

Mark Scheme (Results)

Summer 2016

Pearson Edexcel International A Level in Mechanics 2 (WME02/01)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <u>www.edexcel.com</u> or <u>www.btec.co.uk</u>. Alternatively, you can get in touch with us using the details on our contact us page at <u>www.edexcel.com/contactus</u>.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2016 Publications Code WME02_01_1606_MS All the material in this publication is copyright © Pearson Education Ltd 2016

General Marking Guidance

• All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.

• Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.

• Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.

• There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.

• All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.

• Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.

• Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

PEARSON EDEXCEL IAL MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 75.
- 2. The Edexcel Mathematics mark schemes use the following types of marks:

<u>`M' marks</u>

These are marks given for a correct method or an attempt at a correct method. In Mechanics they are usually awarded for the application of some mechanical principle to produce an equation.

e.g. resolving in a particular direction, taking moments about a point, applying a suvat equation, applying the conservation of momentum principle etc. The following criteria are usually applied to the equation.

To earn the M mark, the equation

(i) should have the correct number of terms

(ii) be dimensionally correct i.e. all the terms need to be dimensionally correct e.g. in a moments equation, every term must be a 'force x distance' term or 'mass x distance', if we allow them to cancel 'g' s.

For a resolution, all terms that need to be resolved (multiplied by sin or cos) must be resolved to earn the M mark.

M marks are sometimes dependent (DM) on previous M marks having been earned. e.g. when two simultaneous equations have been set up by, for example, resolving in two directions and there is then an M mark for solving the equations to find a particular quantity – this M mark is often dependent on the two previous M marks having been earned.

<u>`A' marks</u>

These are dependent accuracy (or sometimes answer) marks and can only be awarded if the previous M mark has been earned. E.g. M0 A1 is impossible.

<u>'B' marks</u>

These are independent accuracy marks where there is no method (e.g. often given for a comment or for a graph)

A few of the A and B marks may be f.t. – follow through – marks.

3. General Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol $\sqrt{}$ will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- dep dependent
- indep independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper
- The second mark is dependent on gaining the first mark
- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- 6. If a candidate makes more than one attempt at any question:
 - If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
 - If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.
- 7. Ignore wrong working or incorrect statements following a correct answer.

General Principles for Mechanics Marking

(But note that specific mark schemes may sometimes override these general principles)

- Rules for M marks: correct no. of terms; dimensionally correct; all terms that need resolving (i.e. multiplied by cos or sin) are resolved.
- Omission or extra g in a resolution is an accuracy error not method error.
- Omission of mass from a resolution is a method error.
- Omission of a length from a moments equation is a method error.
- Omission of units or incorrect units is not (usually) counted as an accuracy error.
- DM indicates a dependent method mark i.e. one that can only be awarded if a previous specified method mark has been awarded.
- Any numerical answer which comes from use of g = 9.8 should be given to 2 or 3 SF.
- Use of g = 9.81 should be penalised once per (complete) question.

N.B. Over-accuracy or under-accuracy of correct answers should only be penalised *once* per complete question. However, premature approximation should be penalised every time it occurs.

Marks must be entered in the same order as they appear on the mark scheme.

- In all cases, if the candidate clearly labels their working under a particular part of a question i.e. (a) or (b) or (c),.....then that working can only score marks for that part of the question.
- Accept column vectors in all cases.
- Misreads if a misread does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, bearing in mind that after a misread, the subsequent A marks affected are treated as A ft
- Mechanics Abbreviations
 - M(A) Taking moments about A.
 - N2L Newton's Second Law (Equation of Motion)
 - NEL Newton's Experimental Law (Newton's Law of Impact)
 - HL Hooke's Law
 - SHM Simple harmonic motion
 - PCLM Principle of conservation of linear momentum
 - RHS, LHS Right hand side, left hand side.

June 2016 IAL WME02 Mark Scheme

Scheme	Marks	6
Impulse-momentum equation: $(-4\mathbf{i} + 3\mathbf{j}) = 3(\mathbf{v} - (3\mathbf{i} + 5\mathbf{j}))$	M1A1	
$\mathbf{v} = \frac{5}{3}\mathbf{i} + 6\mathbf{j}$	A1	
Find the magnitude: speed = $\sqrt{\left(\frac{5}{3}\right)^2 + 6^2} = 6.23 \text{ (m s}^{-1}\text{)} (6.2 \text{ or better})$	M1A1	(5)
Gain in KE = $\frac{m}{2} (\mathbf{v} ^2 - \mathbf{u} ^2) = \frac{3}{2} ((\text{their } 6.23)^2 - (3^2 + 5^2))$	M1A1 f	ť
= 7.17 (J) (7.2 or better) (must be +ve)	A1	(3)
		[8]
Notes		
First M1 for $\pm (-4\mathbf{i} + 3\mathbf{j}) = 3(\mathbf{v} - (3\mathbf{i} + 5\mathbf{j}))$ (M0 if 3 omitted or wrong		
mass used or term omitted)		
First A1 for a correct equation		
Second A1 for a correct v		
Second M1 for finding the magnitude of their \mathbf{v}		
Third A1 for $\frac{\sqrt{349}}{3}$, 6.2 or better.		
M1 for $\pm \frac{3}{2}((their 6.23)^2 - (3^2 + 5^2))$ (M0 if 3 omitted or wrong mass		
used or term omitted)		
Also M0 for $\pm \frac{3}{2} \left\{ \left(\frac{5}{3}\mathbf{i} + 6\mathbf{j} \right)^2 - \left(3\mathbf{i} + 5\mathbf{j} \right)^2 \right\}$ unless it becomes		
$+\frac{3}{3}\left\{\left(\left(\frac{5}{2}\right)^2+6^2\right)-\left(3^2+5^2\right)\right\}$		
First A1ft on their v for a correct expression		
Second A1 for 43/6 oe, 7.2 or better.		
	Scheme Impulse-momentum equation: $(-4\mathbf{i} + 3\mathbf{j}) = 3(\mathbf{v} - (3\mathbf{i} + 5\mathbf{j}))$ $\mathbf{v} = \frac{5}{3}\mathbf{i} + 6\mathbf{j}$ Find the magnitude: speed = $\sqrt{\left(\frac{5}{3}\right)^2 + 6^2} = 6.23 \text{ (m s}^{-1}) (6.2 \text{ or better})$ Gain in KE = $\frac{m}{2}(\mathbf{v} ^2 - \mathbf{u} ^2) = \frac{3}{2}((\text{their } 6.23)^2 - (3^2 + 5^2))$ = 7.17 (J) (7.2 or better) (must be +ve) = 7.17 (J) (7.2 or better) (MO if 3 omitted or wrong mass used or term omitted) Also M1 for finding the magnitude of their v Third A1 for $\frac{\sqrt{349}}{3}$, 6.2 or better. M1 for $\pm \frac{3}{2}((\frac{1}{2}\mathbf{i}\mathbf{i}+6\mathbf{j})^2 - (3\mathbf{i}+5\mathbf{j})^2)$ unless it becomes $\pm \frac{3}{2}\left\{(\frac{3}{2}\mathbf{i}\mathbf{i}+6\mathbf{j})^2 - (3\mathbf{i}+5\mathbf{j})^2\right\}$ First A1ft on their v for a correct expression Second A1 for 43/6 oe, 7.2 or better.	SchemeMarketImpulse-momentum equation: $(-4\mathbf{i} + 3\mathbf{j}) = 3(\mathbf{v} - (3\mathbf{i} + 5\mathbf{j}))$ M1A1 $\mathbf{v} = \frac{5}{3}\mathbf{i} + 6\mathbf{j}$ A1Find the magnitude: speed = $\sqrt{\left(\frac{5}{3}\right)^2 + 6^2} = 6.23 \text{ (m s}^{-1}) (6.2 \text{ or better})$ M1A1Gain in KE = $\frac{m}{2}(\mathbf{v} ^2 - \mathbf{u} ^2) = \frac{3}{2}((\text{their } 6.23)^2 - (3^2 + 5^2))$ M1A1 f $= 7.17 \text{ (J)} (7.2 \text{ or better}) \text{ (must be +ve)}$ A1A1 $= 7.17 \text{ (J)} (7.2 \text{ or better}) \text{ (must be +ve)}$ A1 $= 7.17 \text{ (J)} (7.2 \text{ or better}) \text{ (must be +ve)}$ A1 $= 7.17 \text{ (J)} (7.2 \text{ or better}) \text{ (must be +ve)}$ A1 $= 7.17 \text{ (J)} (7.2 \text{ or better}) \text{ (must be +ve)}$ A1 $= 7.17 \text{ (J)} (7.2 \text{ or better}) \text{ (must be +ve)}$ A1 $= 7.17 \text{ (J)} (7.2 \text{ or better}) \text{ (must be +ve)}$ A1 $= 7.17 \text{ (J)} (7.2 \text{ or better}) \text{ (must be +ve)}$ A1 $= 7.17 \text{ (J)} (7.2 \text{ or better}) \text{ (must be +ve)}$ A1 $= 7.17 \text{ (J)} (7.2 \text{ or better}) \text{ (must be +ve)}$ A1 $= 7.17 \text{ (J)} (7.2 \text{ or better}) \text{ (must be +ve)}$ A1 $= 7.17 \text{ (J)} (7.2 \text{ or better}) \text{ (must be +ve)}$ A1 $= 7.17 \text{ (J)} (7.2 \text{ or better}) \text{ (must be +ve)}$ A1 $= 7.17 \text{ (J)} (7.2 \text{ or better}) \text{ (must be +ve)}$ A1 $= 7.17 \text{ (J)} (7.2 \text{ or better}) \text{ (must be +ve)}$ A1 $= 7.17 \text{ (J)} (7.2 \text{ or better})$ Second A1 for $4.2 \text{ (-} (3i + 5j)^2)$ $= 8.2 (Lep (F) (-3) (-3) (-3) (-3) (-3) (-3) (-3) (-3$

Question Number	Scheme	Ма	rks
2a	$F = \frac{10000}{15}$	B1	
	Use of " $F = ma$ ": $F - R = 1800 \times 0.25 (= 450)$ with their F	M1A	1 ft
	$R = \frac{10000}{15} - 450 = 220 \text{ or better }, 650/3 \text{ oe } (216.6)$	A1	(4)
2b	$F = \frac{12000}{V}$	B1	
	Moving at constant speed: $D = mg\sin\theta + 30V$	M1	
	$\frac{12000}{V} = 1800g \times \frac{1}{14} + 30V$	A2	
	Quadratic in V: $30V^2 + 1260V - 12000 = 0$		
	Solve for V: $V^2 + 42V - 400 = 0 = (V + 50)(V - 8)$	M1	
	V = 8	A1	(6)
			[10]
	Notes		
	B1 for $(F) = \frac{10000}{15}$ seen or implied. B0 for $\frac{10}{15}$		
2a	M1 for resolving horizontally		
	First A1 ft for a correct equation with their F		
	Second A1 for 650/3 oe, 220 or better i.e. 217, 216.7,		
	BI for $(D) = 12000/v$ seen of implied. B0 for $12/v$ First M1 for resolving parallel to the plane with $a = 0$ but neither D nor		
	sin α need to be substituted.		
21	First A1 and Second A1 for an equation in V only, A1A0 if one error.		
20	Second M1 for solving a 3-term quadratic in V by attempting to		
	factorise or use the formula; this M mark can be implied by a correct		
	answer but an incorrect answer scores M0A0.		
	NB Penalise use of kW ONCE per question		

Question Number	Scheme	Mar	ks
3a	Loss in GPE : $3mgd - 2mg \times d\sin\theta = 3mgd - \frac{4}{5}mgd$	M1A1	-
	$d = \frac{11}{5}mgd *Given answer*$	A1	(3)
3b	Must be using work-energy $\frac{1}{2} \times 2mv^2 + \frac{1}{2} \times 3mv^2 + \frac{3}{5}mgd = \frac{11}{5}mgd$	M1A2	2
	$v^2 = \frac{16}{25}gd$	A1	(4)
3c	Use of $s = \frac{u+v}{2}t$ or equivalent: $1.5 = \frac{(0+\sqrt{\frac{24g}{25}})}{2}T$	M1	
	$T = 0.98 \text{ or } 0.978 \text{ or } 5\sqrt{30}/28$	A1	(2)
	Notes		L- J
3 a	M1 for $\pm(3mgd - 2mgdsin q)$ (allow if cos used instead of sin) First A1 for a correct unsimplified expression in $\pm mgd$ Second A1 for given positive answer		
3b	First M1 for a dimensionally correct work-energy equation, with all 4 terms as above, if they use the answer from (a), OR : $\frac{1}{2} \cdot 2mv^2 + \frac{1}{2} \cdot 3mv^2 + \frac{3}{5}mgd + 2mgd \sin q = 3mgd$ i.e. all 5 terms if they don't, but condone sign errors. (<u>M0 if incorrect no. of terms</u>) First A1 and Second A1 for a correct equation, A1A0 if one error. Third A1 for $\frac{16gd}{25}$ oe or 6.3 <i>d</i> or 6.27 <i>d</i>		
3c	M1 for a complete method to give an equation in <i>T</i> only. (M0 if they just assume a value for <i>a</i> e.g. $a = 0$ or <i>g</i>) A1 for 0.98 or 0.978 or $15/\sqrt{(24g)}$ oe		

Question Number	Scheme	Ma	arks
4a	Mass ratios: $18a^2$, $9a^2$, $27a^2$	B1	
	Centres of mass: $\frac{3}{2}a$, $4a$, \overline{x} from AE	B1	
	Moments about AE: $18a^2 \times \frac{3}{2}a + 9a^2 \times 4a = 27a^2 \times \overline{x}$	M1A	A 1
	$\overline{X} = \frac{7a}{3}$	A1	(5)
4b	Moments about A: $4g \cdot \overline{x} = 6aF$	M1	A1ft
	Vertical component (Y) of force at $A = 4g$	B1	
	Force at A: $\sqrt{Y^2 + Y^2}$	M1	
	$\frac{1}{1} = 42.1 \text{ (N) or } 42 \text{ (N)}$	A1	(5)
		[10]	
	Notes		
4 a	First B1 allow any correct ratios i.e. do not need a^2 Second B1 could be scored if distances consistently measured from somewhere else. First M1 for attempt at correct moments equation with correct no. of terms and condone sign errors First A1 for a correct equation Second A1 for $7a/3$, $2.3a$, $2.33a$, or better		
4b	First M1 for a moments equation (could be about <i>A</i> , <i>B</i> , <i>C</i> , <i>D</i> or <i>E</i>), dim correct with correct no. of terms etc and allow sign errors First A1 ft for a correct equation with their \overline{x} First B1 for vert component (<i>Y</i>) = 4 <i>g</i> seen Second M1, independent but must have found an <i>X</i> and a <i>Y</i> , for attempt at magnitude $\sqrt{X^2 + Y^2}$, using their <i>X</i> and <i>Y</i> Second A1 $\frac{2g\sqrt{373}}{9}$ or 42 (N) or 42.1 (N). N.B. Note that <i>X</i> = <i>F</i> Possible moments equations: $M(A): 4g\overline{x} = 6aF$ $M(B): 4g(3a - \overline{x}) + 6aF = 3aY$ $M(C): 4g(6a - \overline{x}) + 3aF + 3aX = 6aY$ $M(D): 4g(3a - \overline{x}) + 6aX = 3aY$ $M(E): 4g\overline{x} = 6aX$		

Question Number	Scheme	Mai	ks
5a	Moments about A: $6g(\times 1) \times \sin 70 = T \sin 30 \times 2$	M1A2	2
	T = 55.3(N) or 55 (N)	A1	(4)
5b	Resolve horizontally: $T\cos 50 = R(=35.5)$	B1 ft	
	Resolve vertically: $T\sin 50 = 6g \pm F$	M1A	l ft
	$ F = 16.5 \ (16.473)$		
	Use $F = \mu R$: $\mu = \frac{6g - T\sin 50}{T\cos 50}$ (with their values)	M1	
	= 0.464 or 0.46	A1	(5)
	-1(35.5)		
5c	Use of tan and their components: tan $\left(\frac{16.5}{16.5}\right)$	MI	
	$= 65.1^{\circ}$ or 65° to the upward vertical	A1	(2)
	or equivalent (24.9° or 25° above the	[11]	
	horizontal)		
	Notes		
	First M1 for a complete method to find <i>T</i> , with usual rules, correct no. of		
_	terms, allow sin/cos confusion, dim correct (missing g is an A error) and		
5a	allow incorrect angles.		
	Third A1 for 55 (N) or 55 3 (N)		
	First B1 ft for resolving horizontally (<i>T</i> does not need to be substituted)		
	First M1 for resolving vertically with usual rules, must be using 40° or		
	50°		
	First A1 ft for a correct equation (<i>T</i> does not need to be substituted)		
51	Second M1, independent, for use of $F = \mu R$, must have found an F and		
50	$\frac{dII}{R}$		
	N B They may resolve in other directions e_{α} along the rod or		
	perpendicular to the rod or take moments e.g. about B or C		
	First B1 for a correct equation seen		
	M1A1 for the better equation seen, usual rules etc.		
50	First M1 for a complete method to find the angle (must have found the		
	two components) with either the horizontal or vertical		
	First A1 for 65° or 65.1° to the upward vertical oe (A0 for just an angle)		
	Or the angle marked on a clear diagram with an arrow.		
<u> </u>			

Question Number	Scheme	Marks
6a	Horizontal distance: $x = 7t$	B1
	Vertical distance : $y = 7\sqrt{3} t - \frac{1}{2} gt^2$	M1A1
	Sub for t: $y = 7\sqrt{3} \times \frac{x}{7} - \frac{g}{2} \times \frac{x^2}{49} = \sqrt{3}x - \frac{g}{98}x^2$ *Given Answer*	DM 1A1 (5)
6b	Differentiate to find gradient: $\frac{dy}{dx} = \sqrt{3} - \frac{2gx}{98}$	M1A1
	Sub $x = 20$ & use tan: $\tan^{-1}\left(\sqrt{3} - \frac{40g}{98}\right)$	DM 1
	$= 66.2^{\circ}$ or 66° below the horizontal oe	A1 (4)
	Or : in the direction of (parallel to is A0) $(7\mathbf{i} - 16\mathbf{j})$ or $(7\mathbf{i} - 15.9\mathbf{j})$	
6balt	$x = 20 = 7t \Longrightarrow t = \frac{20}{7}$	M1
	Vertical cpt = $7\sqrt{3} - \frac{20}{7}g$	A1
	$Q = \tan^{-1} \left(\frac{7\sqrt{3} - \frac{20g}{7}}{7} \right) = -66.2^{\circ}; \ 66^{\circ} \text{ below the horizontal oe}$	DM 1A1 (4)
6с	Use the x/y ratio to form an equation in T: $7T = 14\sqrt{3}T - gT^2$ Solve for T: $T = \frac{14\sqrt{3} - 7}{4\sqrt{3} - 7}(-1.8) = (1.76)$	M1A1 DM 1A1
	Solve for T . $T = \frac{g}{g} (=1.8)^{-1} (1.70)^{-1}$	(4)
	$/ = 2/\sqrt{3} - \frac{g}{98}(2/)^2$	M1A1
6c alt	$T = \frac{27}{7} = 1.76$	DM 1A1 (4)
		[13]
	Notes \mathbf{N}	
6a	B1 for $x = 7t^{-1}$ seen of implied M1 for vertical motion equation $y = 7\sqrt{3t} - 1/2 gt^{2}$ need correct no. of terms, but condone sign errors First A1 for a correct equation Second DM 1, dependent on first M1, for substituting for t Second A1 for given answer .	

Question Number	Scheme	Marks
6b	First M1 for attempt to differentiate path equation (both powers going	
	down)	
	First A1 for a correct expression Second DM1 dependent on first M1 for putting $r = 20$ and using \tan^{-1}	
	to obtain an angle	
	Second A1 for 66° or 66.2° below the horizontal or 24° or 23.8° to the	
	downward vertical	
	OR the angle marked on a clear diagram with an arrow	
	First M1 for using $x = 20$ in horizontal motion equa to obtain $t = 20/7$	
	and using $v = u + at$ to obtain vertical speed or any other complete	
	method e.g. put $x = 20$ in equation of path to obtain y, which is then	
	Used in $v^2 = u^2 + 2as$ vertically to obtain vertical speed. First A1 for a correct expression for vertical speed	
	Second \mathbf{DM}_1 dependent on first M1 for using ratio of components and	
6balt	\tan^{-1} to obtain an angle	
	OR finding the velocity vector <u>AND</u> referring to its direction ('parallel	
	to' can score M1 but not the A1).	
	Second A1 for 66^0 or 66.2^0 below the horizontal or in the direction of	
	(parallel to is M1A0) $(7\mathbf{i} - 16\mathbf{j})$ or $(7\mathbf{i} - 15.9\mathbf{j})$ or a multiple.	
	First M1 for using $\frac{27}{7} = \frac{7T}{7\sqrt{3}T - 4.9T^2}$ to obtain an equation in <i>T</i> only	
	Allow M1 if they have the reciprocal of RHS.	
6c	First A1 for a correct equation	
	Second DM 1 for solving the equation for <i>T</i> (N.B. if incorrect answer,	
	need to see at least one line of working for this DM mark)	
	Second A1 for $T = 1.76$ or 1.8	
	First M1 for using the point $(27, 7)$ and the path equation to obtain an	
	equation in $/$ only (or x)	
	First A1 for a correct equation Second DM1 for solving for $\int dr r$ and using it to obtain a value for T	
	Second A1 for $T = 1.76$ or 1.8	
	N.B. Allow interchange of $/$ and $2/$ for the method marks.	
oc alt		

Question Number	Scheme	Marks
7a	$ \begin{array}{c} 3 \text{ m s}^{-1} \\ \longrightarrow \\ A(m) \\ \longrightarrow \\ v \\ \end{array} \begin{array}{c} 2 \text{ m s}^{-1} \\ \longrightarrow \\ B(2m) \\ 1 \\ 2 \\ y \\ \end{array} \begin{array}{c} 1 \\ 1 \\ 2 \\ w \\ \end{array} \end{array} $	
	CLM: $3m + 4m = mv + 2mw$ $(7 = v + 2w)$	M1A1
	Impact: $w - v = \frac{2}{3}(3-2)$	M1A1
	Solve for <i>w</i> : $w = \frac{23}{9}$ *Given answer*	M1 A1
	$v = \frac{17}{9}$	A1 (7)
7Ь	3 m $\xrightarrow{23}{9} $ $\xrightarrow{d \text{ m}}$ $\xrightarrow{(3-d) \text{ m}} \xrightarrow{(3-d) \text{ m}} \xrightarrow{d \text{ m}}$	
	Speed of <i>B</i> after hitting wall = $\frac{23}{18}$ (m s ⁻¹)	B1
	Time for <i>B</i> to get to the 2 nd collision $= \frac{3}{\frac{23}{9}} + \frac{d}{\frac{23}{18}}$	M1 A1
	Time for A to get to the 2 nd collision = $\frac{3-d}{\frac{17}{9}}$	A1
	Equate times to give equation in <i>d</i> only: $\frac{3}{\frac{23}{9}} + \frac{d}{\frac{23}{18}} = \frac{3-d}{\frac{17}{9}}$	M1A1
	$d = \frac{6}{19}$ (0.32 or better)	A1 (7)

Question Number	Scheme	Mark	S
Alt 7b	Speed of <i>B</i> after hitting wall = $\frac{23}{18}$ (m s ⁻¹)		B1
	Time for <i>B</i> to reach wall $=\frac{3}{\frac{23}{9}}$		M1
	Dist travelled by A in this time $=\frac{17}{9} - \frac{3}{\frac{23}{9}} = \frac{51}{23}$ (m)	A1	
	Dist between A and B now $=3-\frac{51}{23}=\frac{18}{23}$ (m)	A1	
	Gap closing at $\frac{23}{18} + \frac{17}{9} = \frac{19}{6}$ (m s ⁻¹)		
	Time to meet $=\frac{18}{23} \div \frac{19}{6} = \frac{18}{23} \times \frac{6}{19}$	M1A1	
	$d = \left(\frac{18}{23} \cdot \frac{6}{19}\right) \cdot \frac{23}{18} = \frac{6}{19} = 0.32 \text{ (or better)}$	A1	(7)
			[14]
	Notes		
7a	First M1 for momentum equn with correct terms, condone sign errors, consistent extra g's or missing m's First A1 for a correct equation in v and w only Second M1 for Impact Law, correct way up, condone sign errors Second A1 for a correct equation in v and w only Third M1 for solving for w Third A1 for $w = 23/9$ Given answer Fourth A1 for $v = 17/9$ Accept 1.9 or better N.B. Treat this as a B1, dependent on scoring the first 4 marks.		
7b	First B1 for 23/18 seen Accept 1.3 or better First M1 for attempt at a complete expression, in <i>d</i> only, for time for <i>B</i> to arrive at 2 nd collision, must be $(\frac{3}{\frac{23}{9}} + \frac{d}{\frac{23}{18}})$ First A1 for a correct expression Second A1 for time for <i>A</i> to get to collision $\frac{3-d}{\frac{17}{9}}$ Second M1 for equating the times; must be 3 terms Third A1 for a correct equation Fourth A1 for <i>d</i> = 6/19 oe or 0.32 or better		
Alt 7b	First B1 for (-)23/18 seen Accept 1.3 or better First M1 for $\frac{3}{\frac{23}{9}}$ which is time for <i>B</i> to reach wall. Allow if they try to divide or the division is implied even if it is done incorrectly. First A1 for 51/23 oe and accept 2.2 or better Second A1 for (3 – 51/23) oe and accept 0.8 or better. Second M1 for time to meet = (a calculated 'separation distance' / (²³ / ₁₈ + their <i>v</i>)) Third A1 for a correct time (108/437 oe) accept 0.25 or better		

Question Number	Scheme	Marks
	Fourth A1 for $d = 6/19$ oe or 0.32 or better	
	Final 3 marks using a ratio approach:	
	Second M1 for attempt at $\frac{\frac{23}{18}}{\text{their }v} = \frac{d}{(\frac{18}{23} - d)}$ correct way up Third A1 for a correct equation Fourth A1 for $d = 6/19$ oe or 0.32 or better	

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London, WC2R 0RL, United Kingdom