

# Mark Scheme (Results) Summer 2007

**GCE** 

**GCE Mathematics** 

Mechanics M2 (6678)





### June 2007 6678 Mechanics M2 Mark Scheme

#### General:

For M marks, correct number of terms, dimensionally correct, all terms that need resolving are resolved.

Omission of g from a resolution is an accuracy error, not a method error.

Omission of mass from a resolution is a method error.

Omission of a length from a moments equation is a method error.

Where there is only one method mark for a question or part of a question, this is for a complete method.

Omission of units is not (usually) counted as an error.

When resolving, condone sin/cos confusion for M1, but M0 for tan or dividing by sin/cos.

| Question<br>Number | Scheme                                                                                                                                                                                                                                                                                                                                                                                                                               | Marks       |
|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| 1                  | Force exerted = 444/6 (= 74 N)                                                                                                                                                                                                                                                                                                                                                                                                       | B1          |
|                    | $R + 90g \sin \alpha = 444/6$                                                                                                                                                                                                                                                                                                                                                                                                        | M1 A1       |
|                    | $\Rightarrow R = \underline{32 \text{ N}}$                                                                                                                                                                                                                                                                                                                                                                                           | A1          |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                      | (4)         |
|                    | B1 444/6 seen or implied M1 Resolve parallel to the slope for a 3 term equation – condone sign errors and sin/cos confusion A1 All three terms correct – expression as on scheme or exact equivalent A1 32(N) only                                                                                                                                                                                                                   |             |
| 2 .(a)             | a = dv/dt = 6ti - 4j                                                                                                                                                                                                                                                                                                                                                                                                                 | M1 A1 (2)   |
| (b)                | Using $F = \frac{1}{2}a$ , sub $t = 2$ , finding modulus                                                                                                                                                                                                                                                                                                                                                                             | M1, M1, M1  |
|                    | e.g. at $t = 2$ , $a = 12i - 4j$                                                                                                                                                                                                                                                                                                                                                                                                     |             |
|                    | F = 6i - 2j                                                                                                                                                                                                                                                                                                                                                                                                                          |             |
|                    | $ F  = \sqrt{(6^2 + 2^2)} \approx \underline{6.32 \text{ N}}$                                                                                                                                                                                                                                                                                                                                                                        | A1(CSO) (4) |
|                    | M1 Clear attempt to differentiate. Condone <b>i</b> or <b>j</b> missing. A1 both terms correct (column vectors are OK)                                                                                                                                                                                                                                                                                                               |             |
|                    | The 3 method marks can be tackled in any order, but for consistency on epen grid please enter as:                                                                                                                                                                                                                                                                                                                                    |             |
|                    | M1 <b>F</b> =ma (their a, (correct a or following from (a)), not v. $\mathbf{F} = \frac{1}{2} \mathbf{a}$ ).                                                                                                                                                                                                                                                                                                                         |             |
|                    | Condone <b>a</b> not a vector for this mark.  M1 subst $t = 2$ into candidate's vector <b>F</b> or <b>a</b> ( <b>a</b> correct or following from ( <b>a</b> ), not <b>v</b> )  M1 Modulus of candidate's <b>F</b> or <b>a</b> (not <b>v</b> )  A1 CSO All correct (beware fortuitous answers e.g. from $6t\mathbf{i}+4\mathbf{j}$ )) Accept 6.3, awrt  6.32, any exact equivalent e.g. $2\sqrt{10}, \sqrt{40}, \frac{\sqrt{160}}{2}$ |             |

| 3   |                                                                                                                                                                      |           |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| J   |                                                                                                                                                                      |           |
|     |                                                                                                                                                                      |           |
|     |                                                                                                                                                                      |           |
|     |                                                                                                                                                                      |           |
|     | _ =                                                                                                                                                                  |           |
|     | $M(AF)$ $Aa^2a - a^23a/2 = 3a^2r$                                                                                                                                    |           |
| (a) | M (AF) $4a^2.a - a^2.3a/2 = 3a^2.\overline{x}$<br>$\overline{x} = \underline{5a/6}$                                                                                  | M1 A2,1,0 |
|     |                                                                                                                                                                      | A1        |
|     | Symmetry $\Rightarrow \overline{y} = 5a/6$ , or work from the top to get 7a/6                                                                                        | (4)       |
| (b) | symmetry $\rightarrow$ y can o, or work from the top to get varo                                                                                                     |           |
|     | 5 / C ==                                                                                                                                                             | B1√       |
|     | $\tan q = \frac{5a/6}{2a-5a/6} \qquad \left(\frac{\overline{x}}{2a-\overline{y}}\right)$                                                                             | ,         |
|     | 2a 3a 6 2a y                                                                                                                                                         | M1 A1√    |
|     | $q \approx 35.5^{\circ}$                                                                                                                                             |           |
|     |                                                                                                                                                                      | A1        |
|     |                                                                                                                                                                      | (4)       |
|     | M1 Taking moments about AF or a parallel axis, with mass proportional to area.                                                                                       |           |
|     | Could be using a difference of two square pieces, as above, but will often use the sum of a rectangle and a square to make the L shape. Need correct number of terms |           |
|     | but condone sign errors for M1.                                                                                                                                      |           |
|     | A1 A1 All correct A1 A0 At most one error                                                                                                                            |           |
|     | A1 5a/6, (accept 0.83a or better)                                                                                                                                    |           |
|     | Condone consistent lack of a's for the first three marks.                                                                                                            |           |
|     | NB: Treating it as rods rather than as a lamina is M0                                                                                                                |           |
|     | B1ft $\bar{x} = \bar{y} = \text{their } 5a/6$ , or $\bar{y} = \text{distance from AB} = 2a - \text{their } 5a/6$ .                                                   |           |
|     | Could be implied by the working. Can be awarded for a clear statement of value in (a).                                                                               |           |
|     |                                                                                                                                                                      |           |
|     | M1 Correct triangle identified and use of tan. $\frac{2a-5a/6}{5a/6}$ is OK for M1.                                                                                  |           |
|     | Several candidates appear to be getting 45° without identifying a correct angle. This is M0 unless it clearly follows correctly from a previous error.               |           |
|     | Alft Tan $\alpha$ expression correct for their 5a/6 and their $\overline{y}$                                                                                         |           |
|     | A1 35.5 (Q asks for 1d.p.)                                                                                                                                           |           |
|     | NB: Must suspend from point A. Any other point is not a misread.                                                                                                     |           |
|     | 1 1 1                                                                                                                                                                |           |

| 4. (a) | PE lost = $2mgh - mgh \sin \alpha$ (= $7mgh/5$ )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | M1 A1     |
|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| (b)    | Normal reaction $R = mg \cos \alpha \ (= 4mg/5)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | B1 (2)    |
|        | Work-energy: $\frac{1}{2}mv^2 + \frac{1}{2}.2mv^2 = \frac{7mgh}{5} - \frac{5}{8}.\frac{4mg}{5}.h$                                                                                                                                                                                                                                                                                                                                                                                                                                              | M1 A2,1,0 |
|        | $\Rightarrow \frac{3}{2}mv^2 = \frac{9mgh}{10} \Rightarrow v^2 = \frac{3}{5}gh$                                                                                                                                                                                                                                                                                                                                                                                                                                                                | A1 (5)    |
|        | M1 Two term expression for PE lost. Condone sign errors and sin/cos confusion, but must be vertical distance moved for A A1 Both terms correct, sinα correct, but need not be simplified. Allow 13.72mh. Unambiguous statement.                                                                                                                                                                                                                                                                                                                |           |
|        | B1 Normal reaction between A and the plane. Allow when seen in (b) provided it is clearly the normal reaction. Must use cosa but need not be substituted. M1(NB QUESTION SPECIFIES WORK & ENERGY) substitute into equation of the form  PE lost = Work done against friction plus KE gained. Condone sign errors. They <i>must include KE of both particles</i> .  A1A1 All three elements correct (including signs)  A1A0 Two elements correct, but follow their GPE and µx their Rxh.  A1 V <sup>2</sup> correct (NB kgh specified in the Q) |           |
|        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |

| 5.(a) | 1                                                                                                                                                                   |          |
|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
|       |                                                                                                                                                                     |          |
|       | ∠ 63N                                                                                                                                                               |          |
|       | ×                                                                                                                                                                   |          |
|       |                                                                                                                                                                     |          |
|       | 2g                                                                                                                                                                  |          |
|       |                                                                                                                                                                     |          |
|       | $M(A) 63 \sin 30 \cdot 14 = 2g \cdot d$                                                                                                                             | M1 A1 A1 |
|       | Solve: $d = 0.225$ m                                                                                                                                                | WIIAIAI  |
|       | Hence $AB = 45 \text{ cm}$                                                                                                                                          | A1 (4)   |
|       | P( 1) Y (2 20 ( 5456)                                                                                                                                               | (4)      |
| (b)   | $R(\to) \qquad X = 63\cos 30 \ (\approx 54.56)$                                                                                                                     | B1       |
|       | $R(\uparrow) \qquad Y = 63 \sin 30 - 2g \ (\approx 11.9)$                                                                                                           | Di       |
|       | $R = \sqrt{(X^2 + Y^2)} \approx 55.8, 55.9 \text{ or } 56 \text{ N}$                                                                                                | M1 A1    |
|       |                                                                                                                                                                     | M1 A1    |
|       | M1 Take moments about A. 2 recognisable force x distance terms involving 63 and                                                                                     | (5)      |
|       | 2(g).                                                                                                                                                               |          |
|       | A1 63 N term correct A1 2g term correct.                                                                                                                            |          |
|       | A1 $AB = 0.45$ (m) or $45$ (cm). No more than 2sf due to use of $g$ .                                                                                               |          |
|       | B1 Horizontal component (Correct expression – no need to evaluate)                                                                                                  |          |
|       | M1 Resolve vertically – 3 terms needed. Condone sign errors. Could have cos for                                                                                     |          |
|       | sin. Alternatively, take moments about B : $0.225 \times 2g = 0.31 \times 63 \sin 30 + 0.45Y$                                                                       |          |
|       | or C: $0.14Y = 0.085 \times 2g$                                                                                                                                     |          |
|       | A1 Correct expression (not necessarily evaluated) - direction of Y does not matter. M1 Correct use of Pythagoras                                                    |          |
|       | A1 55.8(N), 55.9(N) or 56 (N)                                                                                                                                       |          |
|       | OR For X and Y expressed as $F\cos\theta$ and $F\sin\theta$ .                                                                                                       |          |
|       | M1 Square and add the two equations, or find a value for $tan\theta$ , and substitute for                                                                           |          |
|       | $\sin\theta$ or $\cos\theta$                                                                                                                                        |          |
|       | A1 As above .                                                                                                                                                       |          |
|       |                                                                                                                                                                     |          |
|       | N.B. Part (b) can be done before part (a). In this case, with the extra information                                                                                 |          |
|       | about the resultant force at A, part (a) can be solved by taking moments about any one of several points. M1 in (a) is for a complete method - they must be able to |          |
|       | substitute values for all their forces and distances apart from the value they are trying                                                                           |          |
|       | to find                                                                                                                                                             |          |

| 6. (a) | $0 = (35 \sin \alpha)^2 - 2gh$ $h = 40 \text{ m}$                                                                          | M1 A1<br>A1 (3) |
|--------|----------------------------------------------------------------------------------------------------------------------------|-----------------|
| (b)    | $x = 168 \implies 168 = 35 \cos \alpha \cdot t  (\Rightarrow t = 8s)$                                                      | M1 A1           |
|        | At $t = 8$ , $y = 35 \sin \alpha \times t - \frac{1}{2}gt^2$ (= 28.8 - ½.g.8 <sup>2</sup> = -89.6 m)                       | M1 A1           |
|        | Hence height of $A = 89.6 \text{ m}$ or 90 m                                                                               | DM1 A1 (6)      |
| (c)    | $\frac{1}{2}mv^2 = 1/2.m.35^2 + mg.89.6$                                                                                   | M1 A1           |
|        | $\Rightarrow v = \underline{54.6 \text{ or } 55 \text{ m s}^{-1}}$                                                         | A1 (3)          |
|        | M1 Use of $v^2 = u^2 + 2as$ , or possibly a 2 stage method using $v = u + at$ and                                          |                 |
|        | $s = ut + \frac{1}{2}at^2$                                                                                                 |                 |
|        | A1 Correct expression. Alternatives need a complete method leading to an equation in h only.                               |                 |
|        | A1 $40(m)$ No more than 2sf due to use of $g$ .                                                                            |                 |
|        | M1 Use of $x = u\cos\alpha$ . $t$ to find $t$ .<br>A1 $168 = 35 \times their\cos\alpha \times t$                           |                 |
|        | M1 Use of $s = ut + \frac{1}{2}at^2$ to find vertical distance for their t. (AB or top to B)                               |                 |
|        | A1 $y = 35 \sin \alpha \times t - \frac{1}{2}gt^2$ ( <i>u,t</i> consistent)                                                |                 |
|        | DM1 This mark dependent of the previous 2 M marks. Complete method for AB. Eliminate t and solve for s. A1 cso.            |                 |
|        | (NB some candidates will make heavy weather of this, working from A to max height (40m) and then down again to B (129.6m)) |                 |
|        | OR: Using $y = x \tan \alpha - \frac{gx^2 \sec^2 \alpha}{2u^2}$                                                            |                 |
|        | M1 formula used (condone sign error)                                                                                       |                 |
|        | A1 x,u substituted correctly M1 α terms substituted correctly.                                                             |                 |
|        | A1 fully correct formula                                                                                                   |                 |
|        | M1, A1 as above                                                                                                            |                 |
|        | M1 Conservation of energy: change in KE = change in GPE. All terms present. One side correct (follow their h).             |                 |
|        | (will probably work A to B, but could work top to B).                                                                      |                 |
|        | A1 Correct expression (follow their h) A1 54.6 or 55 (m/s)                                                                 |                 |
|        | OR: M1 horizontal and vertical components found and combined using Pythagoras $v_x = 21$                                   |                 |
|        | $v_y = 28 - 9.8x8 (-50.4)$                                                                                                 |                 |
|        | A1 $v_x$ and $v_y$ expressions correct (as above). Follow their $h,t$ .<br>A1 54.6 or 55                                   |                 |
|        | NB Penalty for inappropriate rounding after use of g only applies once per question.                                       |                 |

## www.igexams.com

| Question<br>Number | Scheme                                                                                                                                                                                                                                                                                                                                                 | Marks                  |
|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|
| 7.                 | u                                                                                                                                                                                                                                                                                                                                                      |                        |
|                    | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                  |                        |
| (a)                | CLM: $mv + 5mw = mu$<br>NLI: $w - v = eu$                                                                                                                                                                                                                                                                                                              | B1<br>B1               |
|                    | Solve $v$ : $v = \frac{1}{6}(1-5e)u$ , so speed $= \frac{1}{6}(5e-1)u$ (NB – answer given on paper)                                                                                                                                                                                                                                                    | M1* A1                 |
|                    | Solve w: $w = \frac{1}{6}(1+e)u$<br>* The M's are dependent on having equations (not necessarily correct) for CLM and NLI                                                                                                                                                                                                                              | M1* A1 (6)             |
| (b)                | After B hits C, velocity of $B = "v" = \frac{1}{6}(1 - 5.\frac{4}{5})u = -\frac{1}{2}u$<br>velocity $< 0 \Rightarrow$ change of direction $\Rightarrow B$ hits A                                                                                                                                                                                       | M1 A1<br>A1 CSO<br>(3) |
| (c)                | velocity of C after = $\frac{3}{10}u$                                                                                                                                                                                                                                                                                                                  | B1                     |
|                    | When B hits A, "u" = $\frac{1}{2}u$ , so velocity of B after = $-\frac{1}{2}(-\frac{1}{2}u) = \frac{1}{4}u$                                                                                                                                                                                                                                            | B1                     |
|                    | Travelling in the same direction but $\frac{1}{4} < \frac{3}{10} \implies \underline{\text{no second collision}}$                                                                                                                                                                                                                                      | M1<br>A1 CSO (4)       |
|                    | B1 Conservation of momentum – signs consistent with their diagram/between the two equations B1 Impact equation M1 Attempt to eliminate w A1 correct expression for v. Q asks for speed so final answer must be verified positive with reference to e>1/5.  Answer given so watch out for fudges. M1 Attempt to eliminate v A1 correct expression for w |                        |
|                    | M1 Substitute for e in speed or velocity of P to obtain $v$ in terms of $u$ . Alternatively, can obtain $v$ in terms of $w$                                                                                                                                                                                                                            |                        |
|                    | A1 (+/-) u/2 ( $v = -\frac{5w}{3}$ )<br>A1 CSO <u>Justify direction</u> (and correct conclusion)                                                                                                                                                                                                                                                       |                        |
|                    | B1 speed of C = value of w = $(\pm)\frac{3u}{10}$ (Must be referred to in (c) to score the B1.)                                                                                                                                                                                                                                                        |                        |
|                    | B1 speed of B after second collision $(\pm)\frac{1}{4}u$ or $(\pm)\frac{5}{6}w$                                                                                                                                                                                                                                                                        |                        |
|                    | M1 Comparing their speed of <i>B</i> after 2 <sup>nd</sup> collision with their speed of <i>C</i> after first collision.  A1 CSO. Correct conclusion.                                                                                                                                                                                                  |                        |

## www.igexams.com

| 8. (a) | $0 \le t \le 4$ : $a = 8 - 3t$<br>$a = 0 \Rightarrow t = 8/3 \text{ s}$                               | M1<br>DM1  |
|--------|-------------------------------------------------------------------------------------------------------|------------|
|        | $\rightarrow v = 8.\frac{8}{3} - \frac{3}{2} \left(\frac{8}{3}\right)^2 = \frac{32}{3} \text{ (m/s)}$ | DM1 A1     |
|        | second M1 dependent on the first, and third dependent on the second.                                  | (4)        |
| (b)    | $s = 4t^2 - t^3/2$                                                                                    | M1         |
|        | t = 4: $s = 64 - 64/2 = 32  m$                                                                        | M1 A1      |
| (c)    | $t > 4$ : $v = 0 \implies t = 8 \text{ s}$                                                            | B1 (1)     |
| (d)    | Either $t > 4$ $s = 16t - t^2 (+ C)$                                                                  | M1         |
|        | $t = 4, s = 32 \rightarrow C = -16 \implies s = 16t - t^2 - 16$                                       | M1 A1      |
|        | $t = 10 \implies s = 44 \text{ m}$                                                                    | M1 A1      |
|        | But direction changed, so: $t = 8$ , $s = 48$                                                         | M1         |
|        | Hence total dist travelled = $48 + 4 = 52 \text{ m}$                                                  | DM1 A1 (8) |
|        | Or (probably accompanied by a sketch?)                                                                | (0)        |
|        | t=4 v=8, t=8 v=0, so area under line = $\frac{1}{2} \times (8-4) \times 8$                            | M1A1A1     |
|        | t=8 v=0, t=10 v=-4, so area above line = $\frac{1}{2} \times (10-8) \times 4$                         | M1A1A1     |
|        | Hence total distance = $32(\text{from b}) + 16 + 4 = 52 \text{ m}$ .                                  | M1A1 (8)   |
|        | Or M1, A1 for $t > 4$ $\frac{dv}{dt} = -2$ , =constant                                                |            |
|        | t=4, v=8; t=8, v=0; t=10, v=-4                                                                        |            |
|        | M1, A1 $s = \frac{u+v}{2}t = \frac{32}{2}t$ , =16 working for t = 4 to t = 8                          |            |
|        | M1, A1 $s = \frac{u+v}{2}t = \frac{-4}{2}t$ , =-4 working for t = 8 to t = 10                         |            |
|        | M1, A1 total = $32+14+4$ , =52                                                                        |            |

M1 Differentiate to obtain acceleration

DM1 set acceleration. = 0 and solve for t

DM1 use their t to find the value of v

A1 32/3, 10.7oro better

OR using trial an improvement:

M1 Iterative method that goes beyond integer values

M1 Establish maximum occurs for t in an interval no bigger than 2.5<t<3.5

M1 Establish maximum occurs for t in an interval no bigger than 2.6<t<2.8

**A**1

Or M1 Find/state the coordinates of both points where the curve cuts the x axis.

DM1 Find the midpoint of these two values.

M1A1 as above.

Or M1 Convincing attempt to complete the square:

DM1 substantially correct

$$8t - \frac{3t^2}{2} = -\frac{3}{2}(t - \frac{8}{3})^2 + \frac{3}{2} \times \frac{64}{9}$$

DM1 Max value = constant term

A1 CSO

M1 Integrate the correct expression

DM1 Substitute t = 4 to find distance (s=0 when t=0 - condone omission / ignoring of constant of integration)

A1 32(m) only

B1 t = 8 (s) only

M1 Integrate 16-2t

M1 Use t=4, s= their value from (b) to find the value of the constant of integration. or 32 + integral with a lower limit of 4 (in which case you probably see these two marks

occurring with the next two. First A1 will be for 4 correctly substituted.)

A1  $s = 16t - t^2 - 16$  or equivalent

M1 substitute t = 10

A1 44

M1 Substitute t = 8 (their value from (c))

DM1 Calculate total distance (M mark dependent on the previous M mark.)

A1 52 (m)

OR the candidate who recognizes v = 16 - 2t as a straight line can divide the shape into two triangles:

M1 distance for t = 4 to t = candidate's  $8 = \frac{1}{2}x$  change in time x change in speed.

A18-4

A1 8-0

M1 distance for t = their 8 to  $t = 10 = \frac{1}{2}x$  change in time x change in speed.

A1 10-8

A10-(-4)

M1 Total distance = their (b) plus the two triangles (=32 + 16 + 4).

A1 52(m)