Pearson

Mark Scheme (FINAL)

Summer 2017

Pearson Edexcel GCE In Core Mathematics 4 (6666/01)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2017
Publications Code xxxxxxxx*
All the material in this publication is copyright
(c) Pearson Education Ltd 2017

www.igexams.com

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

www.igexams.com
 PEARSON EDEXCEL GCE MATHEMATICS

General Instructions for Marking

1. The total number of marks for the paper is 75
2. The Edexcel Mathematics mark schemes use the following types of marks:

- M marks: Method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- B marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.

3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod - benefit of doubt
- ft - follow through
- the symbol $\sqrt{ }$ will be used for correct ft
- cao - correct answer only
- cso - correct solution only. There must be no errors in this part of the question to obtain this mark
- isw - ignore subsequent working
- awrt - answers which round to
- SC: special case
- oe - or equivalent (and appropriate)
- d... or dep - dependent
- indep - independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper or ag- answer given
- \square or d... The second mark is dependent on gaining the first mark

4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft.
5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.

wWw.igexams.com

6. If a candidate makes more than one attempt at any question:

- If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
- If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.

7. Ignore wrong working or incorrect statements following a correct answer.

Method mark for solving 3 term quadratic:

1. Factorisation

$$
\begin{aligned}
& \left(x^{2}+b x+c\right)=(x+p)(x+q) \text {, where }|p q|=|c| \text {, leading to } \mathrm{x}=\ldots \\
& \left(a x^{2}+b x+c\right)=(m x+p)(n x+q) \text {, where }|p q|=|c| \text { and }|m n|=|a| \text {, leading to } \mathrm{x}=\ldots
\end{aligned}
$$

2. Formula

Attempt to use the correct formula (with values for a, b and c).

3. Completing the square

Solving $x^{2}+b x+c=0:\left(x \pm \frac{b}{2}\right)^{2} \pm q \pm c=0, q \neq 0$, leading to $x=\ldots$

Method marks for differentiation and integration:

1. Differentiation

Power of at least one term decreased by 1. $\left(x^{n} \rightarrow x^{n-1}\right)$

2. Integration

Power of at least one term increased by $1 .\left(x^{n} \rightarrow x^{n+1}\right)$

Use of a formula

Where a method involves using a formula that has been learnt, the advice given in recent examiners' reports is that the formula should be quoted first.

Normal marking procedure is as follows:
Method mark for quoting a correct formula and attempting to use it, even if there are small errors in the substitution of values.

Where the formula is not quoted, the method mark can be gained by implication from correct working with values, but may be lost if there is any mistake in the working.

Exact answers

Examiners' reports have emphasised that where, for example, an exact answer is asked for, or working with surds is clearly required, marks will normally be lost if the candidate resorts to using rounded decimals.

Question Number	Scheme WWW.igexams.comNotes		Marks
1.	$x=3 t-4, y=5-\frac{6}{t}, \quad t>0$		
(a)	$\frac{\mathrm{d} x}{\mathrm{~d} t}=3, \quad \frac{\mathrm{~d} y}{\mathrm{~d} t}=6 t^{-2}$		
	$\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{6 t^{2}}{3}\left\{=\frac{6}{3 t^{2}}=2 t^{2}=\frac{2}{t^{2}}\right\}$	their $\frac{\mathrm{d} y}{\mathrm{~d} t}$ divided by their $\frac{\mathrm{d} x}{\mathrm{~d} t}$ to give $\frac{\mathrm{d} y}{\mathrm{~d} x}$ in terms of t eir $\frac{\mathrm{d} y}{\mathrm{~d} t}$ multiplied by their $\frac{\mathrm{d} t}{\mathrm{~d} x}$ to give $\frac{\mathrm{d} y}{\mathrm{~d} x}$ in terms of t	M1
		simplified or un-simplified, in terms of t. See note.	A1 isw
	Award Special Case $1^{\text {st }}$ M1 if both $\frac{\mathrm{d} x}{\mathrm{~d} t}$ and $\frac{\mathrm{d} y}{\mathrm{~d} t}$ are stated correctly and explicitly.		[2]
	Note: You can recove	the work for part (a) in part (b).	
(a) Way 2	$y=5-\frac{18}{x+4} \Rightarrow \frac{\mathrm{~d} y}{\mathrm{~d} x}=\frac{18}{(x+4)^{2}}=\frac{18}{(3 t)^{2}}$	Writes $\frac{\mathrm{d} y}{\mathrm{~d} x}$ in the form $\frac{ \pm \lambda}{(x+4)^{2}}$, and writes $\frac{\mathrm{d} y}{\mathrm{~d} x}$ as a function of t.	M1
		Correct un-simplified or simplified answer, in terms of t. See note.	A1 isw
			[2]
(b)	$\left\{t=\frac{1}{2} \Rightarrow\right\} P\left(-\frac{5}{2},-7\right)$	$x=\frac{5}{2}, y=7$ or $P\left(-\frac{5}{2},-7\right)$ seen or implied.	B1
	$\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{2}{\left(\frac{1}{2}\right)^{2}} \quad$ and either - y " 7" $=$ " $8 "\left(\begin{array}{lll}x & " & \frac{5}{2}\end{array}\right)$ - " 7" $=($ " $8 ")\left(" \frac{5}{2} "\right)+c$ So, $y=\left(\right.$ their $\left.m_{\mathrm{T}}\right) x+" c "$	Some attempt to substitute $t=0.5$ into their $\frac{\mathrm{d} y}{\mathrm{~d} x}$ which contains t in order to find m_{T} and either applies $y \quad\left(\right.$ their $\left.y_{P}\right)=\left(\right.$ their $\left.m_{\mathrm{T}}\right)\left(x\right.$ their $\left.x_{P}\right)$ or finds c from (their $\left.y_{P}\right)=\left(\right.$ their $\left.m_{\mathrm{T}}\right)\left(\right.$ their $\left.x_{P}\right)+c$ and uses their numerical c in $y=\left(\right.$ their $\left.m_{\mathrm{T}}\right) x+c$	M1
	T: $y=8 x+13$	$y=8 x+13$ or $y=13+8 x$	A1 cso
	Note: their x_{P}, their y_{P} and their m_{T} must be numerical values in order to award M1		[3]
(c) Way 1	$\left\{t=\frac{x+4}{3} \Rightarrow\right\} y=5 \frac{6}{\left(\frac{x+4}{3}\right)}$	An attempt to eliminate t. See notes.	M1
		Achieves a correct equation in x and y only	A1 o.e.
	$y=5 \quad \frac{18}{x+4} \quad y=\frac{5(x+4) 18}{x+4}$		
	So, $y=\frac{5 x+2}{x+4}, \quad\{x>4\}$	$y=\frac{5 x+2}{x+4}$ (or implied equation)	A1 cso
			[3]
(c) Way 2	$\left\{t=\frac{6}{5 y} \Rightarrow\right\} x=\frac{18}{5 \quad y} \quad 4$	An attempt to eliminate t. See notes.	M1
		Achieves a correct equation in x and y only	A1 o.e.
	$\left(\begin{array}{lllll}x+4)(5 & y)=18 & 5 x & x y+20 & 4 y=18\end{array}\right.$		
	$\{5 x+2=y(x+4)\} \text { So, } y=\frac{5 x+2}{x+4},\{x>4\}$	$\{x>4\} \quad y=\frac{5 x+2}{x+4}$ (or implied equation)	A1 cso
			[3]
	Note: Some or all of the work for part (c) can be recovered in part (a) or part (b)		8

2. (b), (c)	Note	(their A) is defined as either - their answer to part (a) - their stated $A=\ldots$ - their " $2^{3 "}$ in their stated $2^{3}\left(1+\frac{k x}{2}\right)^{3}$
	Note	Give $2^{\text {nd }} \mathrm{M} 0$ in part (b) if (their A) $=1$
	Note	Give M0 in part (c) if (their A) = 1
2. (c)	Note	Allow M1 for (their $A)(3)\left(\frac{\text { their } k \text { from (b) }}{2}\right)$
	Note	Award A0 for $B=\frac{27}{16} x$
	Note	Allow A1 for $B=\frac{27}{16} x$ followed by $B=-\frac{27}{16}$ or $-1 \frac{11}{16}$ or -1.6875
	Note	$k=-9$ leading to $B=\frac{27}{16}$ or $1 \frac{11}{16}$ or 1.6875 is A0
	Note	Give A0 for finding both $B=\frac{27}{16}$ and $B=\frac{27}{16}$ (without rejecting $B=\frac{27}{16}$) as their final answer.
	Note	The A1 mark in part (c) is for a correct solution only.
	Note	Be careful! It is possible to award M0A0 in part (c) for a solution leading to $B=\frac{27}{16}$. E.g. $\mathrm{f}(x)=(2+k x)^{3}=2^{3}(1+k x)^{3}=\frac{1}{8}\left(1+(3)(k x)+\frac{(3)(4)}{2!}(k x)^{2}+\ldots\right)=\frac{1}{8} \quad \frac{3 k}{8} x+\frac{3 k^{2}}{4} x^{2}+\ldots$ leading to (a) $A=\frac{1}{8}$, (b) $k=\frac{9}{2}$, (c) $B=\frac{27}{16}$, gets (a) B1, (b) M1M0A0 (c) M0A0
2. (b), (c)	Note	${ }^{3} C_{0}(2)^{3}+{ }^{3} C_{1}(2){ }^{4}(k x)+{ }^{3} C_{2}(2){ }^{5}(k x)^{2}$ with the C terms not evaluated gets (b) $1^{\text {st }} \mathrm{M} 02^{\text {nd }} \mathrm{M} 0$ and (c) M0

WWW.igexamosegot		
3. (b)	Note	M1: Do not allow an extra y-value or a repeated y value in their [...] Do not allow an omission of a y-ordinate in their [...] for M1 unless they give the correct answer of awrt 1.6413, in which case both M1 and A1 can be scored.
	Note	A1: Working must be seen to demonstrate the use of the trapezium rule. (Actual area is $1.64150274 \ldots$)
	Note	Full marks can be gained in part (b) for awrt 1.6413 even if B0 is given in part (a)
	Note	Award B1M1A1 for $\frac{1}{10}(2+1.27165)+\frac{1}{5}(\text { their } 1.86254+1.71830+1.56981+1.41994)=\text { awrt } 1.6413$
	Bracke Award Award Award	eting mistakes: Unless the final answer implies that the calculation has been done correctly B1M0A0 for $\frac{1}{2}(0.2)+2+2$ (their $\left.1.86254+1.71830+1.56981+1.41994\right)+1.27165(=16.51283)$ B1M0A0 for $\frac{1}{2}(0.2)(2+1.27165)+2($ their $1.86254+1.71830+1.56981+1.41994)(=13.468345)$ B1M0A0 for $\frac{1}{2}(0.2)(2)+2$ (their $\left.1.86254+1.71830+1.56981+1.41994\right)+1.27165(=14.61283)$
	Altern Area \approx $=$ B1 M1 A1	ative method: Adding individual trapezia $\begin{aligned} & 0.2 \times\left[\frac{2+" 1.86254 "}{2}+\frac{" 1.86254 "+1.71830}{2}+\frac{1.71830+1.56981}{2}+\frac{1.56981+1.41994}{2}+\frac{1.41994+1.27165}{2}\right] \\ & 1.641283 \\ & \begin{array}{l} 0.2 \text { and a divisor of } 2 \text { on all terms inside brackets } \\ \text { First and last ordinates once and two of the middle ordinates inside brackets ignoring the } 2 \\ \text { anything that rounds to } 1.6413 \end{array} \end{aligned}$
3. (c)	$\mathbf{1}^{\text {st }} \mathrm{B} 1$	Must start from either - $\quad y \mathrm{~d} x$, with integral sign and $\mathrm{d} x$ - $\frac{6}{\left(e^{x}+2\right)} \mathrm{d} x$, with integral sign and $\mathrm{d} x$ - $\frac{6}{\left(\mathrm{e}^{x}+2\right)} \frac{\mathrm{d} x}{\mathrm{~d} u} \mathrm{~d} u$, with integral sign and $\frac{\mathrm{d} x}{\mathrm{~d} u} \mathrm{~d} u$ and state either $\frac{\mathrm{d} u}{\mathrm{~d} x}=\mathrm{e}^{x}$ or $\frac{\mathrm{d} u}{\mathrm{~d} x}=u$ or $\frac{\mathrm{d} x}{\mathrm{~d} u}=\frac{1}{u}$ or $\mathrm{d} u=u \mathrm{~d} x$ and end at $\frac{6}{u(u+2)} \mathrm{d} u$, with integral sign and $\mathrm{d} u$, with no incorrect working.
	Note	So, just writing $\frac{\mathrm{d} u}{\mathrm{~d} x}=\mathrm{e}^{x}$ and $\frac{6}{\left(\mathrm{e}^{x}+2\right)} \mathrm{d} x=\frac{6}{u(u+2)} \mathrm{d} u$ is sufficient for $1^{\text {st }} \mathrm{B} 1$
	Note	Give $2^{\text {nd }} \mathrm{B} 0$ for $b=2.718 \ldots$, without reference to $a=1$ and $b=\mathrm{e}$ or $b=\mathrm{e}^{1}$
	Note	You can also give the $1^{\text {st }} \mathrm{B} 1$ mark for using a reverse process. i.e. Proceeding from $\frac{6}{u(u+2)} \mathrm{d} u$ to $\frac{6}{\left(\mathrm{e}^{x}+2\right)} \mathrm{d} x$, with no incorrect working, and stating either $\frac{\mathrm{d} u}{\mathrm{~d} x}=\mathrm{e}^{x}$ or $\frac{\mathrm{d} u}{\mathrm{~d} x}=u$ or $\frac{\mathrm{d} x}{\mathrm{~d} u}=\frac{1}{u}$ or $\mathrm{d} u=u \mathrm{~d} x$
3. (d)	Note	Give final A0 for $3 \ln (\mathrm{e}+2)+3 \ln 3$ simplifying to $1 \ln (\mathrm{e}+2)+\ln 3$ (i.e. dividing their correct final answer by 3) Otherwise, you can ignore incorrect working (isw) following on from a correct exact value.
	Note	A decimal answer of 1.641502724... (without a correct exact answer) is final A0
	Note	$[3 \ln (u+2)+3 \ln u]_{1}^{e}$ followed by awrt 1.64 (without a correct exact answer) is final M1A0

Question 3 Notes Continued

3. (d)

Note	BE CAREFUL! Candidates will assign their own " A " and " B " for this question.
Note	Writing down $\frac{6}{(u+2) u}$ in the form $\frac{A}{(u+2)}+\frac{B}{u}$ with at least one of A or B correct is $1^{\text {st }} \mathrm{M} 1$
Note	Writing down $\frac{6}{(u+2) u}$ as $\frac{-3}{(u+2)}+\frac{3}{u}$ is $1^{\text {st }} \mathrm{M} 11^{\text {st }} \mathrm{A} 1$.
Note	Condone $\int\left(\begin{array}{ll}\frac{3}{u} & \frac{3}{(u+2)}\end{array}\right) \mathrm{d} u$ to give $3 \ln u \quad 3 \ln u+2$ (poor bracketing) for $2^{\text {nd }} \mathrm{A} 1$.
Note	Award M0A0M1A1ft for a candidate who writes down $\text { e.g. } \int \frac{6}{u(u+2)} \mathrm{d} u=\int\left(\frac{6}{u}+\frac{6}{(u+2)}\right) \mathrm{d} u=6 \ln u+6 \ln (u+2)$ AS EVIDENCE OF WRITING $\frac{6}{u(u+2)}$ AS PARTIAL FRACTIONS.
Note	Award M0A0M0A0 for a candidate who writes down $\frac{6}{u(u+2)} \mathrm{d} u=6 \ln u+6 \ln (u+2) \text { or } \quad \frac{6}{u(u+2)} \mathrm{d} u=\ln u+6 \ln (u+2)$ WITHOUT ANY EVIDENCE OF WRITING $\frac{6}{u(u+2)}$ as partial fractions.
Note	Award M1A1M1A1 for a candidate who writes down $\frac{6}{u(u+2)} \mathrm{d} u=3 \ln u \quad 3 \ln (u+2)$ WITHOUT ANY EVIDENCE OF WRITING $\frac{6}{u(u+2)}$ as partial fractions.
Note	If they lose the " 6 " and find $\frac{{ }^{e}}{1} \frac{1}{u(u+2)} \mathrm{d} u$ we can allow a maximum of M1A0M1A1ftM1A0

Question 3 Notes Continued
3. (d)
Way 2 $\left\{\int \frac{6}{u^{2}+2 u} \mathrm{~d} u=\int \frac{3(2 u+2)}{u^{2}+2 u} \mathrm{~d} u-\int \frac{6 u}{u^{2}+2 u} \mathrm{~d} u\right\}$

$=\int \frac{3(2 u+2)}{u^{2}+2 u} \mathrm{~d} u-\int \frac{6}{u+2} \mathrm{~d} u$	$\frac{ \pm(2 u+2)}{u^{2}+2 u}\{\mathrm{~d} u\} \pm \frac{}{u+2}\{\mathrm{~d} u\}, \alpha, \beta, \delta \neq 0$	M1
	Correct expression	A1

	Integrates $\frac{ \pm M(2 u+2)}{u^{2}+2 u} \pm \frac{N}{u \pm k}, M, N, k \quad 0$, to obtain		
$=3 \ln \left(u^{2}+2 u\right)-6 \ln (u+2)$	any one of $\pm \ln \left(u^{2}+2 u\right)$ or $\pm \ln (\quad(u \pm k)) ;$		
:---:			

Integration of both terms is correctly followed through from their M and from their N
dependent on the $2^{\text {nd }} M$ mark
Applies limits of e and 1
(or their b and their a, where $b>0, b \quad 1, a>0$) in u
$=\left(3 \ln \left(\mathrm{e}^{2}+2 \mathrm{e}\right) \quad 6 \ln (\mathrm{e}+2)\right) \quad(3 \ln 36 \ln 3)$
or applies limits of 1 and 0 in x and subtracts the correct way round.

$=3 \ln \left(\mathrm{e}^{2}+2 \mathrm{e}\right)-6 \ln (\mathrm{e}+2)+3 \ln 3$	$3 \ln \left(\mathrm{e}^{2}+2 \mathrm{e}\right)-6 \ln (\mathrm{e}+2)+3 \ln 3$

dM1
3. (d) Applying $u=1$

Way 3
$\left\{\int_{1}^{\mathrm{e}} \frac{6}{u(u+2)} \mathrm{d} u=\right\} \int_{2}^{1+\mathrm{e}} \frac{6}{(\theta-1)(\theta+1)} \mathrm{d} \theta=\int_{2}^{1+\mathrm{e}} \frac{6}{\theta^{2}-1} \mathrm{~d} u=\left[3 \ln \left(\frac{\theta-1}{\theta+1}\right)\right]_{2}^{1+\mathrm{e}}$
M1A1M1A1
$=3 \ln \left(\frac{1+\mathrm{e}}{\mathrm{e}+1+1}\right) \quad 3 \ln \left(\frac{2}{2+1}\right)=3 \ln \left(\frac{\mathrm{e}}{\mathrm{e}+2}\right) \quad 3 \ln \left(\frac{1}{3}\right) \quad \begin{array}{r}3^{\text {rd }} \mathrm{M} \text { mark is dependent } \\ \text { on } 2^{\text {nd }} \mathrm{M} \text { mark }\end{array}$ dM1A1
www.igexams.com

www.igexams.com

\begin{tabular}{|c|c|c|}
\hline \& \multicolumn{2}{|r|}{Question 4 Notes Continued}

\hline \multirow[t]{9}{*}{4. (a)} \& $1^{\text {st }}$ M1 \& Differentiates implicitly to include either $\pm 4 x \frac{\mathrm{~d} y}{\mathrm{~d} x}$ or $-y^{3} \rightarrow \pm \lambda y^{2} \frac{\mathrm{~d} y}{\mathrm{~d} x}$ or $2^{y} \rightarrow \pm 2^{y} \frac{\mathrm{~d} y}{\mathrm{~d} x}$ (Ignore $\left(\frac{\mathrm{d} y}{\mathrm{~d} x}=\right)$). , are constants which can be 1

\hline \& $1^{\text {st }} \underline{\text { A1 }}$ \& Both $4 x^{2}-y^{3} \rightarrow 8 x-3 y^{2} \frac{\mathrm{~d} y}{\mathrm{~d} x}$ and $=0 \rightarrow=0$

\hline \& Note \& $$
\begin{array}{llllll}
\hline \text { e.g. } 8 x & 3 y^{2} \frac{\mathrm{~d} y}{\mathrm{~d} x} \quad 4 y \quad 4 x \frac{\mathrm{~d} y}{\mathrm{~d} x}+2^{y} \ln 2 \frac{\mathrm{~d} y}{\mathrm{~d} x} \rightarrow \quad 3 y^{2} \frac{\mathrm{~d} y}{\mathrm{~d} x} \quad 4 x \frac{\mathrm{~d} y}{\mathrm{~d} x}+2^{y} \ln 2 \frac{\mathrm{~d} y}{\mathrm{~d} x}=4 y \quad 8 x \\
\text { or } & \text { e.g. } & 16 & 48 \frac{\mathrm{~d} y}{\mathrm{~d} x} \quad 16+8 \frac{\mathrm{~d} y}{\mathrm{~d} x}+16 \ln 2 \frac{\mathrm{~d} y}{\mathrm{~d} x} \rightarrow & 48 \frac{\mathrm{~d} y}{\mathrm{~d} x}+8 \frac{\mathrm{~d} y}{\mathrm{~d} x}+16 \ln 2 \frac{\mathrm{~d} y}{\mathrm{~d} x}=32
\end{array}
$$
$$
\text { will get } 1^{\text {st }} \mathrm{A} 1 \text { (implied) as the " }=0 \text { " can be implied by the rearrangement of their equation. }
$$

\hline \& $\mathbf{2}^{\text {nd }} \underline{\underline{\text { M1 }}}$ \& $4 x y \rightarrow 4 y \quad 4 x \frac{\mathrm{~d} y}{\mathrm{~d} x}$ or $4 y \quad 4 x \frac{\mathrm{~d} y}{\mathrm{~d} x}$ or $4 y+4 x \frac{\mathrm{~d} y}{\mathrm{~d} x}$ or $4 y+4 x \frac{\mathrm{~d} y}{\mathrm{~d} x}$

\hline \& $\overline{\overline{\text { B1 }}}$ \& $$
2^{y} \rightarrow 2^{y} \ln 2 \frac{\mathrm{~d} y}{\mathrm{~d} x} \text { or } 2^{y} \rightarrow \mathrm{e}^{y \ln 2} \ln 2 \frac{\mathrm{~d} y}{\mathrm{~d} x}
$$

\hline \& Note \& If an extra term appears then award $1^{\text {st }} \mathrm{A} 0$

\hline \& $3^{\text {rd }}$ dM1

Note \& | dependent on the first M mark |
| :--- |
| For substituting $x=-2$ and $y=4$ into an equation involving $\frac{\mathrm{d} y}{\mathrm{~d} x}$ |
| M1 can be gained by seeing at least one example of substituting $x=-2$ and at least one example of substituting $y=4$ unless it is clear that they are instead applying $x=4$ and $y=2$ Otherwise, you will NEED to check (with your calculator) that $x=2, y=4$ that has been substituted into their equation involving $\frac{\mathrm{d} y}{\mathrm{~d} x}$ |

\hline \& Note \& A1 cso: If the candidate's solution is not completely correct, then do not give this mark.

\hline \& Note \& isw: You can, however, ignore subsequent working following on from correct solution.

\hline \multirow[t]{2}{*}{(b)} \& Note \& | The $2^{\text {nd }} \mathrm{M} 1$ mark can be implied by later working. |
| :--- |
| Eg. Award $1^{\text {st }}$ M1 and $2^{\text {nd }} \mathbf{M 1}$ for $\frac{y-4}{2}=\frac{-1}{\text { their } m_{\mathrm{T}} \text { evaluated at } x=-2 \text { and } y=4}$ |

\hline \& Note \& A1: Allow the alternative answer $\{y=\} \ln \left(\frac{1}{2}\right)+\frac{13}{2 \ln 2}(\ln 2)$ which is in the form $p+q \ln 2$

\hline \multirow[t]{5}{*}{$$
\begin{aligned}
& \text { 4. (a) } \\
& \text { Way } 2
\end{aligned}
$$} \& $\mathbf{1}^{\text {st }}$ M1 \& Differentiates implicitly to include either $\pm 4 y \frac{\mathrm{~d} x}{\mathrm{~d} y}$ or $4 x^{2} \rightarrow \pm x \frac{\mathrm{~d} x}{\mathrm{~d} y}$ (Ignore $\left(\frac{\mathrm{d} x}{\mathrm{~d} y}=\right)$). is a constant which can be 1

\hline \& $1^{\text {st }} \underline{\text { A1 }}$ \& Both $4 x^{2} \quad y^{3} \rightarrow 8 x \frac{\mathrm{~d} x}{\mathrm{~d} y} \quad 3 y^{2}$ and $=0 \rightarrow=0$

\hline \& $\mathbf{2}^{\text {nd }} \underline{\underline{\text { M1 }}}$ \& $$
4 x y \rightarrow 4 y \frac{\mathrm{~d} x}{\mathrm{~d} y} \quad 4 x \text { or } 4 y \frac{\mathrm{~d} x}{\mathrm{~d} y} \quad 4 x \text { or } 4 y \frac{\mathrm{~d} x}{\mathrm{~d} y}+4 x \text { or } 4 y \frac{\mathrm{~d} x}{\mathrm{~d} y}+4 x
$$

\hline \& $\overline{\overline{\text { B1 }}}$ \& $2^{y} \rightarrow 2^{y} \ln 2$

\hline \& $3^{\text {rd }}$ dM1 \& | dependent on the first M mark |
| :--- |
| For substituting $x=-2$ and $y=4$ into an equation involving $\frac{\mathrm{d} x}{\mathrm{~d} y}$ |

\hline
\end{tabular}

www.igexams.com

Question Number		Scheme		Notes	Marks
$\begin{gathered} 5 . \\ \text { Way } 1 \end{gathered}$	$y=\mathrm{e}^{x}+2 \mathrm{e}^{x}, x \quad 0$				
	$\{V=\} \int_{0}^{\ln 4}\left(\mathrm{e}^{x}+2 \mathrm{e}^{x}\right)^{2} \mathrm{~d} x$		$\text { For } \pi \int\left(\mathrm{e}^{x}+2 \mathrm{e}^{-x}\right)^{2}$ Ignore limits and $\mathrm{d} x$. Can be implied.		B1
	$=\{\pi\} \int_{0}^{\ln 4}\left(\mathrm{e}^{2 x}+4 \mathrm{e}^{-2 x}+4\right) \mathrm{d} x$		Expands $\left(\mathrm{e}^{x}+2 \mathrm{e}^{x}\right)^{2} \rightarrow \pm \mathrm{e}^{2 x} \pm \mathrm{e}^{2 x} \pm$ where $\alpha, \beta, \delta \neq 0$. Ignore π, integral sign, limits and $\mathrm{d} x$. This can be implied by later work.		M1
	$=\{ \}\left[\frac{1}{2} \mathrm{e}^{2 x} \quad 2 \mathrm{e}^{2 x}+4 x\right]_{0}^{\ln 4}$		$\begin{aligned} & \text { Integrates at least one of either } \pm \mathrm{e}^{2 x} \text { to give } \pm \frac{-\mathrm{e}^{2 x}}{2} \\ & \text { or } \pm \mathrm{e}^{2 x} \text { to give } \pm \frac{-\mathrm{e}^{2 x},}{2}, \end{aligned}$		
			dependent on the $\mathbf{2}^{\text {nd }} \mathbf{M}$ mark $\mathrm{e}^{2 x}+4 \mathrm{e}^{-2 x} \rightarrow \frac{1}{2} \mathrm{e}^{2 x}-2 \mathrm{e}^{-2 x},$ which can be simplified or un-simplified		A1
			$4 \rightarrow 4 x$ or $4 \mathrm{e}^{0} x$		B1 cao
	$=\{ \}\left(\left(\begin{array}{ll} \frac{1}{2} \mathrm{e}^{2(\ln 4)} & 2 \mathrm{e}^{2(\ln 4)}+4(\ln 4) \end{array}\right)\left(\begin{array}{ll} \frac{1}{2} \mathrm{e}^{0} & 2 \mathrm{e}^{0}+4(0) \end{array}\right)\right)$			dependent on the previous method mark. Some evidence of applying limits of $\ln 4$ o.e. and 0 to a changed function in x and subtracts the correct way round. Note: A proper consideration of the limit of 0 is required.	dM 1
	$=\{\pi\}\left(\left(8-\frac{1}{8}+4 \ln 4\right)-\left(\frac{1}{2}-2\right)\right)$				
	$\begin{aligned} & =\frac{75}{8}+4 \ln 4 \text { or } \frac{75}{8}+8 \ln 2 \text { or } \pi\left(\frac{75}{8}+4 \ln 4\right) \text { or } \pi\left(\frac{75}{8}+8 \ln 2\right) \\ & \text { or } \frac{75}{8}+\ln 2^{8} \text { or } \frac{75}{8}+\ln 256 \text { or } \ln \left(2^{8} e^{\frac{75}{8}}\right) \text { or } \frac{1}{8}(75+32 \ln 4), \text { etc } \end{aligned}$				A1 isw
					[7]
					7
	Question 5 Notes				
5.	Note	π is only required for the $1^{\text {st }} \mathrm{B} 1$ mark and the final A1 mark.			
	Note	Give $1^{\text {st }} \mathrm{B} 0$ for writing $\quad y^{2} \mathrm{~d} x$ followed by $2 \quad\left(\mathrm{e}^{x}+2 \mathrm{e}^{x}\right)^{2} \mathrm{~d} x$			
	Note	Give $1^{\text {st }} \mathrm{M} 1$ for $\left(\mathrm{e}^{x}+2 \mathrm{e}^{x}\right)^{2} \rightarrow \mathrm{e}^{2 x}+4 \mathrm{e}^{2 x}+2 \mathrm{e}^{0}+2 \mathrm{e}^{0}$ because $\quad=2 \mathrm{e}^{0}+2 \mathrm{e}^{0}$			
	Note	A decimal answer of 46.8731... or (14.9201...) (without a correct exact answer) is A0			
	Note	$\left[\begin{array}{ll}\frac{1}{2} \mathrm{e}^{2 x} & 2 \mathrm{e}^{2 x}+4 x\end{array}\right]_{0}^{\ln 4}$ followed by awrt 46.9 (without a correct exact answer) is final dM1A0			
	Note	Allow exact equivalents which should be in the form $a+b \ln c$ or $(a+b \ln c)$, where $a=\frac{75}{8}$ or $9 \frac{3}{8}$ or 9.375 . Do not allow $a=\frac{150}{16}$ or $9 \frac{6}{16}$			
	Note	Give B1M0M1A1B0M1A0 for the common response$\int_{0}^{\ln 4}\left(\mathrm{e}^{x}+2 \mathrm{e}^{x}\right)^{2} \mathrm{~d} x \rightarrow \int_{0}^{\ln 4}\left(\mathrm{e}^{2 x}+4 \mathrm{e}^{2 x}\right) \mathrm{d} x=\left[\begin{array}{ll} \frac{1}{2} \mathrm{e}^{2 x} & 2 \mathrm{e}^{2 x} \end{array}\right]_{0}^{\ln 4}=\frac{75}{8}$			

www.igexams.com

Question Number	Scheme	Notes	Marks
$\begin{gathered} \text { 6. (e) } \\ \text { Way } 2 \end{gathered}$	$\left\{A X=2 A B \Rightarrow A B=\frac{1}{2} A X\right.$. So, $\left.\overrightarrow{O B}=\overrightarrow{O A} \pm \overrightarrow{A B} \Rightarrow \overrightarrow{O B}=\overrightarrow{O A} \pm \frac{1}{2} \overrightarrow{A X}\right\}$		
	$\overrightarrow{O B}=\left(\begin{array}{r} 2 \\ 18 \\ 6 \end{array}\right)+0.5\left(\begin{array}{c} -3 \\ -15 \\ 3 \end{array}\right) ;=\left(\begin{array}{c} 0.5 \\ 10.5 \\ 7.5 \end{array}\right)$	$\begin{aligned} & \text { Applies either } \overrightarrow{O A}+0.5 \overrightarrow{A X} \text { or } \overrightarrow{O A}-0.5 \overrightarrow{A X} \\ & \quad \text { where (their } \overrightarrow{A X} \text {) }= \pm[\text { (their } \overrightarrow{O X} \text {) }-\overrightarrow{O A}] \end{aligned}$	M1;
	$\overrightarrow{O B}=\binom{2}{18}-0.5\binom{-3}{-15} ;=\binom{3.5}{25.5}$	At least one position vector is correct (Also allow coordinates)	A1
	$\overrightarrow{O B}=\binom{18}{6}-0.5\binom{-15}{3} ;=\binom{25.5}{4.5}$	Both position vectors are correct (Also allow coordinates)	A1
			[3]
6. (e) Way 3	$\begin{aligned} & \left.\overrightarrow{A B}=\left(\begin{array}{c} 4-\lambda \\ 28-5 \lambda \\ 4+\lambda \end{array}\right)-\left(\begin{array}{c} 2 \\ 18 \\ 6 \end{array}\right)=\left(\begin{array}{c} 2-\lambda \\ 10-5 \lambda \\ -2+\lambda \end{array}\right)=\left(\begin{array}{c} 1(2-\lambda) \\ 5(2-\lambda) \\ -1(2-\lambda) \end{array}\right) ; \overrightarrow{A X}=\left(\begin{array}{c} -3 \\ -15 \\ 3 \end{array}\right) \quad \begin{array}{c} A X^{2}=243 \\ A B^{2}=27(2 \end{array}\right)^{2} \\ & A X=2 A B \quad A X^{2}=4 A B^{2} \quad 243=4(27)(2 \quad)^{2} \quad(2 \quad)^{2}=\frac{9}{4} \text { or } 27^{2} \quad 108+\frac{189}{4}=0 \\ & \text { or } 108^{2} \quad 432+189=0 \text { or } 4^{2} \quad 16+7=0 \quad=3.5 \text { or }=0.5 \end{aligned}$		
	$\begin{aligned} & \overrightarrow{O B}=\left(\begin{array}{r} 4 \\ 28 \\ 4 \end{array}\right)+3.5\left(\begin{array}{r} -1 \\ -5 \\ 1 \end{array}\right) ;=\left(\begin{array}{r} 0.5 \\ 10.5 \\ 7.5 \end{array}\right) \\ & \overrightarrow{O B}=\left(\begin{array}{r} 4 \\ 28 \\ 4 \end{array}\right)+0.5\left(\begin{array}{r} -1 \\ -5 \\ 1 \end{array}\right) ;=\left(\begin{array}{r} 3.5 \\ 25.5 \\ 4.5 \end{array}\right) \end{aligned}$	Full method of solving for the equation $A X^{2}=4 A B^{2}$ using (their $\overrightarrow{A X}$) and $\overrightarrow{A B}$ and substitutes at least one of their values for into l_{1}	M1;
		At least one position vector is correct (Also allow coordinates)	A1
		Both position vectors are correct (Also allow coordinates)	A1
	Note: $A X=2 A B \Rightarrow \overrightarrow{A X}= \pm 2 \overrightarrow{A B}$. Hence, $=3.5$ or $=0.5$ can be found from solving either $x: 3= \pm 2(2)$ or $y: 15= \pm 2(105)$ or $z: \quad 3= \pm 2(2+)$		[3]
$\begin{gathered} \text { 6. (e) } \\ \text { Way } 4 \end{gathered}$	$\begin{aligned} & \overrightarrow{O B}=\left(\begin{array}{r} -1 \\ 3 \\ 9 \end{array}\right)+0.5\left(\begin{array}{r} 3 \\ 15 \\ -3 \end{array}\right) ;=\left(\begin{array}{r} 0.5 \\ 10.5 \\ 7.5 \end{array}\right) \\ & \overrightarrow{O B}=\left(\begin{array}{r} -1 \\ 3 \\ 9 \end{array}\right)+1.5\left(\begin{array}{r} 3 \\ 15 \\ -3 \end{array}\right) ;=\left(\begin{array}{r} 3.5 \\ 25.5 \\ 4.5 \end{array}\right) \end{aligned}$	$\begin{aligned} & \text { Applies either (their } \overrightarrow{O X})+0.5 \overrightarrow{X A} \\ & \text { or (their } \overrightarrow{O X})+1.5 \overrightarrow{X A} \\ & \text { where (their } \overrightarrow{X A})=\overrightarrow{O A}-(\text { their } \overrightarrow{O X}) \end{aligned}$	M1;
		At least one position vector is correct (Also allow coordinates)	A1
		Both position vectors are correct (Also allow coordinates)	A1
			[3]
6. (e) Way 5	$\begin{aligned} & \overrightarrow{O B}=0.5\left(\left(\begin{array}{r} -1 \\ 3 \\ 9 \end{array}\right)+\left(\begin{array}{r} 2 \\ 18 \\ 6 \end{array}\right)\right) ;=\left(\begin{array}{r} 0.5 \\ 10.5 \\ 7.5 \end{array}\right) \\ & \overrightarrow{O B}=\left(\begin{array}{r} 2 \\ 18 \\ 6 \end{array}\right)-0.5\left(\begin{array}{r} -3 \\ -15 \\ 3 \end{array}\right) ;=\left(\begin{array}{r} 3.5 \\ 25.5 \\ 4.5 \end{array}\right) \end{aligned}$	Applies $\frac{1}{2}[($ their $\overrightarrow{O X})+\overrightarrow{O A}]$	M1;
		At least one position vector is correct (Also allow coordinates)	A1
		Both position vectors are correct (Also allow coordinates)	A1
			[3]

www.igexams.com

www.igexams.com

7. (b)	Question 7 Notes	
	Note	Allow first B1 for writing $\frac{\mathrm{d} t}{\mathrm{~d} h}=\frac{1}{k \sqrt{\left(\begin{array}{ll}h & 9)\end{array}\right.} \text { or } \frac{\mathrm{d} t}{\mathrm{~d} h}=\frac{1}{(\text { their } k) \sqrt{(h \quad 9)}} \text { or equivalent }{ }^{(h)} \text {. }}$
	Note	
	Note	After finding $k=0.1$ in part (a), it is only possible to gain full marks in part (b) by initially writing Otherwise, those candidates who find $k=0.1$ in part (a), should lose at least the final A1 mark in part (b).

Question Number	sthemew.igexams.com		Notes	Marks
8.	$x=3$ sin , $y=\sec ^{3}, 0<\frac{-}{2}$			
(a)	$\begin{aligned} & \{\text { When } y=8,\} 8=\sec ^{3} \theta \Rightarrow \cos ^{3} \theta=\frac{1}{8} \Rightarrow \cos \theta=\frac{1}{2} \Rightarrow \theta=\frac{\pi}{3} \\ & \qquad k(\text { or } x)=3\left(\frac{\pi}{3}\right) \sin \left(\frac{\pi}{3}\right) \end{aligned}$		Sets $y=8$ to find θ and attempts to substitute their θ into $x=3$ sin	M1
	$\text { so } k(\text { or } x)=\frac{\sqrt{3} \pi}{2}$		$\frac{\sqrt{3}}{2}$ or $\frac{3}{2 \sqrt{3}}$	A1
	Note: Obtaining two value for k without accepting the correct value is final A0			[2]
(b)	$\frac{\mathrm{d} x}{\mathrm{~d} \theta}=3 \sin \theta+3 \theta \cos \theta$		$3 \theta \sin \theta \rightarrow 3 \sin \theta+3 \theta \cos \theta$ Can be implied by later working	B1
	$\left\{\int y \frac{\mathrm{~d} x}{\mathrm{~d}}\{\mathrm{~d}\}\right\}=\int\left(\sec ^{3}\right)(3 \sin +3 \cos)\{\mathrm{d}\}$) d$\}$	Applies $\left(\pm K \sec ^{3}\right)\left(\right.$ their $\left.\frac{\mathrm{d} x}{\mathrm{~d}}\right)$ nore integral sign and d ; K	M1
	$=3 \quad \sec ^{2}+\tan \sec ^{2} d$	Achieves the correct result no errors in their working, e.g. bracketing or manipulation errors. Must have integral sign and $\mathrm{d} \theta$ in their final answer.		A1 *
	$x=0$ and $x=k \Rightarrow \underline{\alpha=0}$ and $\beta=\frac{\pi}{3}$	$\alpha=0$ and $\beta=\frac{\pi}{3}$	or evidence of $0 \rightarrow 0$ and $k \rightarrow \frac{\pi}{3}$	B1
				[4]
(c) Way 1				M1
				dM1
	$\begin{aligned} & =\tan \ln (\sec) \\ & \quad \text { or }=\tan +\ln (\cos) \end{aligned}$	$\begin{gathered} \sec ^{2} \rightarrow \tan \\ \sec ^{2} \rightarrow \tan \end{gathered}$	$\begin{aligned} & \ln (\sec) \text { or } \tan +\ln (\cos) \text { or } \\ & \ln (\sec) \text { or } \tan +\ln (\cos) \end{aligned}$	A1
	Note: Condone $\sec ^{2} \rightarrow$ tan $\ln (\sec x)$ or $\tan +\ln (\cos x)$ for A1			
	$\begin{aligned} & \left\{\tan \sec ^{2} \mathrm{~d}\right\} \\ & =\frac{1}{2} \tan ^{2} \text { or } \frac{1}{2} \sec ^{2} \end{aligned}$ or $\frac{1}{2 u^{2}}$ where $u=\cos$ or $\frac{1}{2} u^{2}$ where $u=\tan$	$\begin{aligned} \hline \tan \theta \sec ^{2} \theta \text { or } \quad \text { tan } \sec ^{2} & \rightarrow \pm C \tan ^{2} \text { or } \pm C \sec ^{2} \\ & \text { or } \pm C u^{2}, \text { where } u=\cos \end{aligned}$		M1
		$\tan \sec ^{2} \rightarrow \frac{1}{2} \tan ^{2}$ or $\frac{1}{2} \sec ^{2}$ or $\frac{1}{2 \cos ^{2}}$ or $\tan ^{2} \quad \frac{1}{2} \sec ^{2}$ or $0.5 u^{2}$, where $u=\cos$ or $0.5 u^{2}$, where $u=\tan$ or $\lambda \tan \theta \sec ^{2} \theta \rightarrow \frac{\lambda}{2} \tan ^{2} \theta$ or $\frac{\lambda}{2} \sec ^{2} \theta$ or $\frac{\lambda}{2 \cos ^{2} \theta}$ or $0.5 u^{2}$, where $u=\cos$ or $0.5 u^{2}$, where $u=\tan$		A1
	$\{\operatorname{Area}(R)\}=\left[\begin{array}{ll} 3 \tan & 3 \ln (\mathrm{sec})+\frac{3}{2} \tan ^{2} \end{array}\right]_{0}^{\overline{3}} \text { or }\left[\begin{array}{ll} 3 \tan & 3 \ln (\mathrm{sec})+\frac{3}{2} \sec ^{2} \end{array}\right]_{0}^{\frac{3}{3}}$			
	$=\left(3\left(\frac{\pi}{3}\right) \sqrt{3}-3 \ln 2+\frac{3}{2}(3)\right)-(0)$ or $\left(3\left(\frac{\pi}{3}\right) \sqrt{3}-3 \ln 2+\frac{3}{2}(4)\right)-\left(\frac{3}{2}\right)$			
	$=\frac{9}{2}+\sqrt{3} \quad 3 \ln 2$ or $\frac{9}{2}+\sqrt{3}+3 \ln \left(\frac{1}{2}\right)$ or $\frac{9}{2}+\sqrt{3} \pi-\ln 8$ or $\ln \left(\frac{1}{8} \mathrm{e}^{\frac{9}{2}+\sqrt{3}}\right)$			$\begin{aligned} & \text { A1 } \\ & \text { o.e. } \end{aligned}$
				[6]
				12

www.igexams.com

