

Question Number	Scheme	Marks
3	(b) $\begin{aligned} & 10=2 a \Rightarrow a=5 \mathrm{~m} \mathrm{~s}^{-2} \\ & 0=\frac{1}{25} u^{2}-2 \times 5 \times 1.6 \\ & \rightarrow u=20 \mathrm{~m} \mathrm{~s}^{-1} \end{aligned}$ (a) $1^{\text {st }} \mathrm{M} 1$ for valid CLM equn $2^{\text {nd }} M 1$ for correct equn for ' v ' and ' w ' and solving for v or w. Final A1 is cso (dropping u and reinserting loses last A1) (b) Allow B1 for a $= \pm 5$ M1 for using ' $v{ }^{2}=u^{2}+2$ as' with $v=0$ and with a value for a A1 f.t. on their a (provided this is not g), but signs must be correct SC For using u instead of $u / 5(\rightarrow u=4)$, allow M1 AO MO. Energy: $\quad 1 / 2 \times 2 \times(u / 5)^{2}=10 \times 1.6$ M1 A1 A1 $\rightarrow u=20$	M1 A1 M1 A1 cso (4) B1 M1 A1 $\sqrt{ }$ \downarrow M1 A1 (5)

Question Number	Scheme Marks
4	(a) $M(D): \quad 20 g \times 1.5+10 g \times 1=R_{B} \times 3$ $\begin{equation*} \Rightarrow \quad R_{B}=\underline{40 \mathrm{~g} / 3} \mathbf{2} 131 \text { or } 130 \mathrm{~N} \tag{4} \end{equation*}$ [NB For moments about another point, allow M1 A1 for moments equation dimensionally correct and with correct number of terms; second M1 is for complete method to find R_{B}.] (b) $\mathrm{R}(\uparrow)$: $\begin{align*} & R_{D}+40 g / 3=20 g+10 g \\ & \quad \Rightarrow R_{D}=\underline{50 g} / 3 \approx 163 \text { or } 160 \mathrm{~N} \tag{3} \end{align*}$ $\text { or } \begin{align*} \mathrm{M}(B): \quad 20 g \times 1.5+10 g \times 2=R_{D} \times 3 \\ \Rightarrow \quad R_{D}=\underline{50 g / 3} \approx 163 \text { or } 160 \mathrm{~N} \tag{A1} \end{align*}$ [NB For moments about another point, allow M1 for a complete method to find R_{D}, A1 for a correct equation for R_{D}.] (c) $\begin{gather*} R_{B}=0 \\ M(D): \quad 20 g \times x=10 \mathrm{~g} \times 1 \\ x=D F=0.5 \mathrm{~m} \tag{4} \end{gather*}$ For weight/mass confusion, AO AO in (a) but allow f.t. in (b) (ans 50/3 = 16.7) General rule of deducting max. 1 per question for >3 s.f (c) $2^{\text {nd }} \mathrm{M}$: must have correct no. of non=zero terms, and equation in x only If use value(s) of R's from (a) or (b): MO.

Question Number	Scheme Marks
5	(a) $\begin{aligned} & R=400 g \cos 15^{\circ}(\approx 3786 \mathrm{~N}) \\ & F=0.2 R \text { used } \\ & T+0.2 R=400 g \sin 15^{\circ} \\ & T \approx \underline{257 \text { or } 260 \mathrm{~N}} \end{aligned}$ (b) $\quad 400 g \sin 15^{\circ}-0.2 \times 400 g \cos 15^{\circ}=400 a$ $\begin{gathered} 50=\frac{1}{2} \times 0.643 \times t^{2} \\ t=\underline{12.5 \text { or } 12 \mathrm{~s}} \end{gathered}$ General rule again about > 3 sf Weight/mass confusion: treat as MR $[\rightarrow T=26.3 / 26 ; a=0.0656 \ldots ; t=39(.0)]$ (b) Allow $\mathrm{a}=0.64$ (Final M1 not dependent but requires an attempt to find an a which is not assumed to be g)

Question Number	Scheme	Marks
6	(a) Direction of $\mathbf{v}=(7 \mathbf{i}-7.5 \mathbf{j})-(4 \mathbf{i}-6 \mathbf{j})=3 \mathbf{i}-1.5 \mathbf{j}$ $\begin{array}{r} \tan \theta=\frac{1.5}{3}=0.5 \Rightarrow \theta=26.565 \ldots \\ \text { Bearing }=\underline{117} \quad \text { (accept awrt) } \end{array}$ (b) $\begin{aligned} & \mathbf{v}=(3 \mathbf{i}-1.5 \mathbf{j}) \div \frac{3}{4}=4 \mathbf{i}-2 \mathbf{j} \\ & \mathbf{s}=(4 \mathbf{i}-6 \mathbf{j})+t(4 \mathbf{i}-2 \mathbf{i}) \end{aligned}$ (c) At $1015 \mathbf{s}=(4 \mathbf{i}-6 \mathbf{j})+\frac{5}{4}(4 \mathbf{i}-2 \mathbf{j})(=9 \mathbf{i}-8.5 \mathbf{j})$ $\begin{aligned} & \mathbf{m}=0.25(p \mathbf{i}+q \mathbf{j}) \\ & \mathbf{s}=\mathbf{m} \Rightarrow p=36, q=-34 \end{aligned}$ (a) Forming direction for \boldsymbol{v} can be either way round. M1 for tan = 'i/j' or 'j/ii' A1 for 26.6 or 63.4 (awrt) from a correct direction for \mathbf{v} A1 cao (b) Allow B1 for correct vector for \boldsymbol{v} wherever seen (e.g. in (a)) (c) line 1: or $(7 \mathbf{i}-7.5 \mathbf{j})+1 / 2(4 \mathbf{i}-2 \mathbf{j})=\ldots .$. $1^{\text {st }} \mathrm{M} 1$ allow for a valid attempt with a value of t. $2^{\text {nd }} \mathrm{M} 1$ using $\mathbf{s}=\mathbf{m}$ and equating at least one coefficient	M1 \downarrow M1 A1 A1 (4) B1 M1 A1V (3) M1 A1 \quad B1 M1 A1, A1 (6)

