Mark Scheme (Results) Summer 2010

GCE

GCE Mechanics M2 (6678/ 01)

Edexcel is one of the leading examining and awarding bodies in the UK and throughout the world. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers.
Through a network of UK and overseas offices, Edexcel's centres receive the support they need to help them deliver their education and training programmes to learners.
For further information, please call our GCE line on 08445760025 , our GCSE team on 0844 576 0027, or visit our website at www.edexcel.com.

If you have any subject specific questions about the content of this Mark Scheme that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

Ask The Expert can be accessed online at the following link:
http:// www.edexcel.com/ Aboutus/ contact-us/

Summer 2010
Publications Code UA024472
All the material in this publication is copyright
© Edexcel Ltd 2010

Summer 2010

Mechanics M2 6678

Mark Scheme

Question Number	Scheme	Marks
Q1	$\begin{aligned} & n \\ & \frac{\mathrm{~d} v}{\mathrm{~d} t}=3 t+5 \\ & v=\int(3 t+5) \mathrm{d} t \\ & v=\frac{3}{2} t^{2}+5 t \quad(+c) \\ & t=0 \quad v=2 \Rightarrow c=2 \\ & v=\frac{3}{2} t^{2}+5 t+2 \\ & t=T \quad 6=\frac{3}{2} T^{2}+5 T+2 \\ & 12=3 T^{2}+10 T+4 \\ & 3 T^{2}+10 T-8=0 \\ & (3 T-2)(T+4)=0 \\ & T=\frac{2}{3} \quad(T=-4) \\ & \left.\therefore T=\frac{2}{3} \quad \text { (or } 0.67\right) \end{aligned}$	M1* A1 B1 DM1* M1 A1

Question Number	Scheme	Marks
Q2 ${ }^{\text {2 }}$		M1 A1 A1 A1
(b)	$\begin{aligned} \mathrm{R}(\uparrow) \quad R & =0.6 g \cos 30 \\ F & =\frac{30.48}{12} \\ F & =\mu R \\ \mu & =\frac{30.48}{12 \times 0.6 g \cos 30} \\ \mu & =0.4987 \\ \mu & =0.499 \text { or } 0.50 \end{aligned}$	B1 B1ft M1 A1 (4) $[8]$

Question Number	Scheme	Marks
Q4 $\begin{aligned} & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \text { (a) }\end{aligned}$	$T=\frac{15000}{20}=750$ R (parallel to road) $\begin{aligned} & T=R+750 g \sin \theta \\ & R=750-750 \times 9.8 \times \frac{1}{15} \\ & R=260 * \end{aligned}$	M1 M1 A1 A1 (4)
(b)	$\begin{aligned} & T^{\prime}=\frac{18000}{20}=900 \\ & T^{*}-260-750 \mathrm{~g} \times \sin \theta=750 \mathrm{a} \\ & a=\frac{900-260-750 \times 9.8 \times \frac{1}{15}}{750} \\ & a=0.2 \end{aligned}$	M1 M1 A1 A1 (4) [8]

Question Number	Scheme	Marks
Q5 (a)	$\begin{align*} \mathbf{I} & =m \mathbf{v}-m \mathbf{u} \\ & =0.5 \times 20 \mathbf{i}-0.5(10 \mathbf{i}+24 \mathbf{j}) \\ & =5 \mathbf{i}-12 \mathbf{j} \\ \|5 \mathbf{i}-12 \mathbf{j}\| & =13 \mathrm{Ns} \tag{4} \end{align*}$	M1 A1 M1 A1
(b)	$\begin{align*} \tan \theta & =\frac{12}{5} \\ \theta & =67.38 \\ \theta & =67.4^{\circ} \tag{2} \end{align*}$	M1 A1
(c)	$\begin{aligned} \text { K.E.lost } & =\frac{1}{2} \times 0.5\left(10^{2}+24^{2}\right)-\frac{1}{2} \times 0.5 \times 20^{2} \\ & =69 \mathrm{~J} \end{aligned}$	M1 A1 A1 (3) [9]

Question Number	Scheme	Marks
Q7 (a)	$\begin{align*} & \text { Vertical motion: } \begin{aligned} v^{2} & =u^{2}+2 a s \\ (40 \sin \theta)^{2} & =2 \times g \times 12 \\ (\sin \theta)^{2} & =\frac{2 \times g \times 12}{40^{2}} \\ \theta & \left.=22.54=22.5^{\circ} \quad \text { (accept } 23\right) \end{aligned} \end{align*}$	M1 A1 A1
(b)	Vert motion $P \rightarrow R: s=u t+\frac{1}{2} a t^{2}$ $\begin{aligned} & -36=40 \sin \theta t-\frac{g}{2} t^{2} \\ & \frac{g}{2} t^{2}-40 \sin \theta t-36=0 \\ & t=\frac{40 \sin 22.54 \pm \sqrt{(40 \sin 22.54)^{2}+4 \times 4.9 \times 36}}{9.8} \\ & t=4.694 \ldots \end{aligned}$ Horizontal P to R: $s=40 \cos \theta t$ $=173 \mathrm{~m} \quad(\text { or } 170 \mathrm{~m})$	M1 A1 A1 A1 M1 A1 (6)
(c)	Using Energy: $\begin{aligned} \frac{1}{2} m v^{2}-\frac{1}{2} m \times 40^{2} & =m \times g \times 36 \\ v^{2} & =2\left(9.8 \times 36+\frac{1}{2} \times 40^{2}\right) \\ v & =48.0 \ldots . \\ v & =48 \mathrm{~m} \mathrm{~s}^{-1} \quad \text { (accept 48.0) } \end{aligned}$	M1 A1 A1 (3) $[12]$

Question Number	Scheme	Marks
Q8 (a) (i) (ii)	Con. of Mom: $\begin{align*} 3 m u-m u & =3 m v+m w \\ 2 u & =3 v+w \tag{1} \end{align*}$ N.L.R: $\begin{align*} \frac{1}{2}(u+u) & =w-v \\ u & =w-v \tag{2}\\ u & =4 v \tag{1}\\ v & =\frac{1}{4} u \end{align*}$ In (2) $\begin{align*} u & =w-\frac{1}{4} u \\ w & =\frac{5}{4} u \tag{7} \end{align*}$	$\begin{aligned} & \text { M1\# A1 } \\ & \text { M1\# A1 } \\ & \text { DM1\# } \\ & \text { A1 } \\ & \text { A1 } \end{aligned}$
(b)	$\begin{aligned} B \text { to wall: N.L.R: } \frac{5}{4} u \times \frac{2}{5} & =V \\ V & =\frac{1}{2} u \end{aligned}$	M1 Alft (2)
(c)	B to wall: \quad time $=4 a \div \frac{5}{4} u=\frac{16 a}{5 u}$ Dist. Travelled by $A=\frac{1}{4} u \times \frac{16 a}{5 u}=\frac{4}{5} a$ In t secs, A travels $\frac{1}{4} u t, B$ travels $\frac{1}{2} u t$ Collide when speed of approach $=\frac{\mathbf{1}}{\mathbf{2}} u t+\frac{\mathbf{1}}{\mathbf{4}} u t$, distance to cover $=$ $4 a-\frac{4}{5} a$ $\therefore t=\frac{4 a-\frac{4}{5} a}{\frac{3}{4} u}=\frac{16 a}{5} \times \frac{4}{3 u}=\frac{64 a}{15 u}$ Total time $=\frac{16 a}{5 u}+\frac{64 a}{15 u}=\frac{112 a}{15 u}$	B1ft B1ft M1\$ DM1\$ A1 A1 (6)

Further copies of this publication are available from Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623467467
Fax 01623450481

Email publications@linneydirect.com
Order Code UA024472 Summer 2010

For more information on Edexcel qualifications, please visit www.edexcel.com/quals

Edexcel Limited. Registered in England and Wales no. 4496750
Registered Office: One90 High Holborn, London, WC1V 7BH

