GCE

Edexcel GCE

Mechanics M1 (6677)

Summer 2005

J une 2005 6677 Mechanics M1 Mark Scheme

Question Number	Scheme	Marks
1	(a) ' $v=u+a t ': \quad 74=2+a \times 20 \Rightarrow a=\underline{3.6} \mathrm{~m} \mathrm{~s}^{-2}$ (b) ' $v^{2}=u^{2}+2 a s ': 74^{2}=2^{2}+2 \times 3.6 \times A C$ or ' $s=u t+1 / 2 a t^{2}$ ': $A C=2 \times 20+1 / 2 \times 3.6 \times 20^{2}$ $\Rightarrow A C=760 \mathrm{~m}$ Hence $B C=1200-760=\underline{440 \mathrm{~m}}$	M1 A1 (2) M1 A1V A1 $B 1 \sqrt{ }$ (4)
2	(b) Impulse on $B=0.2(2+8.8)$ $=\underline{2.16 \mathrm{Ns}}$	(5) M1 A1 $\sqrt{ }$ A1 (3)
3	(a) $\mathrm{R}(\rightarrow)$ $T \cos \alpha=6$ $\rightarrow T=\underline{7.5 \mathrm{~N}}$ (b) $\mathrm{R}(\uparrow) \quad T+T \sin \alpha=W$ Using same T's and solving $\rightarrow W=\underline{12 \mathrm{~N}}$	M1 A1 A1 (3) A1 (4)

Question Number	Scheme	Marks
4	(a) R (perp to plane): $R=2 g \cos 20$ $\approx 18.4 \text { or } 18 \mathrm{~N}$ (b) R (// to plane): $18-2 g \sin 20-F=2 a$ $F=0.6 R \text { used }$ Sub and solve: $a=\underline{0.123}$ or $0.12 \mathrm{~m} \mathrm{~s}^{-2}$	$\begin{array}{cc} \text { M1 } & \text { A1 } \\ & \\ & \text { A1 } \\ \text { M1 } & \text { A1 } \end{array}$
5	(a) Shape $0<t<12$ Shape $t>12$ Figures (b) Distance in $1^{\text {st }} 12 \mathrm{~s}=1 / 2 \times(10+3) \times 12$ or $(3 \times 12)+1 / 2 \times 3 \times 7$ $=\underline{78 \mathrm{~m}}$ (c) either distance from $t=12$ to $t=27=15 \times 3=45$ \therefore distance in last section $=135-45=12 \mathrm{~m}$ $\begin{array}{r} 1 / 2 \times 3 \times t=12, \\ \Rightarrow t=8 \mathrm{~s} \end{array}$ hence total time $=27+8=\underline{35 \mathrm{~s}}$ or \quad Distance remaining after $12 \mathrm{~s}=135-78=57 \mathrm{~m}$ $\begin{gathered} 1 / 2 \times(15+15+t) \times 3=57 \\ \Rightarrow t=8 \end{gathered}$ Hence total time $=27+8=\underline{35 \mathrm{~s}}$	B1 B1 B1 (3) M1 A1 (2) B1 $\sqrt{ }$ M1 A1 $\sqrt{ }$ A1 A1 (5) B1 $\sqrt{ }$ M1 A1 $\sqrt{ }$ A1 A1

Question Number	Scheme	Marks
6	(a) $\mathrm{M}(A): 12 g \times 1.5=R \times 2$ $R=\underline{9 g} \text { or } 88.2 \mathrm{~N}$ (b) Sub for S and solve for $x: x=\underline{7 / 8}$ or 0.875 or 0.88 m	M1 A1 A1 (3) M1 A1 $\begin{align*} & \text { M1 A2,1,0 } \tag{7}\\ & \downarrow \downarrow \\ & \text { M1 A1 } \end{align*}$
7	(a) Lorry + Car: $\begin{aligned} 2500 a & =1500-300-600 \\ a & =\underline{0.24 \mathrm{~m} \mathrm{~s}^{-2}} \end{aligned}$ (b) Car: $T \cos 15-300=900 a$ OR Lorry: $1500-T \cos 15-600=1600 a$ Sub and solve: $\quad T \approx \underline{534 N}$ (c) $300 \longleftarrow$ Deceleration of car $=300 / 900=1 / 3 \mathrm{~m} \mathrm{~s}^{-1}$ Hence $6^{2}=2 \times 1 / 3 \times s \Rightarrow s=\underline{54 \mathrm{~m}}$ (d) Vertical component of T now removed Hence normal reaction is increased	M1 A1 A1 (3) M1 A1 $\downarrow \downarrow$ M1 A1 (4) M1 A1 M1 A1 (4) M1 A1 cso (2)

Question Number	Scheme	Marks
8	(a) Speed of ball $=\sqrt{ }\left(5^{2}+8^{2}\right) \approx \underline{9.43 \mathrm{~m} \mathrm{~s}^{-1}}$ (b) p.v. of ball $=(2 \mathbf{i}+\mathbf{j})+(5 \mathbf{i}+8 \mathbf{j}) t$ (c) North of B when \mathbf{i} components same, i.e. $2+5 t=10$ $t=\underline{1.6 \mathrm{~s}}$ (d) When $t=1.6$, p.v. of ball $=10 \mathbf{i}+13.8 \mathbf{j}$ (or \mathbf{j} component $=13.8$) Distance travelled by $2^{\text {nd }}$ player $=13.8-6=6.8$ $\text { Speed }=6.8 \div 1.6=\underline{4.25 \mathrm{~m} \mathrm{~s}^{-1}}$ or $[(2+5 t) \mathbf{i}+](1+8 t) \mathbf{j}=[10 \mathbf{i}+](7+v t) \mathbf{j} \quad(p v$'s or \mathbf{j} components same) Using $t=1.6: 1+12.8=7+1.6 v$ (equn in v only) $v=\underline{4.25 \mathrm{~m} \mathrm{~s}^{-1}}$ (e) Allow for friction on field (i.e. velocity of ball not constant) or allow for vertical component of motion of ball (a) M1 Valid attempt at speed (square, add and squ. root cpts) (b) M1 needs non-zero p.v. + (attempt at veloc vector) $\mathrm{x} t$. Must be vector (d) $2^{\text {nd }} \mathrm{M} 1$ - allow if finding displacement vector (e.g. if using wrong time) $3^{\text {rd }}$ M1 for getting speed as a scalar (and final answer must be as a scalar). But if they get e.g. ' $4.25 \mathbf{j}$ ', allow M1 A0 (e) Allow 'wind', 'spin', 'time for player to accelerate', size of ball Do not allow on their own 'swerve', 'weight of ball'.	

