Pearson
 Edexcel

Mark Scheme (Results)

January 2021

Pearson Edexcel IAL In Mechanics 1 Paper WME01/01

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

January 2021
Publications Code WME01_01_2021_MS
All the material in this publication is copyright
© Pearson Education Ltd 2021

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

PEARSON EDEXCEL IAL MATHEMATICS

General Instructions for Marking

1. The total number of marks for the paper is 75 .
2. The Edexcel Mathematics mark schemes use the following types of marks:
'M' marks
These are marks given for a correct method or an attempt at a correct method. In Mechanics they are usually awarded for the application of some mechanical principle to produce an equation.
e.g. resolving in a particular direction, taking moments about a point, applying a suvat equation, applying the conservation of momentum principle etc.
The following criteria are usually applied to the equation.
To earn the M mark, the equation
(i) should have the correct number of terms
(ii) be dimensionally correct i.e. all the terms need to be dimensionally correct
e.g. in a moments equation, every term must be a 'force x distance' term or 'mass x distance', if we allow them to cancel ' g ' s.
For a resolution, all terms that need to be resolved (multiplied by sin or cos) must be resolved to earn the M mark.
M marks are sometimes dependent (DM) on previous M marks having been earned. e.g. when two simultaneous equations have been set up by, for example, resolving in two directions and there is then an M mark for solving the equations to find a particular quantity - this M mark is often dependent on the two previous M marks having been earned.
' A^{\prime} ' marks
These are dependent accuracy (or sometimes answer) marks and can only be awarded if the previous M mark has been earned. E.g. M0 A1 is impossible.
'B' marks
These are independent accuracy marks where there is no method (e.g. often given for a comment or for a graph)

A few of the A and B marks may be f.t. - follow through - marks.
3. General Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod - benefit of doubt
- ft - follow through
- the symbol $\sqrt{ }$ will be used for correct ft
- cao - correct answer only
- cso - correct solution only. There must be no errors in this part of the question to obtain this mark
- isw - ignore subsequent working
- awrt - answers which round to
- SC: special case
- oe - or equivalent (and appropriate)
- dep - dependent
- indep - independent
- dp decimal places
- sf significant figures
- $\boldsymbol{*}$ The answer is printed on the paper
- The second mark is dependent on gaining the first mark

4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
6. If a candidate makes more than one attempt at any question:

- If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
- If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.

7. Ignore wrong working or incorrect statements following a correct answer.

General Principles for Mechanics Marking

(But note that specific mark schemes may sometimes override these general principles)

- Rules for M marks: correct no. of terms; dimensionally correct; all terms that need resolving (i.e. multiplied by cos or sin) are resolved.
- Omission or extra g in a resolution is an accuracy error not method error.
- Omission of mass from a resolution is a method error.
- Omission of a length from a moments equation is a method error.
- Omission of units or incorrect units is not (usually) counted as an accuracy error.
- DM indicates a dependent method mark i.e. one that can only be awarded if a previous specified method mark has been awarded.
- Any numerical answer which comes from use of $g=9.8$ should be given to 2 or 3 SF .
- Use of $\mathrm{g}=9.81$ should be penalised once per (complete) question.
N.B. Over-accuracy or under-accuracy of correct answers should only be penalised once per complete question. However, premature approximation should be penalised every time it occurs.
- Marks must be entered in the same order as they appear on the mark scheme.
- In all cases, if the candidate clearly labels their working under a particular part of a question i.e. (a) or (b) or (c),......then that working can only score marks for that part of the question.
- Accept column vectors in all cases.
- Misreads - if a misread does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, bearing in mind that after a misread, the subsequent A marks affected are treated as A ft
- Mechanics Abbreviations
$M(A)$ Taking moments about A.
N2L Newton's Second Law (Equation of Motion)
NEL Newton's Experimental Law (Newton's Law of Impact)
HL Hooke's Law
SHM Simple harmonic motion
PCLM Principle of conservation of linear momentum
RHS, LHS Right hand side, left hand side.

Question Number	Scheme	Marks
1(a)	$v^{2}=20^{2}-2 g \times(-3)$	M1
	$v=21$ or $21.4\left(\mathrm{~m} \mathrm{~s}^{-1}\right)$	A1 (2)
1(b)	Complete method to find the total time: e.g. either: $-5=20 t-\frac{1}{2} g t^{2} \quad$ using one equation or: $\begin{aligned} & 0=20-g t_{1}\left(\Rightarrow t_{1}=\frac{100}{49}=2.040816 . .\right) \\ & s_{1}=\left(\frac{20+0}{2}\right) t_{1}\left(=\frac{1000}{49}=20.40816 \ldots\right) \\ & \left(\text { or } s_{1}=20 t_{1}-\frac{1}{2} g t_{1}^{2}\right) \\ & 25.408 . .=\frac{1}{2} g t_{2}^{2}\left(\Rightarrow t_{2}=2.2771 . .\right) \\ & t=t_{1}+t_{2}=4.31795 . . \end{aligned}$ using four equations and many other methods	M1
	There are two A marks for all the equations they use, -1 each error N.B. The second M mark should be treated as an A mark	A1 M(A) 1
	$t=4.3$ or 4.32 (s)	A1
		(6)
	Notes for question 1	
1(a)	M1 Complete method to find the speed, must be using 3 or -3 (Allow 9.81 for g or just g), condone sign errors	
	A1 Correct answer (Must have used 9.8 and be positive)	
1(b)	M1 Complete method to find the total time, condone sign errors	
	A1 M(A)1 There are now two A marks for the equation(s) that they use, -1 for each error. (Allow 9.81 for g or just g)	
	A1 Correct answer (Must have used 9.8)	
	N.B. No isw for this question e.g. If they had the correct quadratic but went on to add the roots, this would lose the M mark.	

Question Number	Scheme	Marks
2.		
2(a)	For P: $\quad-5 m u=2 m(v-3 u)$	M1A1
	$v=\frac{1}{2} u$	A1 (3)
2(b)	For $Q: \quad 5 m u=m(w-(-2 u))$	M1A1
	$w=3 u$	A1 (3)
	OR: CLM: $2 m \times 3 u-m \times 2 u=2 m \times \frac{1}{2} u+m w \quad$ M1A1	
	$w=3 u \quad$ A1	(6)
	Notes for question 2	
2(a)	M1 Dimensionally correct imp-momentum equation (M0 if g is included), with correct terms, condone sign errors, but must be a difference of momenta and must be using $2 m$ to give an equation in v only.	
	A1 Correct equation	
	A1 cao (must be positive)	
2(b)	M1 Dimensionally correct imp-momentum equation (M0 if g is included), with correct terms, condone sign errors, but must be a difference of momenta and must be using m to give an equation in w only.	
	A1 Correct equation	
	A1 cao (must be positive)	
	OR: M1 Dimensionally correct CLM equation (Allow consistent extra g's or cancelled m 's), with correct terms, condone sign errors, to give an equation in w only. N.B. They may find w first and use CLM to find v.	
	N.B. Mark parts (a) and (b) together if necessary.	

Question Number	Scheme	Marks
3.	(\uparrow) $R+200 \sin 15^{\circ}+T \sin 25^{\circ}=20 g$	M1A2
	$(\leftarrow) 200 \cos 15^{\circ}-T \cos 25^{\circ}-F=0$	M1A2
	$F=0.3 R$	B1
	Solving for T (192.31..)	DM1
	$T=190$ or 192	A1
		(9)
	Notes for question 3	
	M1 Resolving vertically, correct no. of terms, condone sign errors and $\mathrm{sin} / \mathrm{cos}$ confusion.	
	A2 Correct equation, -1 each error.	
	M1 Resolving horizontally, correct no. of terms, condone sign errors and $\mathrm{sin} / \mathrm{cos}$ confusion.	
	A2 Correct equation, -1 each error.	
	B1 $F=0.3 R$ seen anywhere, e.g. on a diagram	
	DM1 Dependent on previous two M marks for solving for T	
	A1 cao (allow units)	
	N.B. For the first two M marks, forces and angles must be paired up correctly but allow slips.	

Question Number	Scheme	Marks
4.	$M(D), \quad 900 \times 5=W(5-x)$ Other possible equations: $\begin{aligned} & (\uparrow), 900+R_{D}=W \\ & \mathrm{M}(A), W x=5 R_{D} \\ & \mathrm{M}(B),(900 \times 6)+\left(R_{D} \times 1\right)=W(6-x) \\ & \mathrm{M}(C),(900 \times 1)+W(x-1)=4 R_{D} \\ & \mathrm{M}(G), 900 x=R_{D}(5-x) \end{aligned}$ BUT R_{D} then needs to be eliminated to produce an equation in W and x only in order to earn the M mark. N.B. M0 if they never put $R_{C}=0$ Allow consistent use of $M g$ for W	M1A1
	$M(C), \quad 1500 \times 5=W(x-1)$ Other possible equations: (\uparrow), $1500+R_{C}=W$ $\mathrm{M}(A),(1500 \times 6)+\left(R_{C} \times 1\right)=W x$ $\mathrm{M}(B), W(6-x)=5 R_{C}$ $\mathrm{M}(D), W(5-x)+(1500 \times 1)=4 R_{C}$ $\mathrm{M}(G), 1500(6-x)=R_{C}(x-1)$ BUT R_{C} then needs to be eliminated to produce an equation in W and x only in order to earn the M mark. N.B. M0 if they never put $R_{D}=0$ Allow consistent use of $M g$ for W	M1A1
	Solving for x	DM1
	$x=3.5$	A1
		(6)
	Notes for question 4	
	M1 For an equation in W and one unknown length. Correct no. of terms, dim correct but condone sign errors. An extra g on one side is an A error.	
	A1 Correct equation	
	M1 For an equation in W and the same unknown length. Correct no. of terms, dim correct but condone sign errors. An extra g on one side is an A error.	
	A1 Correct equation	
	DM1 Solving for x, dependent on the two previous M marks.	
	A1 cao with no wrong working seen.	

Question Number	Scheme	Marks
5(i)	$\mathbf{R}=\mathbf{F}+\mathbf{G}$	
	$R^{2}=8^{2}+10^{2}-2 \times 8 \times 10 \cos 120^{\circ} \text { oe }$ OR: $\quad R^{2}=8^{2}+10^{2}+2 \times 8 \times 10 \cos 60^{\circ}$ OR: $\quad R^{2}=(8 \sin 60)^{2}+\left(10+8 \cos 60^{\circ}\right)^{2}$ OR: $\quad R^{2}=(10 \sin 60)^{2}+\left(8+10 \cos 60^{\circ}\right)^{2}$	M1A1
	$R=\sqrt{244}=15.620499 \ldots \mathrm{~N}$	A1
5(ii)	$\frac{\sin \alpha}{8}=\frac{\sin 120^{\circ}}{\sqrt{244}}\left(\right.$ allow $\left.\sin 60^{\circ}\right)$ OR $\frac{\sin \beta}{10}=\frac{\sin 120^{\circ}}{\sqrt{244}}\left(\right.$ (allow $\left.\sin 60^{\circ}\right)$ OR $8^{2}=(\sqrt{244})^{2}+10^{2}-2 \times \sqrt{244} \times 10 \cos \alpha$ OR $10^{2}=(\sqrt{244})^{2}+8^{2}-2 \times \sqrt{244} \times 8 \cos \beta$ OR $\tan \alpha=\frac{8 \sin 60}{10+8 \cos 60^{\circ}}$ or $\sin \alpha=\frac{8 \sin 60}{\sqrt{244}}$ or $\cos \alpha=\frac{10+8 \cos 60^{\circ}}{\sqrt{244}}$ (or reciprocal of tan) OR $\tan \beta=\frac{10 \sin 60}{8+10 \cos 60^{\circ}}$ or $\sin \beta=\frac{10 \sin 60}{\sqrt{244}}$ or $\cos \beta=\frac{8+10 \cos 60^{\circ}}{\sqrt{244}}$ (or reciprocal of tan)	M1A1
		A1
	Bearing is 206° (nearest degree)	A1
		(7)
	Notes for question 5	
5(i)	M1 for an equation in R only (M0 for $R^{2}=8^{2}+10^{2}-2 \times 8 \times 10 \cos 60^{\circ}$ or if they clearly misquote the cosine rule) For the second alternative, condone sin/cos confusion and sign errors	
	A1 for a correct equation	
	A1 for $\sqrt{244}$ or 16 or better (N)	
5(ii)	M1 for an equation in a relevant angle only, using their R value. For the SOHCAHTOA alternatives, allow \sin / \cos confusion and sign errors	
	A1 for a correct equation	
	A1 for a relevant angle which is correct to the nearest degree	
	A1 cao	

Question Number	Scheme	Marks
	A1* cao	
$\mathbf{6 (c)}$	M1 for finding their $\mathbf{r}_{B}-$ their \mathbf{r}_{A} or their $\mathbf{r}_{A}-$ their \mathbf{r}_{B} M0 if they start with $\mathbf{r}_{A}=\mathbf{r}_{B}$	
	A1* for correctly establishing exactly (i.e. not a column vector) the given expression (allow omission of m), writing out in full the difference between the vectors before simplifying correctly to the given answer.	
$\mathbf{6 (d)}$	M1 for a correct expression for either $A B$ or $A B^{2}$ seen or implied.	
	A1 for a correct quadratic in completed square form	
	M1 for a complete method using the completed square form to find the minimum value of $A B$.	
	A1 cao	
	OR:	
	M1 for a correct expression for either $A B$ or $A B^{2}$ seen or implied	
	A1 for a correct derivative (N.B. can be implied by $t=4.5)$ M1 for a complete method using the derivative to find the minimum value of $A B$.	
	A1 cao	
	OR:	
	M1 for a correct expression for either $A B$ or $A B^{2}$ seen or implied	
	A1 for a correct equation M1 for a complete method using the discriminant $=0$ to find the minimum value of $A B$.	
	A1 cao	

Question Number	Scheme	Marks
7(a)	$v=2.5 \times 9.8=24.5\left(\mathrm{~m} \mathrm{~s}^{-1}\right)$ Allow 2.5 g	B1 (1)
7(b)		B1 shape B1 figures (2)
7(c)	$73.75=\frac{(24.5+(24.5-3.9 T)) T}{2}$ OR $73.75=24.5 T-\frac{1}{2} \times 3.9 T^{2}$ OR $73.75=(24.5-3.9 T)) T+\frac{1}{2} \times 3.9 T \times T$ OR $V^{2}=24.5^{2}+2 \times(-3.9) \times 73.75$ and then $5=24.5-3.9 T$ $T=5$ N.B. The second M mark should be treated as an A mark	M1 A1A1M1
7(d)	Height = Total area under graph	
	$=\left(\frac{1}{2} \times 24.5 \times 2.5\right)+73.75+(20-2.5-5) \times(24.5-3.9 \times 5)$	M1A2
	$=167(\mathrm{~m})$ nearest metre.	A1 (4)
		(12)
	Notes for question 7	
7(a)	B1 cao	
7(b)	B1 Correct shape of graph with the second line less steep than the first Graph may be reflected in the t-axis. B0 if solid vertical line at $t=20$	
	B1 All five values correctly placed (allow omission of 0 and appropriate delineators)	
7(c)	M1 for a complete method to obtain an equation, with a correct structure, in T only.	
	A1A1M1(A1) For a correct equation or equations, -1 each error.	
	A1 cao (must be a single answer i.e the other root (7.56) must be clearly rejected.	
7(d)	M1 for a complete method, using the total area under the graph oe, with a correct structure (i.e. triangle + trapezium + rectangle oe), to obtain an expression for the height of H above the ground.	
	A2 For a correct equation, -1 each error.	
	A1 cao	

Question Number	Scheme	Marks
	(Must have two equations of motion with a in each)	
	A1 $a=0.4 g$ oe (N.B. May be found in (a) but must be used in (b))	
	M1 Complete method to give an equation in v and h only using their a, which must have been found. (M0 if $0.4 g$ or g used)	
	B1 Correct equation of motion, with forces in numerical form or in terms of g, for A after B hits the ground in a^{\prime} only	
	M1 for an equation in s and h only, using their a^{\prime} (M0 if no a^{\prime} found)	
	A1 For a correct expression for s in terms of h.	
	A1 cao	
$\mathbf{8 (c)}$	B1 Any correct answer. B0 if any incorrect extras included.	

