Mark Scheme (Results)

June 2011

GCE Mechanics M2 (6678) Paper 1

Edexcel is one of the leading examining and awarding bodies in the UK and throughout the world. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers.

Through a network of UK and overseas offices, Edexcel's centres receive the support they need to help them deliver their education and training programmes to learners.

For further information, please call our GCE line on 08445760025 or visit our website at www.edexcel.com.

If you have any subject specific questions about the content of this Mark Scheme that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

Ask The Expert can be accessed online at the following link: http://www.edexcel.com/Aboutus/contact-us/

June 2011
Publications Code UA028440
All the material in this publication is copyright
© Edexcel Ltd 2011

EDEXCEL GCE MATHEMATICS

General Instructions for Marking

1. The total number of marks for the paper is 75 .
2. The Edexcel Mathematics mark schemes use the following types of marks:

- M marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- B marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.

3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes and can be used if you are using the annotation facility on ePEN.

- bod - benefit of doubt
- ft - follow through
- the symbol wifl be used for correct ft
- cao - correct answer only
- cso - correct solution only. There must be no errors in this part of the question to obtain this mark
- isw - ignore subsequent working
- awrt - answers which round to
- SC: special case
- oe - or equivalent (and appropriate)
- dep - dependent
- indep - independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper
- \quad The second mark is dependent on gaining the first mark

J une 2011 6678 Mechanics M2

Mark Scheme

| Question
 Number | | Scheme |
| :---: | :---: | :---: | Marks

Question Number	Scheme	Marks
3. (a)	$\begin{aligned} & \mathbf{I}=m \mathbf{v}-m \mathbf{u} \\ & -4 \mathbf{i}+7 \mathbf{j}=0.5(\mathbf{v}-12 \mathbf{i}) \\ & 4 \mathbf{i}+14 \mathbf{j}=\mathbf{v} \\ & \text { Speed }=\sqrt{16+196}=\sqrt{212} \mathrm{~m} \mathrm{~s}^{-1} \quad(14.6 \text { or better }) \end{aligned}$	M1 A1 M1 A1 (4)
(b)	$\begin{aligned} \tan \theta & =\frac{7}{2} \\ \theta & =74.0 \ldots . \\ \theta & =74^{\circ} \end{aligned}$	M1 A1ft (2)
(c)	$\text { Gain in K.E. }=\frac{1}{2} \times 0.5\left(212-12^{2}\right), \quad=17 \mathrm{~J}$	M1 A1 (2) 8

Question Number	Scheme	Marks
4. (a)	$\begin{aligned} & 8 \times 2 a+1 \times \frac{13}{3} a=9 \bar{x} \\ & \bar{x}=\frac{61}{27} a \quad(2.26 a) \end{aligned}$	B1 B1 M1 A1 (4)
(b)	$\tan \phi=\frac{a}{\frac{61}{27} a}=\frac{27}{61}$ $\phi=23.87 \ldots=24^{\circ} \quad$ (accept 23.9) , 0.417 radians	M1 A1 ft A1 (3)

Question Number	Scheme	Marks
6. (a)	$\begin{aligned} & \xrightarrow[O]{\longrightarrow}(t-4) \\ & \frac{\mathrm{d} v}{\mathrm{~d} t}=t-4 \\ & v=\frac{1}{2} t^{2}-4 t(+c) \\ & t=0 \quad v=6 \quad \Rightarrow c=6 \\ & \therefore v=\frac{1}{2} t^{2}-4 t+6 \end{aligned}$	M1 A1 M1 A1 (4)
(b)	$\begin{aligned} & v=0 \quad 0=t^{2}-8 t+12 \\ & (t-6)(t-2)=0 \\ & t=6 \quad t=2 \end{aligned}$	M1 DM1 A1 (3)
(c)	$\begin{aligned} & x=\frac{t^{3}}{6}-2 t^{2}+6 t+k \\ & x_{6}-x_{2}= \frac{6^{3}}{6}-2 \times 6^{2}+6^{2}+k \\ &-\left(\frac{2^{3}}{6}-2 \times 2^{2}+6 \times 2+k\right) \\ &=-5 \frac{1}{3} \end{aligned}$ \therefore Distance is $5 \frac{1}{3} \mathrm{~m}$	M1 A1 ft DM1 A1
		$\begin{array}{r} (4) \\ 11 \end{array}$

Question Number	Scheme	Marks
7 (a)	$\begin{aligned} & \mathrm{M}(\mathrm{~A}) \quad 3 m g \times 2 a+3 m g x=T \cos \theta \times 4 a \\ &=\frac{12}{5} a T \\ & \frac{12}{5} a T=6 m g a+3 m g x \\ & T=\frac{25}{4} m g \quad \frac{12}{5} a \times \frac{25}{4} m g=6 m g a+3 m g x \\ & 15 a=6 a+3 x \\ & x=3 a \quad * * \end{aligned}$	M1 A2,1,0 M1 A1 (5)
(b)	$\begin{aligned} \mathrm{R}(\rightarrow) \quad R & =T \sin \theta \\ & =\frac{25}{4} m g \times \frac{4}{5} \\ & =5 m g \quad * * \end{aligned}$	M1 A1 A1 (3)
(c)	$\begin{gathered} \mathrm{R}(\uparrow) \quad F+\frac{25}{4} m g \times \frac{3}{5}=3 m g+3 m g \\ F=6 m g-\frac{15}{4} m g=\frac{9}{4} m g \\ \mu=\frac{F}{R}=\frac{\frac{9}{4} m g}{5 m g}=\frac{9}{20} \end{gathered}$	M1 A2,1,0 DM1 A1

