 - 4xy + 2^y = 0$					
(a) Way 1	$\left\{ \underbrace{\frac{dy}{dx}} \times \right\} \underbrace{8x - 3y^2 \frac{dy}{dx}}_{} = \underbrace{-4y - 4x \frac{dy}{dx}}_{} + \underbrace{2^y \ln 2 \frac{dy}{dx}}_{} = \underbrace{0}$			M1 <u>A1</u> <u>M1</u> B1		
	$8(-2) - 3(4)^{2} \frac{dy}{dx} - 4(4) - 4(-2) \frac{dy}{dx} + 2^{4} \ln 2$	$2\frac{\mathrm{d}y}{\mathrm{d}x} = 0$	depen	dent on the first M mark	dM1	
	$-16 - 48\frac{dy}{dx} - 16 + 8\frac{dy}{dx} + 16\ln 2$	$\frac{\mathrm{d}y}{\mathrm{d}x} = 0$				
	$\frac{dy}{dx} = \frac{32}{-40 + 16 \ln 2}$ or $\frac{-32}{40 - 16 \ln 2}$ or	$\frac{4}{-5+2\ln 2}$	or $\phantom{00000000000000000000000000000000000$	$\frac{4}{+ \ln 4}$ or exact equivalent	A1 cso	
	NOTE: You can recover v				[6]	
(b)		Applying	$m_{\rm N} = \frac{1}{n}$	$\frac{1}{n_{\rm T}}$ to find a numerical $m_{\rm N}$ implied by later working	M1	
	• $y-4=\left(\frac{40-16\ln 2}{32}\right)(x-2)$			Using a numerical $m_{\rm N}$ (1 $m_{\rm T}$), either		
	Cuts y-axis $\Rightarrow x = 0 \Rightarrow y - 4 = $	Cuts y-axis $\Rightarrow x = 0 \Rightarrow y - 4 = \left(\frac{40 - 16\ln 2}{32}\right)\left(2\right)$ $\begin{cases} y - 4 = m_N(x - 2) \\ \text{and sets } x = 0 \text{ in their normal equation} \end{cases}$			M1	
	$\bullet 4 = \left(\frac{40 - 16\ln 2}{32}\right)\left(-2\right) + c$			$4 = (\text{their } m_{\text{N}})(-2) + c$		
	$\begin{cases} \Rightarrow c = 4 + \frac{40 - 16\ln 2}{16}, \text{ so } y = \frac{104 - 161}{16} \end{cases}$	$\frac{n2}{\Rightarrow}$				
	$y \text{ (or } c) = \frac{13}{2} - \ln 2$			$\frac{13}{2}$ - ln2 or - ln2 + $\frac{13}{2}$	A1 cso isw	
	Note: Allow exact equivalents in the	ne form p	ln2 fo	r the final A mark	[3]	
					9	
(a) Way 2	$\left\{ \underbrace{\frac{dx}{dy}} \times \right\} \underbrace{8x \frac{dx}{dy} - 3y^2}_{\underline{y}} \underbrace{-4y \frac{dx}{dy} - 4x + \overline{2^y \ln x}}_{\underline{y}}$	2 = 0			M1 <u>A1</u> <u>M1</u> B1	
	$8(-2)\frac{dx}{dy} - 3(4)^2 - 4(4)\frac{dx}{dy} - 4(-2) + 2^4 \ln 2$	= 0	depen	dent on the first M mark	dM1	
	$\frac{dy}{dx} = \frac{32}{-40 + 16 \ln 2}$ or $\frac{-32}{40 - 16 \ln 2}$ or $\frac{4}{-5 + 2 \ln 2}$ or $\frac{4}{-5 + \ln 4}$ or exact equivalent				A1 cso	
	Note: You must be clear that Way 2 is being applied before you use this scheme					
		Question	4 Notes	3		
4. (a)	Note For the first four marks Writing down from no working	_				
	$\bullet \frac{dy}{dx} = \frac{4y - 8x}{-3y^2 - 4x + 2^y \ln 2} \text{ or } \frac{8x - 4y}{3y^2 + 4x - 2^y \ln 2} \text{ scores M1A1M1B1}$					
		or $\frac{4}{3y^2 + }$	$\frac{y - 8x}{4x - 2^y}$	ln2 scores M1A0M1B1		
	Writing $8x dx - 3y^2 dy - 4y dx -$	$4x\mathrm{d}y+2^y$	$\ln 2 dy =$	0 scores M1A1M1B1		

		Question 4 Notes Continued
4. (a)	1 st M1	Differentiates implicitly to include <i>either</i> $\pm 4x \frac{dy}{dx}$ or $-y^3 \rightarrow \pm \lambda y^2 \frac{dy}{dx}$ or $2^y \rightarrow \pm m2^y \frac{dy}{dx}$
		(Ignore $\left(\frac{dy}{dx}\right)$). /, m are constants which can be 1
	1 st <u>A1</u>	Both $4x^2 - y^3 \to 8x - 3y^2 \frac{dy}{dx}$ and $= 0 \to = 0$
	Note	e.g. $8x - 3y^2 \frac{dy}{dx} - 4y - 4x \frac{dy}{dx} + 2^y \ln 2 \frac{dy}{dx} \rightarrow -3y^2 \frac{dy}{dx} - 4x \frac{dy}{dx} + 2^y \ln 2 \frac{dy}{dx} = 4y - 8x$
		or e.g. $-16 - 48\frac{dy}{dx} - 16 + 8\frac{dy}{dx} + 16\ln 2\frac{dy}{dx} \rightarrow -48\frac{dy}{dx} + 8\frac{dy}{dx} + 16\ln 2\frac{dy}{dx} = 32$
		will get 1^{st} A1 (implied) as the "= 0" can be implied by the rearrangement of their equation.
	2 nd <u>M1</u>	$-4xy \rightarrow -4y - 4x\frac{dy}{dx}$ or $4y - 4x\frac{dy}{dx}$ or $-4y + 4x\frac{dy}{dx}$ or $4y + 4x\frac{dy}{dx}$
	= B1	$2^y \to 2^y \ln 2 \frac{dy}{dx}$ or $2^y \to e^{y \ln 2} \ln 2 \frac{dy}{dx}$
	Note	If an extra term appears then award 1 st A0
	3 rd dM1	dependent on the first M mark
		For substituting $x = -2$ and $y = 4$ into an equation involving $\frac{dy}{dx}$
	Note	M1 can be gained by seeing at least one example of substituting $x = -2$ and at least one
		example of substituting $y = 4$ unless it is clear that they are instead applying $x = 4$ and $y = -2$
		Otherwise, you will NEED to check (with your calculator) that $x = -2$, $y = 4$ that has been
		substituted into their equation involving $\frac{dy}{dx}$
	Note	A1 cso: If the candidate's solution is not completely correct, then do not give this mark.
	Note	isw: You can, however, ignore subsequent working following on from correct solution.
(b)	Note	The 2 nd M1 mark can be implied by later working.
		Eq. Award 1st M1 and 2nd M1 for $\frac{y-4}{y-4} = \frac{-1}{y-4}$
		Eg. Award 1 st M1 and 2 nd M1 for $\frac{y-4}{2} = \frac{-1}{\text{their } m_{\text{T}} \text{ evaluated at } x=-2 \text{ and } y=4}$
	Note	A1: Allow the alternative answer $\left\{y = \right\} \ln \left(\frac{1}{2}\right) + \frac{13}{2 \ln 2} (\ln 2)$ which is in the form $p + q \ln 2$
4. (a) Way 2	1st M1	Differentiates implicitly to include <i>either</i> $\pm 4y \frac{dx}{dy}$ or $4x^2 \rightarrow \pm /x \frac{dx}{dy}$
		(Ignore $\left(\frac{dx}{dy}\right)$). / is a constant which can be 1
	1 st <u>A1</u>	Both $4x^2 - y^3 \to 8x \frac{dx}{dy} - 3y^2$ and $= 0 \to = 0$
	2 nd <u>M1</u>	$-4xy \rightarrow -4y\frac{dx}{dy} - 4x \text{ or } 4y\frac{dx}{dy} - 4x \text{ or } -4y\frac{dx}{dy} + 4x \text{ or } 4y\frac{dx}{dy} + 4x$
	<u>=</u> B1	$2^y \rightarrow 2^y \ln 2$
	3 rd dM1	dependent on the first M mark
		For substituting $x = -2$ and $y = 4$ into an equation involving $\frac{dx}{dy}$

0 .:								
Question Number		Scheme		Notes	Marks			
5.	$y = e^{x}$	$x^{2} + 2e^{-x}, x^{3}0$						
Way 1	$V = \mathcal{V}$	$\int_0^{\ln 4} \left(e^x + 2e^{-x} \right)^2 dx$	Io	For $\pi \int (e^x + 2e^{-x})^2$ nore limits and dx. Can be implied.	B1			
	$=\{\pi$	$\int_0^{\ln 4} \left(e^{2x} + 4e^{-2x} + 4 \right) dx$	Expands $\left(e^{x} + \right)$	$2e^{-x}$ $\Big ^2 \rightarrow \pm \partial e^{2x} \pm \partial e^{-2x} \pm \partial$ where nore π , integral sign, limits and dx . This can be implied by later work.	M1			
				tone of either $\pm a e^{2x}$ to give $\pm \frac{a}{2} e^{2x}$ or $\pm b e^{-2x}$ to give $\pm \frac{b}{2} e^{-2x} a$, $b = 0$	M1			
	= { n	$\left\{ \int \frac{1}{2} e^{2x} - 2e^{-2x} + 4x \right\}^{\ln 4}$		dependent on the 2 nd M mark				
	(1)			$e^{2x} + 4e^{-2x} \rightarrow \frac{1}{2}e^{2x} - 2e^{-2x}$,	A1 J			
			whic	ch can be simplified or un-simplified	D.1			
				$4 \rightarrow 4x \text{ or } 4e^{0}x$ dependent on the previous	B1 cao			
	= {p}(($\left(\frac{1}{2}e^{2(\ln 4)} - 2e^{-2(\ln 4)} + 4(\ln 4)\right) - \left(\frac{1}{2}e^{2(\ln 4)}\right)$	$e^0 - 2e^0 + 4(0)$	dM1				
	$=\{\pi\}\Big(\Big($	$\left(8 - \frac{1}{8} + 4 \ln 4\right) - \left(\frac{1}{2} - 2\right)$						
	($= \frac{75}{8}\rho + 4\rho \ln 4 \text{ or } \frac{75}{8}\rho + 8\rho$ or $\frac{75}{8}\rho + \ln 2^{8\rho} \text{ or } \frac{75}{8}\rho + \rho \ln 2^{8\rho}$	(0		A1 isw			
					[7]			
			Question 5 N	Votes	1 7			
5.	Note	π is only required for the 1 st B	11 mark and the fina	al A1 mark.				
	Note	Give 1 st B0 for writing $\rho \hat{\mathbf{j}} y^2 \hat{\mathbf{j}}$	1x followed by $2p$	$\partial \hat{\mathbf{g}} \left(e^x + 2e^{-x} \right)^2 dx$				
	Note	Give 1 st M1 for $\left(e^x + 2e^{-x}\right)^2 \rightarrow$	$\Rightarrow e^{2x} + 4e^{-2x} + 2e^0$	$+ 2e^{0}$ because $d = 2e^{0} + 2e^{0}$				
	Note	A decimal answer of 46.8731	or $\rho(14.9201)$	(without a correct exact answer) is A	.0			
	Note	$\int \left[\frac{1}{2} e^{2x} - 2e^{-2x} + 4x \right]_0^{\ln 4} $ followe	ed by awrt 46.9 (wit	thout a correct exact answer) is final of	dM1A0			
	Note	Allow exact equivalents which	should be in the fo	orm $ap + bp \ln c$ or $p(a + b \ln c)$,				
		where $a = \frac{75}{8}$ or $9\frac{3}{8}$ or 9.375	5. Do not allow $a =$	$=\frac{150}{16}$ or $9\frac{6}{16}$				
	Note	Give B1M0M1A1B0M1A0 for						
		$\int_0^{\ln 4} \left(e^x + 2e^{-x} \right)^2 dx \to \rho \int_0^{\ln 4} \left(e^x + 2e^{-x} \right)^2 dx$						

	WW	v.igexams	.com		
Question Number	Scheme	V 1502141115		Notes	Marks
5.	$y = e^x + 2e^{-x}, x^3 0$				
Way 2	$\left\{V = \right\} \rho \mathring{0}_{0}^{\ln 4} \left(e^{x} + 2e^{-x}\right)^{2} dx$		Ignore limit	For $\pi \int (e^x + 2e^{-x})^2$ s and dx. Can be implied.	B1
	$u = e^x > \frac{du}{dx} = e^x = u \text{ and } x = \ln 4$	$\triangleright u = 4, x = 0 \triangleright$	-		
	$V = \{\rho\} \int_{1}^{4} \left(u + \frac{2}{u}\right)^{2} \frac{1}{u} du = \{\rho\} \int_{1}^{4} \left(u + \frac{2}{u}\right)^{2} du = \{\rho\} $	$\left(u^2 + \frac{4}{u^2} + 4\right) \frac{1}{u} \mathrm{d}u$			
	,		$\left(e^x + 2e^{-1}\right)$	$\left(\frac{x}{u}\right)^{2} \rightarrow \pm au \pm bu^{-3} \pm du^{-1}$	
	$= \left\{ \rho \right\} \int_{1}^{4} \left(u + \frac{4}{u^3} + \frac{4}{u} \right) \mathrm{d}u$		Ignore π , in	where $u = e^x$, α , β , $\delta \neq 0$. In the implied by later work.	<u>M1</u>
		Integrates at least one of either $\pm \partial u$ to give $\pm \frac{\partial}{2} u^2$ or $\pm bu^{-3}$ to give $\pm \frac{b}{2} u^{-2} \partial$, $b^{-1} \partial$, where $u = e^x$			M1)
	$= \{\rho\} \left[\frac{1}{2} u^2 - \frac{2}{u^2} + 4 \ln u \right]_1^4$	dependent on the 2 nd M mark			
			uepe	$u + 4u^{-3} \to \frac{1}{2}u^2 - 2u^{-2},$	A1
		siı			
				$u^{-1} \rightarrow 4 \ln u$, where $u = e^x$	B1 cao
	$= \{\rho\} \left(\left(\frac{1}{2} (4)^2 - \frac{2}{(4)^2} + 4 \ln 4 \right) - \left(\frac{1}{2} (1)^2 + 4 \ln 4 \right) \right)$	$(1)^2 - \frac{2}{(1)^2} + 4 \ln 1$	mark. S limi function in	Some evidence of applying ts of 4 and 1 to a changed in <i>u</i> [or ln 4 o.e. and 0 to an function in <i>x</i>] and subtracts the correct way round.	dM1
	$ = \{\pi\} \left(\left(8 - \frac{1}{8} + 4 \ln 4 \right) - \left(\frac{1}{2} - 2 \right) \right) $				
	$= \frac{75}{8}\rho + 4\rho \ln 4 \text{ or } \frac{75}{8}\rho + 8\rho \ln 2 \text{ or } \pi \left(\frac{75}{8} + 4\ln 4\right) \text{ or } \pi \left(\frac{75}{8} + 8\ln 2\right)$ or $\frac{75}{8}\rho + \ln 2^{8\rho} \text{ or } \frac{75}{8}\rho + \rho \ln 256 \text{ or } \ln \left(2^{8\rho} e^{\frac{75}{8}\rho}\right) \text{ or } \frac{1}{8}\rho \left(75 + 32\ln 4\right), \text{ etc}$			A1 isw	
	8' 8' ') 8' 		[7]
					[7]

Question Number	swew.igexams.com Notes	Marks			
6.	$l_1: \mathbf{r} = \begin{pmatrix} 4 \\ 28 \\ 4 \end{pmatrix} + \lambda \begin{pmatrix} -1 \\ -5 \\ 1 \end{pmatrix}, l_2: \mathbf{r} = \begin{pmatrix} 5 \\ 3 \\ 1 \end{pmatrix} + \mu \begin{pmatrix} 3 \\ 0 \\ -4 \end{pmatrix}; \overrightarrow{OA} = \begin{pmatrix} 2 \\ 18 \\ 6 \end{pmatrix} \text{ lies on } l_1 \text{Let } q_{\text{Acute}} \text{ be the acute angle between } l_1 \text{ and } l$				
(a)	$\begin{cases} l_1 = l_2 \Rightarrow \rbrace & 28 - 5\lambda = 3 \end{cases} \Leftrightarrow \lambda = 5 \rbrace$ or $4 - \lambda = 5 + 3\mu \text{ and } 4 + \lambda = 1 - 4\mu \end{cases} \Leftrightarrow \mu = -2 \rbrace$ or $\lambda = 5 \text{ or } \mu = -2 \text{ (Can be implied)}.$				
	$\left\{ \overrightarrow{OX} = \right\} \begin{pmatrix} 4 \\ 28 \\ 4 \end{pmatrix} + 5 \begin{pmatrix} -1 \\ -5 \\ 1 \end{pmatrix} \text{ or } \begin{pmatrix} 5 \\ 3 \\ 1 \end{pmatrix} - 2 \begin{pmatrix} 3 \\ 0 \\ -4 \end{pmatrix} \qquad \text{Puts } l_1 = l_2 \text{ and solves to find } / \text{ and/or } l_1 = l_2 \text{ and solves to find } / \text{ and/or } l_2 = l_2 \text{ and/or }$	l_1 M1			
	So, $X(-1, 3, 9)$ $(-1, 3, 9)$ or $\begin{pmatrix} -1\\3\\9 \end{pmatrix}$ or $-\mathbf{i} + 3\mathbf{j} + 9\mathbf{k}$ or condone $\begin{pmatrix} -1\\3\\9 \end{pmatrix}$	A1 cao			
(b) Way 1	$\mathbf{d_1} = \begin{pmatrix} -1 \\ -5 \\ 1 \end{pmatrix}, \mathbf{d_2} = \begin{pmatrix} 3 \\ 0 \\ -4 \end{pmatrix} \Rightarrow \begin{pmatrix} -1 \\ -5 \\ 1 \end{pmatrix} \bullet \begin{pmatrix} 3 \\ 0 \\ -4 \end{pmatrix}$ Realisation that the dot production is required between $\mathbf{d_1}$ and $\mathbf{d_2}$ or a multiple of $\mathbf{d_1}$ and $\mathbf{d_2}$ and $\mathbf{d_3}$ or a multiple of $\mathbf{d_1}$ and $\mathbf{d_3}$ or a multiple of $\mathbf{d_3}$ $\mathbf{d_3}$ or	2 M1			
	$\cos \theta = \frac{\begin{pmatrix} -1 \\ -5 \\ 1 \end{pmatrix} \bullet \begin{pmatrix} 3 \\ 0 \\ -4 \end{pmatrix}}{\sqrt{(-1)^2 + (-5)^2 + (1)^2} \cdot \sqrt{(3)^2 + (0)^2 + (-4)^2}} \left\{ = \frac{-7}{\sqrt{27} \cdot \sqrt{25}} \right\} $ $\frac{\text{dependent on the last M mark. Applied dot product formula between } \mathbf{d}_1 \text{ and } \mathbf{d}_2 \text{ or multiple of } \mathbf{d}_1 \text{ and } \mathbf{d}_2 \text{ or multiple of } \mathbf{d}_1 \text{ and } \mathbf{d}_2 \text{ or multiple of } \mathbf{d}_2 \text{ or multiple of } \mathbf{d}_3 \text{ and } \mathbf{d}_3 \text{ or multiple of } \mathbf{d}_3 \text{ and } \mathbf{d}_3 \text{ or multiple of } \mathbf{d}_3 \text{ or multiple or } \mathbf{d}_3 $	es la a dM1			
	$\{q = 105.6303588 \ \triangleright\}\ \theta_{\text{Acute}} = 74.36964117 = 74.37 \ (2 \text{ dp})$ awrt 74.37 seen in (b) only				
(c)	$\overrightarrow{AX} = "\overrightarrow{OX}" - \overrightarrow{OA} = \begin{pmatrix} -1\\3\\9 \end{pmatrix} - \begin{pmatrix} 2\\18\\6 \end{pmatrix} = \begin{pmatrix} -3\\-15\\3 \end{pmatrix} \text{ or } A_{I=2}, X_{I=5} \bowtie AX = 3 \mathbf{d}_{1} , \{ \mathbf{d}_{1} = \sqrt{27}\}$				
	$AX = \sqrt{(-3)^2 + (-15)^2 + (3)^2}$ or $3\sqrt{27} \left\{ = \sqrt{243} \right\} = 9\sqrt{3}$ Full method for finding AX or X				
	Note: You cannot recover work for part (c) in either part (d) or part (e).	y A1 cao [2]			
(d) Way 1	$\frac{YA}{\text{"9}\sqrt{3}\text{"}} = \tan(\text{"74.36964"}) \qquad \frac{YA}{\text{their } \overline{AX} } = \tan\theta \text{ or } YA = \left(\text{their } \overline{AX} \right)\tan\theta, \text{ where } \theta$	is M1			
	their acute or obtuse angle between l_1 and l_2 YA = 55.71758 = 55.7 (1 dp) anything that rounds to 55				
		[2]			
(e)	$\{A_{\lambda=2}, X_{\lambda=5} \Rightarrow \text{So } AX = 2AB \Rightarrow \text{So at } B, \ \lambda = 3.5 \text{ or } \lambda = 0.5\}$				
Way 1	$\overrightarrow{OB} = \begin{pmatrix} 4 \\ 28 \\ 4 \end{pmatrix} + 3.5 \begin{pmatrix} -1 \\ -5 \\ 1 \end{pmatrix}; = \begin{pmatrix} 0.5 \\ 10.5 \\ 7.5 \end{pmatrix}$ Substitutes either $/ = \frac{(\text{their } /_X \text{ found in } (a)) + 1}{2}$ $\text{or } /_B = 3 - \frac{(\text{their } /_X \text{ found in } (a))}{2} \text{ into}$	M1:			
	$\overrightarrow{OB} = \begin{pmatrix} 4 \\ 28 \\ 4 \end{pmatrix} + 0.5 \begin{pmatrix} -1 \\ -5 \\ 1 \end{pmatrix}; = \begin{pmatrix} 3.5 \\ 25.5 \\ 4.5 \end{pmatrix}$ At least one position vector is correct (Also allow coordinates) Both position vectors are correct	Ι ΔΙ			
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	t. A1			
		[3]			
<u> </u>					

Question	www.igezums.com				
Number	Scheme	Notes	Marks		
6. (e)	$AX = 2AB \Rightarrow AB = \frac{1}{2}AX$. So, $\overrightarrow{OB} = \overrightarrow{OA} \pm \overrightarrow{AB}$	$\overrightarrow{AB} \Rightarrow \overrightarrow{OB} = \overrightarrow{OA} \pm \frac{1}{2} \overrightarrow{AX} $			
Way 2	$\overrightarrow{OB} = \begin{pmatrix} 2\\18\\6 \end{pmatrix} + 0.5 \begin{pmatrix} -3\\-15\\3 \end{pmatrix}; = \begin{pmatrix} 0.5\\10.5\\7.5 \end{pmatrix}$	Applies either $\overrightarrow{OA} + 0.5\overrightarrow{AX}$ or $\overrightarrow{OA} - 0.5\overrightarrow{AX}$ where (their \overrightarrow{AX}) = $\pm \left[\text{(their } \overrightarrow{OX} \text{)} - \overrightarrow{OA} \right]$	_ N/1.		
	$\overrightarrow{OB} = \begin{pmatrix} 2 \\ 18 \\ 6 \end{pmatrix} - 0.5 \begin{pmatrix} -3 \\ -15 \\ 3 \end{pmatrix}; = \begin{pmatrix} 3.5 \\ 25.5 \\ 4.5 \end{pmatrix}$	At least one position vector is correct (Also allow coordinates	Δ 1		
	$OB = \begin{bmatrix} 18 \\ 6 \end{bmatrix} - 0.5 \begin{bmatrix} -13 \\ 3 \end{bmatrix}, = \begin{bmatrix} 25.5 \\ 4.5 \end{bmatrix}$	Both position vectors are correct (Also allow coordinates	AI AI		
6. (e) Way 3		$ \begin{vmatrix} 1(2-\lambda) \\ 5(2-\lambda) \\ -1(2-\lambda) \end{vmatrix}; \overrightarrow{AX} = \begin{pmatrix} -3 \\ -15 \\ 3 \end{pmatrix} \qquad AX^2 = 243 = 27(2-1) $ $ AB^2 = 27(2-1) $			
	$AX = 2AB \triangleright AX^2 = 4AB^2 \triangleright 243 = 4(27)(2$ or $108/^2 - 432/ + 189 = 0$ or $4/^2 - 16/ + 100$	$(-/)^2 \triangleright (2-/)^2 = \frac{9}{4} \text{ or } 27/^2 - 108/ + \frac{189}{4} = 0$			
	$\overrightarrow{OB} = \begin{pmatrix} 4 \\ 28 \\ 4 \end{pmatrix} + 3.5 \begin{pmatrix} -1 \\ -5 \\ 1 \end{pmatrix}; = \begin{pmatrix} 0.5 \\ 10.5 \\ 7.5 \end{pmatrix}$	Full method of solving for / the equation $AX^2 = 4AB^2 \text{ using (their } \overrightarrow{AX}) \text{ and } \overrightarrow{AB}$ and substitutes at least one of their value for / into A	M1;		
	$\overrightarrow{OB} = \begin{pmatrix} 4 \\ 28 \\ 4 \end{pmatrix} + 0.5 \begin{pmatrix} -1 \\ -5 \\ 1 \end{pmatrix}; = \begin{pmatrix} 3.5 \\ 25.5 \\ 4.5 \end{pmatrix}$	At least one position vector is correct (Also allow coordinates Both position vectors are correct to the control of the contro	(a) A1		
	Note: $AX = 2AB \Rightarrow \overrightarrow{AX} = \pm 2\overrightarrow{AB}$. Hence, /	(Also allow coordinates $= 3.5 \text{ or } / = 0.5 \text{ can be found from solving eithen}$ $\pm 2(10 - 5/) \text{ or } z: -3 = \pm 2(-2 + /)$	5)		
6. (e) Way 4	$\overrightarrow{OB} = \begin{pmatrix} -1\\3\\9 \end{pmatrix} + 0.5 \begin{pmatrix} 3\\15\\-3 \end{pmatrix}; = \begin{pmatrix} 0.5\\10.5\\7.5 \end{pmatrix}$	Applies either (their \overrightarrow{OX}) + 0.5 \overrightarrow{X} or (their \overrightarrow{OX}) + 1.5 \overrightarrow{X} where (their \overrightarrow{XA}) = \overrightarrow{OA} – (their \overrightarrow{OX}	M1;		
	$\overrightarrow{OB} = \begin{pmatrix} -1 \\ 3 \\ 9 \end{pmatrix} + 1.5 \begin{pmatrix} 3 \\ 15 \\ -3 \end{pmatrix}; = \begin{pmatrix} 3.5 \\ 25.5 \\ 4.5 \end{pmatrix}$	At least one position vector is correct (Also allow coordinates) Both position vectors are correct (Also allow coordinates)	et A1		
			[3]		
6. (e) Way 5	$\overrightarrow{OB} = 0.5 \begin{pmatrix} -1 \\ 3 \\ 9 \end{pmatrix} + \begin{pmatrix} 2 \\ 18 \\ 6 \end{pmatrix}; = \begin{pmatrix} 0.5 \\ 10.5 \\ 7.5 \end{pmatrix}$	Applies $\frac{1}{2} \left[(\text{their } \overrightarrow{OX}) + \overrightarrow{OA} \right]$] M1;		
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	At least one position vector is correct (Also allow coordinates	Δ 1		
	$\overrightarrow{OB} = \begin{pmatrix} 2 \\ 18 \\ 6 \end{pmatrix} - 0.5 \begin{pmatrix} -3 \\ -15 \\ 3 \end{pmatrix}; = \begin{pmatrix} 3.5 \\ 25.5 \\ 4.5 \end{pmatrix}$	Both position vectors are correct (Also allow coordinates	Δ Ι		
			[3]		

Question Number		Scheme	Notes	Marks			
6. (e) Way 6	$\left \left\{ \left \overrightarrow{AX} \right = 9\sqrt{3}, \left d_1 \right = 3\sqrt{3} \implies K = \frac{9\sqrt{3}}{3\sqrt{3}} = 3 \implies \overrightarrow{AX} = 3\mathbf{d_1}; \text{ So, } \overrightarrow{OB} = \overrightarrow{OA} \pm \frac{1}{2}\overrightarrow{AX} = \overrightarrow{OA} \pm \frac{1}{2}(3\mathbf{d_1}) \right\} \right $						
	\	$\begin{pmatrix} 2 \\ 18 \\ 6 \end{pmatrix} + 0.5 \begin{pmatrix} 3 \begin{pmatrix} -1 \\ -5 \\ 1 \end{pmatrix} \end{pmatrix}; = \begin{pmatrix} 0.5 \\ 10.5 \\ 7.5 \end{pmatrix}$	Applies either $\overrightarrow{OA} + 0.5(K\mathbf{d}_1)$ or $\overrightarrow{OA} - 0.5(K\mathbf{d}_1)$, where $K = \frac{\text{their } \overrightarrow{AX} }{3\sqrt{3}}$	M1;			
	$\overrightarrow{OB} =$	$ \begin{vmatrix} 2 \\ 18 \\ 6 \end{vmatrix} - 0.5 \begin{vmatrix} 3 & -1 \\ -5 \\ 1 \end{vmatrix} ; = \begin{vmatrix} 3.5 \\ 25.5 \\ 4.5 \end{vmatrix} $	At least one position vector is correct (Also allow coordinates) Both position vectors are correct (Also allow coordinates)	A1			
			(Miso allow coordinates)	[3]			
		Ques	stion 6 Notes				
6. (a)	Note		t follow through coordinates from their / or f	rom their <i>m</i>			
(b)	Note	Evaluating the dot product (i.e. (-1)(3)	+ (-5)(0) + (1)(-4)) is not required				
	N T 4	for the M1, dM1 marks.	down their direction restore 1 and 1				
	Note Note	Allow M1 dM1 for	down their direction vectors, $\mathbf{d_1}$ and $\mathbf{d_2}$				
		$\left(\sqrt{(-1)^2 + (-5)^2 + (1)^2} \cdot \sqrt{(3)^2 + (0)^2 + (-4)^2}\right) \cos q = \pm \begin{pmatrix} -1 \\ -5 \\ 1 \end{pmatrix} \cdot \begin{pmatrix} 3 \\ 0 \\ -4 \end{pmatrix}$					
	Note	$q = 1.297995^{c}$, (without evidence of awrt 74.37) is A0					
6. (b)	Alternative Method: Vector Cross Product						
Way 2	Only apply this scheme if it is clear that a vector cross product method is being applied. $\mathbf{d}_{1} \times \mathbf{d}_{2} = \begin{pmatrix} -1 \\ -5 \\ 1 \end{pmatrix} \times \begin{pmatrix} 3 \\ 0 \\ -4 \end{pmatrix} = \left\{ \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ -1 & -5 & 1 \\ 3 & 0 & -4 \end{vmatrix} = 20\mathbf{i} - \mathbf{j} + 15\mathbf{k} \right\} $ Realisation that the vector cross product is required between \mathbf{d}_{1} and \mathbf{d}_{2} or a multiple of \mathbf{d}_{1} and \mathbf{d}_{2}						
	sin q	$= \frac{\sqrt{(20)^2 + (-1)^2 + (15)^2}}{\sqrt{(-1)^2 + (-5)^2 + (1)^2} \cdot \sqrt{(3)^2 + (0)^2 + (-4)^2}}$		dM1			
	$\sin q = \frac{\sqrt{626}}{\sqrt{27}.\sqrt{25}} \Rightarrow q = 74.36964117 = 74.37 \text{ (2 dp)}$ awrt 74.37 seen in (b) only A1						
				[3]			
6. (c)	Finds the difference between their \overrightarrow{OX} and \overrightarrow{OA} and applies Pythagoras to the result to find AX or XA OR applies $\left \left(\text{their } /_X \text{ found in } (a) \right) - 2 \right \sqrt{(-1)^2 + (-5)^2 + (1)^2}$						
	Note	For M1: Allow one slip in writing down to	heir \overrightarrow{OX} and \overrightarrow{OA}				
	Note Allow M1A1 for $\begin{pmatrix} 3 \\ 15 \\ 3 \end{pmatrix}$ leading to $AX = \sqrt{(3)^2 + (15)^2 + (3)^2} = \sqrt{243} = 9\sqrt{3}$						
(e)	Note Imply M1 for no working leading to any two components of one of the \overline{OB} which are correct.						

Question Number	Scheme		Notes	Mar	ks
6. (d) Way 2	$\frac{"9\sqrt{3}"}{YA} = \tan(90 - "74.36964")$		$\frac{\overrightarrow{X}}{=} \tan(90 - \theta) \text{ or } AY = \frac{\text{their } \overrightarrow{AX} }{\tan(90 - \theta)},$ acute or obtuse angle between l_1 and l_2	M1	
	<i>YA</i> = 55.71758 = 55.7 (1 dp)		anything that rounds to 55.7	A1	503
6. (d) Way 3	$\frac{YA}{\sin("74.36964")} = \frac{"9\sqrt{3}"}{\sin(90 - "74.36964.")}$)	$\frac{YA}{\sin \theta} = \frac{\text{their } \overrightarrow{AX} }{\sin(90 - \theta)} \text{ o.e., where } \theta \text{ is the}$	M1	[2]
	$YA = \frac{9\sqrt{3}\sin(74.36964)}{\sin(15.63036)} = 55.71758$		acute or obtuse angle between l_1 and l_2 anything that rounds to 55.7	A1	[2]
					[2]
6. (d) Way 4	$\mathbf{d}_{1} = \begin{pmatrix} -1 \\ -5 \\ 1 \end{pmatrix}, \overrightarrow{OY} = \begin{pmatrix} 5 \\ 3 \\ 1 \end{pmatrix} + \mu \begin{pmatrix} 3 \\ 0 \\ -4 \end{pmatrix}$	$ = \begin{pmatrix} 5+3\mu \\ 3 \\ 1-4\mu \end{pmatrix} $			
	$\overrightarrow{YA} = \begin{pmatrix} 2 \\ 18 \\ 6 \end{pmatrix} - \begin{pmatrix} 5+3\mu \\ 3 \\ 1-4\mu \end{pmatrix} = \begin{pmatrix} -3-3\mu \\ 15 \\ 5+4\mu \end{pmatrix}$				
	$\overrightarrow{YA} \bullet \mathbf{d}_1 = 0 \implies \begin{pmatrix} -3 - 3\mu \\ 15 \\ 5 + 4\mu \end{pmatrix} \bullet \begin{pmatrix} -1 \\ -5 \\ 1 \end{pmatrix} =$	= 0	(Allow a sign slip in copying \mathbf{d}_1) Applies $\overrightarrow{YA} \bullet \mathbf{d}_1 = 0$ or $\overrightarrow{AY} \bullet \mathbf{d}_1 = 0$	M1	
	$ \Rightarrow 3 + 3m - 75 + 5 + 4m = 0 \Rightarrow m = \frac{67}{7} $ $YA^{2} = \left(-3 - 3\left(\frac{67}{7}\right)\right)^{2} + \left(15\right)^{2} + \left(5 + 4\right)^{2} $	to	or $\overrightarrow{YA} \bullet (K \mathbf{d}_1) = 0$ or $\overrightarrow{AY} \bullet (K \mathbf{d}_1) = 0$ find m and applies Pythagoras to find a umerical expression for AY^2 or for the distance AY		
	So, $YA = \sqrt{\left(-\frac{222}{7}\right)^2 + \left(15\right)^2 + \left(\frac{303}{7}\right)^2}$	1			
	= 55.71758 = 55.7 (1 dp)	222 22	anything that rounds to 55.7	A1	[2]
	Note: $\overrightarrow{OY} = \frac{236}{7}\mathbf{i} + 3\mathbf{j} - \frac{261}{7}\mathbf{k}$, $\overrightarrow{AY} = -$	$-\frac{222}{7}$ i + 15 j + $\frac{303}{7}$	³ -k		[2]

Question Number	Scheme	· · · · · · · · · · · · · · · · · · ·	Notes	Marks
7.	$\frac{\mathrm{d}h}{\mathrm{d}t} = k\sqrt{(h-9)}, 9 < h \in 200;$	$h = 130, \frac{\mathrm{d}h}{\mathrm{d}t} = -1.1$		
(a)	Substitutes $h = 130$ and either $\frac{dh}{dt} = -1.1$ or $\frac{dh}{dt} = 1.1$ into the printed equation and rearranges to give $k =$		M1	
	so, $k = -\frac{1}{10}$ or -0.1		$k = -\frac{1}{10}$ or -0.1	
(b) Way 1	$\int \frac{\mathrm{d}h}{\sqrt{(h-9)}} = \int k \mathrm{d}t$	the wrong position	s correctly. dh and dt should not be in as, although this mark can be implied by later working. Ignore the integral signs.	B1
	$\int (h-9)^{-\frac{1}{2}} dh = \int k dt$		inter working. Ignore the integral signs.	
	1_	Integrates $$	$\frac{\pm \lambda}{(h-9)}$ to give $\pm m\sqrt{(h-9)}$; /, $m = 0$	M1
	$\frac{(h-9)^{\frac{1}{2}}}{\left(\frac{1}{2}\right)} = kt \left(+c\right)$	$\frac{(h-9)^{\frac{1}{2}}}{\left(\frac{1}{2}\right)} = kt \text{or}$	$\frac{(h-9)^{\frac{1}{2}}}{\left(\frac{1}{2}\right)} = (\text{their } k)t, \text{ with/without } + c,$	A1
	or equivalent, which can be un-simplified or simplified. Some evidence of applying both $t = 0$, $t = 0$ and $t = 0$ to changed equation			M1 \
	containing a constant of integration, e.g. c or A		dM1	
	$t = 20\sqrt{191} - 20\sqrt{41}$ or $t = 148.3430145 = 148$ (minut	t = $20\sqrt{191} - 20\sqrt{41}$ isw or awrt 148		A1 cso
(b) Way 2	$\int_{200}^{50} \frac{\mathrm{d}h}{\sqrt{(h-9)}} = \int_{0}^{T} k \mathrm{d}t$	in the wrong posi	bles correctly. dh and dt should not be tions, although this mark can be implied Integral signs and limits not necessary.	[6] B1
	$\int_{200}^{50} (h-9)^{-\frac{1}{2}} dh = \int_{0}^{T} k dt$		<u> </u>	
	$\left[\frac{1}{(1-0)^{\frac{1}{2}}} \right]^{50}$	Integrates $\sqrt{}$	$\frac{\pm \lambda}{(h-9)}$ to give $\pm m\sqrt{(h-9)}$; /, $m = 0$	M1
	$\left[\frac{(h-9)^{\frac{1}{2}}}{\left(\frac{1}{2}\right)^{2}}\right]_{200}^{50} = \left[kt\right]_{0}^{T}$	Integrates $\frac{\pm \lambda}{\sqrt{(h-9)}}$ to give $\pm m\sqrt{(h-9)}$; $/$, m^{-1} 0 $\frac{(h-9)^{\frac{1}{2}}}{\left(\frac{1}{2}\right)} = kt \text{ or } \frac{(h-9)^{\frac{1}{2}}}{\left(\frac{1}{2}\right)} = (\text{their } k)t, \text{ with/without limits,}$ or equivalent, which can be un-simplified or simplified.		
	$2\sqrt{41} - 2\sqrt{191} = kt \text{ or } kT$	Attempts to apply limits of $h = 200, h = 50$ and (can be implied) $t = 0$ to their changed equation		
	$t = \frac{2\sqrt{41} - 2\sqrt{191}}{-0.1}$	dependent on the previous M mark		dM1
	$t = 20\sqrt{191} - 20\sqrt{41}$ or swrt 148			A1 cso
				[6] 8

		Question 7 Notes				
7. (b)	Note	Allow first B1 for writing $\frac{dt}{dh} = \frac{1}{k\sqrt{(h-9)}}$ or $\frac{dt}{dh} = \frac{1}{(\text{their } k)\sqrt{(h-9)}}$ or equivalent				
	Note	$\frac{\mathrm{d}t}{\mathrm{d}h} = \frac{1}{k\sqrt{(h-9)}} \text{ leading to } t = \frac{2}{k}\sqrt{(h-9)} \ (+c) \text{ with/without } + c \text{ is B1M1A1}$				
	Note	After finding $k = 0.1$ in part (a), it is only possible to gain full marks in part (b) by initially writing				
		$\frac{\mathrm{d}h}{\mathrm{d}t} = -k\sqrt{(h-9)} \text{ or } \grave{0}\frac{\mathrm{d}h}{\sqrt{(h-9)}} = \grave{0}-k\mathrm{d}t \text{ or } \frac{\mathrm{d}h}{\mathrm{d}t} = -0.1\sqrt{(h-9)} \text{ or } \grave{0}\frac{\mathrm{d}h}{\sqrt{(h-9)}} = \grave{0}-0.1\mathrm{d}t$				
		Otherwise, those candidates who find $k = 0.1$ in part (a), should lose at least the final A1 mark in				
		part (b).				

Question Number	S	Memew.i	gexam	s.com	Notes	Marks
8.	$x = 3q\sin q, \ y = \sec^3 q, \ 0 \notin q <$	$\frac{p}{2}$				
(a)	{When $y = 8$,} $8 = \sec^3 \theta \Rightarrow \cot^3 \theta$	$\cos^3 \theta = \frac{1}{8} \Rightarrow$	$\cos\theta = \frac{1}{2}$	$\Rightarrow \theta = \frac{\pi}{3}$	Sets $y = 8$ to find θ and attempts to substitute their θ into $x = 3q \sin q$	M1
	so k (or x) = $\frac{\sqrt{3}\pi}{2}$	1. 6			$\frac{\sqrt{3}p}{2} \text{ or } \frac{3p}{2\sqrt{3}}$	A1
(b)	Note: Obtaining to $\frac{\mathrm{d}x}{\mathrm{d}\theta} = 3\sin\theta + 3\theta\cos\theta$	vo value for i	k without a	ccepting the o	correct value is final A0 $3\theta \sin \theta \rightarrow 3\sin \theta + 3\theta \cos \theta$ Can be implied by later working	[2] B1
	$\left\{ \int y \frac{\mathrm{d}x}{\mathrm{d}q} \left\{ \mathrm{d}q \right\} \right\} = \int (\sec^3 q)(3s)$	in <i>q</i> + 3 <i>q</i> cos	$q)\{\mathrm{d}q\}$		Applies $(\pm K \sec^3 q)$ (their $\frac{dx}{dq}$) Ignore integral sign and dq ; K^{-1} 0	M1
	$= 3 \dot{\mathbf{j}} q \sec^2 q + \tan q \sec^2 q \mathrm{d}q$				esult no errors in their working, e.g. bracketing or manipulation errors. al sign and $d\theta$ in their final answer.	A1 *
	$x = 0$ and $x = k \implies \underline{\alpha} = 0$ an			3	or evidence of $0 \to 0$ and $k \to \frac{\pi}{3}$	B1
	Note: The w	ork for the fi	inal B1 mar		en in part (b) only.	[4]
(c)	where $g(q)$ is a trigonometric function $f(q)$ and $f(q)$ $f(q$		$Aqg(q) - B \int g(q), A > 0, B > 0,$ is a trigonometric function in q and in \hat{g} sec ² $q dq$. [Note: $g(q)^{-1} \sec^2 q$]	M1		
(c) Way 1	$\{\hat{0}^{q}\sec^{2}qdq\} = q\tan q - \hat{0}\tan q\{dq\}$ dependent on the previous M mark Either $/q\sec^{2}q \rightarrow Aq\tan q - B\int\tan q, A > 0, B > 0$				dM1	
	$= q \tan q - \ln(\sec q)$		Aso	$a^2 a \times a ton c$	$q - \ln(\sec q)$ or $q \tan q + \ln(\cos q)$ or	
	$\mathbf{or} = g \tan g - \sin g - \frac{1}{2} \sin g - \frac{1}{2$	+ ln(cos <i>q</i>)	•		- $/ \ln(\sec q)$ or $/ q \tan q + \ln(\cos q)$ or $/ q \tan q + / \ln(\cos q)$	A1
	, ,	, ,			$\tan q + \ln(\cos x)$ for A1	AI
	$\left\{ \grave{0} \tan q \sec^2 q \mathrm{d}q \right\}$		$\tan \theta$ sec	$^{2}\theta$ or $/\tan\theta$	$q \sec^2 q \rightarrow \pm C \tan^2 q \text{ or } \pm C \sec^2 q$ or $\pm C u^{-2}$, where $u = \cos q$	M1
	$= \frac{1}{2} \tan^2 q \text{ or } \frac{1}{2} \sec^2 q$	tan q sec			$\frac{1}{2\cos^2 q}$ or $\frac{1}{2\cos^2 q}$ or $\tan^2 q - \frac{1}{2}\sec^2 q$	
	or $\frac{1}{2u^2}$ where $u = \cos q$ or $0.5u^{-2}$, where $u = \cos q$ or $0.5u^2$, where $u = \tan q$ or $\frac{1}{2}u^2$ where $u = \tan q$ or $\frac{1}{2}u^2$ where $u = \tan q$ or $0.5/u^{-2}$, where $u = \cos q$ or $0.5/u^{-2}$, where $0.5/u^{-2}$ or 0			A1		
	$\left\{\operatorname{Area}(R)\right\} = \left[3q \tan q - 3\ln(\sec q)\right]$	$+\frac{3}{2}\tan^2 q \bigg]_0^{\frac{p}{3}}$			D	
	$= \left(3\left(\frac{\pi}{3}\right)\sqrt{3} - 3\ln 2 + \frac{3}{2}(3)\right) - \left(0\right) \text{ or } \left(3\left(\frac{\pi}{3}\right)\sqrt{3} - 3\ln 2 + \frac{3}{2}(4)\right) - \left(\frac{3}{2}\right)$					
	$=\frac{9}{2}+\sqrt{3}\rho-3\ln 2$	or $\frac{9}{2} + \sqrt{3}$	$p + 3\ln\left(\frac{1}{2}\right)$	or $\frac{9}{2} + \sqrt{3}z$	$\pi - \ln 8$ or $\ln \left(\frac{1}{8} e^{\frac{9}{2} + \sqrt{3}\rho} \right)$	A1 o.e.
						[6] 12

	www.igcaams.com					
Question Number		Scheme		Notes	Marks	
8. (c)	Way 2 fo	or the first 5 marks: Applying integration by parts on $\hat{\mathbf{g}}(q + \tan q)\sec^2 q dq$				
Way 2	$\dot{0}^{(q \sec^2 d)}$	$ \hat{0}(q\sec^2 q + \tan q\sec^2 q)dq = \hat{0}(q + \tan q)\sec^2 qdq, \begin{cases} u = q + \tan q \Rightarrow \frac{du}{dq} = 1 + \sec^2 q \\ \frac{dv}{dq} = \sec^2 q \Rightarrow v = \tan q = g(q) \end{cases} $				
	h(q) and	g(q) are trigonometric functions in	q and g	$g(q) = \text{their } \mathring{\mathfrak{g}} \sec^2 q dq$. [Note: $g(q)^{-1} \sec^2 q$]		
		$A(q + \tan q)g(q) - B\hat{0}(1 + h(q))g(q), A > 0, B > 0$				
	= (q + ta)	$\tan q$) $\tan q - \grave{0}(1 + \sec^2 q) \tan q \{dq\}$		dependent on the previous M mark Either $/[(q + \tan q)\sec^2 q] \rightarrow$		
		A(Q)		+ $\tan q$) $\tan q - B_{\hat{0}}(1 + h(q))\tan q$, $A^{-1}(0, B) > 0$ or $(q + \tan q)\tan q - \hat{0}(1 + h(q))\tan q$	dM1	
	$= (q + \tan q)\tan q - \hat{\mathbf{j}}(\tan q + \tan q \sec^2 q)\{dq\}$					
	$= (q + \tan q) \tan q - \ln(\sec q) - \grave{\mathbf{j}} \tan q \sec^2 q \{dq\}$		$\{dq\}$	$(q + \tan q)\tan q - \ln(\sec q) \text{ o.e.}$ or $/[(q + \tan q)\tan q - \ln(\sec q)] \text{ o.e.}$	A1	
	(2.4	1 1 2 9	$\tan q \sec^2 q \to \pm C \tan^2 q \text{ or } \pm C \sec^2 q$		M1	
		$(\ln q)\tan q - \ln(\sec q) - \frac{1}{2}\tan^2 q$ $-\tan q)\tan q - \ln(\sec q) - \frac{1}{2}\sec^2 q = \tan q$	c.	$(q + \tan q)\tan q - \frac{1}{2}\tan^2 q$ or $(q + \tan q)\tan q - \frac{1}{2}\sec^2 q$	A1	
	Note	Allow the first two marks in part (c) for q	$\tan q$ - $\partial \tan q$ embedded in their working		
	Note	Allow the first three marks in part	(c) for	$q \tan q - \ln(\sec q)$ embedded in their working		
	Note	Allow 3 rd M1 2 nd A1 marks for either $\tan^2 q - \frac{1}{2} \tan^2 q$ or $\tan^2 q - \frac{1}{2} \sec^2 q$				
		embedded in their working				
8. (a)	Note	Question 8 Notes e Allow M1 for an answer of $k = \text{awrt } 2.72$ without reference to $\frac{\sqrt{3}p}{2}$ or $\frac{3p}{2\sqrt{3}}$				
	Note	Allow M1 for an answer of $k = 3$	arccos($(\frac{1}{2})\sin(\arccos(\frac{1}{2}))$ without reference to $\frac{\sqrt{3}\rho}{2}$ or	$\frac{3p}{2\sqrt{3}}$	
	Note	E.g. allow M1 for $q = 60^{\circ}$, leading to $k = 3(60)\sin(60)$ or $k = 90\sqrt{3}$				

		www.igexams.c	om Continued					
8. (b)	Note	To gain A1, dq does not need to appear until th	they obtain $3 \hat{\mathbf{j}} (q \sec^2 q + \tan q \sec^2 q) dq$					
	Note For M1, their $\frac{dx}{dq}$, where their $\frac{dx}{dq}$ ¹ $3q\sin q$, needs to be a trigonometric function							
	Note	Writing $\hat{\mathbf{j}}(\sec^3 q)(3\sin q + 3q\cos q) = 3\hat{\mathbf{j}}(q\sec^2 q + \tan q\sec^2 q)dq$ is sufficient for B1M1A						
	Note	Writing $\frac{dx}{d\theta} = 3\sin\theta + 3\theta\cos\theta$ followed by writing $\int y \frac{dx}{dq} dq = 3\int (q\sec^2q + \tan q\sec^2q)dq$ is sufficient for B1M1A1						
	Note	1						
	Note	Give 2^{nd} B0 for $\partial = 0$ and $\partial = 60^{\circ}$, without refer	erence to $b = \frac{\rho}{3}$					
(c)	Note	A decimal answer of 7.861956551 (without a	correct exact answer) is A0.					
	Note	First three marks are for integrating $\theta \sec^2 \theta$ with	th respect to θ					
	Note	Fourth and fifth marks are for integrating $\tan \theta$ s	$\sec^2 \theta$ with respect to θ					
	Note	Candidates are not penalised for writing $\ln \sec \varphi$	as either $\ln(\sec q)$ or $\ln\sec q$					
	Note	$q \sec^2 q \rightarrow q \tan q + \ln(\sec q)$ WITH NO INTEL	RMEDIATE WORKING is M0M0A0					
	Note	$q \sec^2 q \rightarrow q \tan q - \ln(\cos q)$ WITH NO INTE						
	Note	$q \sec^2 q \rightarrow q \tan q - \ln(\sec q)$ WITH NO INTER						
	Note	$q \sec^2 q \rightarrow q \tan q + \ln(\cos q) \text{ WITH NO INTER}$	RMEDIATE WORKING is M1M1A1					
	Note	Writing a correct $uv - \partial v \frac{du}{dx}$ with $u = Q$, $\frac{dv}{dQ} = \tan Q$, $\frac{du}{dQ} = 1$ and $v = \text{their } g(Q)$ and making						
		one error in the direct application of this formula is 1 st M1 only.						
8. (c)	Alternativ	we method for finding $\int \tan q \sec^2 q dq$						
	$\frac{\mathrm{d}v}{\mathrm{d}q} = \sec \theta$	$q \Rightarrow \frac{du}{dq} = \sec^2 q$ $e^2 q \Rightarrow v = \tan q$						
) tan	$aq\sec^2 q dq = \tan^2 q - \hat{0} \tan q \sec^2 q dq$						
	⊳ 2j tan	$q\sec^2 q dq = \tan^2 q$						
			$\tan\theta \sec^2\theta \text{ or } \to \pm C\tan^2q$	M1				
	ù tan q sec	$e^2 q dq = \frac{1}{2} \tan^2 q$	$\tan q \sec^2 q \to \frac{1}{2} \tan^2 q$					
	or $\begin{cases} u = \sec q & \Rightarrow \frac{\mathrm{d}u}{\mathrm{d}q} = \sec q \tan q \\ \frac{\mathrm{d}v}{\mathrm{d}q} = \sec q \tan q & \Rightarrow v = \sec q \end{cases}$							
	⊳ ģtan q	$q \sec^2 q dq = \sec^2 q - \hat{\mathbf{g}} \sec^2 q \tan q dq$						
	⊳ 2ò tan	$q\sec^2 q \mathrm{d}q = \sec^2 q$						
	À tạn đạc	$e^2 q dq = \frac{1}{2} \sec^2 q$	$\tan\theta \sec^2\theta \text{ or } \to \pm C \sec^2q$					
	U tairy sec	2 2	$\tan q \sec^2 q \to \frac{1}{2} \sec^2 q$	A1				

