		_	_
Mechanics	Μ1	Mark	scheme

Question	Schem	e	Marks
1	76 = $4u + \frac{1}{2}a.4^2$ or 76 = $\frac{1}{2}(u + \overline{u + 4a}) \times 4$	Use of $s = ut + \frac{1}{2}at^2$ for $t = 4, s = 76$ and $u \neq 0$ (use of $u = 0$ is M0)	M1
	(38 = 2u + 4a)	Correctly substituted equation	A1
	$295 = 10u + \frac{1}{2}a \cdot 10^{2}$ or $295 = \frac{1}{2}\left(u + \overline{u + 10a}\right) \times 10$ or $295 = (u + 10a) \times 10 - \frac{1}{2}a \times 100$	Use of $s = ut + \frac{1}{2}at^2$ for t = 10, s = 295 or $s = u't + \frac{1}{2}at^2$ for $t = 6, s = 219, u' \neq u$	M1
	(59 = 2u + 10a) or $219 = (19 + 2a) \times 6 + \frac{1}{2}a \times 6^{2}$ or $219 = (38 - u) \times 6 + \frac{1}{2}a \times 6^{2}$ or $219 = (u + 4a) \times 6 + \frac{1}{2}a \times 6^{2}$ or $219 = \frac{1}{2}(\overline{u + 4a} + \overline{u + 10}) \times 6$ or $219 = (u + 10a) \times 6 - \frac{1}{2}a \times 36$	Correctly substituted equation	A1
	Solve simultaneous for <i>u</i> or for <i>a</i> . This marks is not available if they have as preceding work - it is dependent on the fi	ssumed a value for u or a in the rst 2 M marks.	DM1
	u = 12		A1
	<i>a</i> = 3.5		Al
			(7)
	Alternative		
	$t = 2, v_2 = \frac{76}{4} = 19$ $t = 7, v_7 = \frac{219}{6} = 36.5$	Find the speed at $t = 2, t = 7$ Both values correct Averages with no links to times is M0	M1 A1
	$36.5 = 19 + 5a \implies a = 3.5$	Use of $v = u + 5a$ with their u, v Correct a	M1 A1
	19 = u + 2a	Complete method for finding <i>u</i> Correct equation in <i>u</i>	DM1 A1
	u = 19 - 7 =	=12	Al
			(7)
	1	(7	marks)

Pearson Edexcel International Advanced Subsidiary/Advanced Level in Mathematics, Further Mathematics and Pure Mathematics – Sample Assessment Materials (SAMs) – Issue 3 – June 2018 © Pearson Education Limited 2018

Question	Sch	eme	Marks
2(a)	$mu - 2kmu = -\frac{1}{2}mu + kmu$ or $m\left(\frac{1}{2}u + u\right) = -km(-u - 2u)$	Use of CLM or Equal and opposite impulses Need all 4 terms dimensionally correct. Masses and speeds must be paired correctly Condone sign errors Condone factor of g throughout.	M1
	Unsimplified equation with at most or	ne error	A1
	Correct unsimplified equation		A1
	$k = \frac{1}{2}$	From correct working only	A1
			(4)
(b)	For $P: I = \pm m(\frac{1}{2}u \pm -u)$ For $Q: I = \pm km(u \pm -2u)$	Impulse on P or impulse on Q.Mass must be used with the correctspeedse.g. $km \times \frac{1}{2}u$ is M0If working on Q, allow equationusingtheir k.Terms must be dimensionallycorrect.Use of g is M0	M1
	$\frac{3mu}{2}$	Only From correct working only	A1
			(2)
			ó marks)

Question	Sch	neme	Marks
3(a)	$7^2 = 2 \times 9.8h$	Use of $v^2 = u^2 + 2as$ with u = 0, v = 7 or alternative complete method to	M1
		find h	
	h = 2.5	Condone $h = -2.5$ in the working but the final answer must be positive.	A1
		1	(2)
(b)	$9 \ge 7 = 10.5 u$	Use CLM to find the speed of the blocks after the impact. Condone additional factor of g throughout.	M1
	<i>u</i> = 6		A1
	$0^2 = 6^2 - 2a \ge 0.12$	Use of $v^2 = u^2 + 2as$ with u = 6, v = 0	
		Allow for their u and $v = 0$	
		Allow for $u = 7, v = 0$	M1
		Accept alternative <i>suvat</i> method to form an equation in <i>a</i> .	
		Condone use of 12 for 0.12	
		Correctly substituted equation in <i>a</i> with $u = 6, s = 0.12$	A1
		(implied by $a = 150$)	
	$(\downarrow) 10.5g - R = 10.5 \text{ x} (-a)$	Use of $F = ma$ with their $a \neq \pm g$.	
		Must have all 3 terms and 10.5	M1
		Condone sign error(s)	
	$(\downarrow) 10.5g - R = 10.5 \text{ x} (-150)$	substituted and at most one error	
		(their <i>a</i> with the wrong sign is 1 error)	A1
		Correct unsimplified equation with <i>a</i> substituted	A1
	R = 1680 or 1700		A1
			(8)
	Alternative for the last 6 marks:	1	
	$\frac{1}{2} \times 10.5 \times 6^2 + 10.5 \times 9.8 \times 0.12 = R \times 0.$	12 Energy equation (needs all three 12 terms)	M2
		-1 each error	
		A1A1A0 for 1 error, A1A0A0 for 2 errors	A3
	R = 1680 or 1700		Al

Question	Schem	le	Marks
4(a)	R		
	$A \xrightarrow{0.6 \text{ m } C \qquad 1.4 \text{ m } G}_{S \qquad 30 \text{ g}}$	2 m B 50 g	
	M(A) (30g x 2) + (50g x 4) = 0.6 S	Moments equation. Requires all terms and dimensionally correct. Condone sign errors. Allow M1 if g missing	M1
	$M(C) (0.6 \times R) = (1.4 \times 30g) + (3.4 \times 50g)$ $M(G) (2 \times R) = (1.4 \times S) + (2 \times 50g)$ $M(B) (4 \times R) + (2 \times 30g) = (3.4 \times S)$	Correct unsimplified equation	A1
	$(\uparrow) R + 30g + 50g = S$ (R + 784 = S)	Resolve vertically. Requires all 4 terms. Condone sign errors	M1
	Correct equation (with R or their R) NB [.] The second M1A1 can also be earned	ed for a second moments equation	A1
	$R = 3460 \text{ or } 3500 \text{ or } \frac{1060g}{3} \text{ (N)}$	One force correct	A1
	Not 353.3g $S = 4250$ or 4200 or $\frac{1300g}{3}$ (N) Not 433.3g	Both forces correct If both forces are given as decimal multiples of g mark this as an accuracy penalty A0A1	A1
		1	(6)
(b)	M(C) (30g x 1.4) + (Mg x 3.4) = 0.6 x 50	Use $R = 5000$ and complete method to form an equation in M or weight. Needs all terms present and dimensionally correct. Condone sign errors.	M1
		Accept inequality. Use of R and S from (a) is M0	
		Correct equation in M (not weight) (implied by $M = 77.68$)	A1
	<i>M</i> = 77 kg	77.7 is A0 even is the penalty for over-specified answers has already been applied	A1
			(3)

Question	Scheme		Marks
4(c)	The weight of the diver acts at a point.	Accept "the mass of the diver is at a point".	B1
			(1)
		(1	0 marks)

Question	Scheme		Marks
5(a)	$(2\mathbf{i}-3\mathbf{j})+(p\mathbf{i}+q\mathbf{j})=(p+2)\mathbf{i}+(q-3)\mathbf{j}$	Resultant force = $\mathbf{F}_1 + \mathbf{F}_2$ in the form $a\mathbf{i} + b\mathbf{j}$	M1
	$\frac{p+2}{q-3} = \frac{1}{2} \text{or} \begin{cases} p+2=n\\ q-3=2n \end{cases} \text{ for } n \neq 1$	Use parallel vector to form a scalar equation in p and q .	M1
		Correct equation (accept any equivalent form)	A1
	4 + 2p = -3 + q	Dependent on no errors seen in comparing the vectors.	
		Rearrange to obtain given answer.	DM1
		At least one stage of working between the fraction and the given answer	
	2p - q + 7 = 0	Given Answer	A1
			(5)
5(b)	$q = 11 \Longrightarrow p = 2$		B1
	$\mathbf{R} = 4\mathbf{i} + 8\mathbf{j}$	$(2+p)\mathbf{i}+8\mathbf{j}$ for their p	M1
	$4\mathbf{i} + 8\mathbf{j} = 2\mathbf{a} (\mathbf{a} = 2\mathbf{i} + 4\mathbf{j})$	Use of $\mathbf{F} = m\mathbf{a}$	M1
	$ \mathbf{a} = \sqrt{2^2 + 4^2}$	Correct method for a	
		Dependent on the preceding M1	DM1
	$=\sqrt{20} = 4.5 \text{ or } 4.47 \text{ or better (m s}^{-2})$	2√5	A1
			(5)
	Alternative for the last two M marks:		
	$\left \mathbf{F}\right = \sqrt{16 + 64} \left(=\sqrt{80}\right)$	Correct method for F	M1
	$\sqrt{80} = 2 \times \mathbf{a} $	Use of $ \mathbf{F} = m \mathbf{a} $	DM1
		Dependent on the preceding M1	
			(5)
		(1	0 marks)

Question	Schem	e	Marks
6(a)	$v = u + at \Longrightarrow 14 = 3.5a$	Use of <i>suvat</i> to form an equation in <i>a</i>	M1
	a = 4		A1
			(2)
(b)	v	Graph for <i>A</i> or <i>B</i>	B1
	B 14 A	Second graph correct and both graphs extending beyond the point of intersection	B1
	3.5 T	Values 3.5, 14, <i>T</i> shown on axes, with <i>T</i> not at the point of intersection. Accept labels with delineators.	B1
	NB: 2 separate diagrams scores max B11	30B1	(3)
(c)	(T+T-3.5)	Find distance for A or B in terms of <i>T</i> only.	
	$\frac{1}{2}T.3T$, $\frac{(T+T-5.5)}{2}.14$	Correct area formulae: must see	M1
		$\frac{1}{2}$ in area formula and be adding	
		in trapezium	
	One distance correct		Al
	Both distances correct	1	A1
	$\frac{1}{2}T.3T = \frac{(T+T-3.5)}{2}.14$ $\frac{1}{2}T.3T = \frac{1}{2} \times 4 \times 3.5^{2} + 14(T-3.5)$	Equate distances and simplify to a 3 term quadratic in <i>T</i> in the form $aT^2 + bT + c = 0$	M1
	$3T^2 - 28T + 49 = 0$	Correct quadratic	A1
	(3T-7)(T-7) = 0	Solve 3 term quadratic for <i>T</i>	M1
	$T = \frac{7}{3}$ or 7	Correct solution(s) - can be implied if only ever see T = 7 from correct work.	A1
	but $T > 3.5$, $T = 7$		Al
			(8)
(d)	73.5 m	From correct work only. B0 if extra answers.	B1
			(1)

Question	Schem	e	Marks
6(e)		(A) Condone missing 4	B1
	4 (A) 3 (B)	(<i>B</i>) Condone graph going beyond $T = 7$ Must go beyond 3.5. Condone no 3.	B1
	0 3.5 (A)	(A) Condone graph going beyond $T = 7$ Must go beyond 3.5. B0 if see a <u>solid</u> vertical line. Sometimes very difficult to see. If you think it is there, give the mark.	B1
			(3)
	Condone separate diagrams.	Γ	1
	Alternative for (c) for candidates with a sketch like this: $ \begin{array}{c} $	Treat as a special case. B1B1B0 on the graph and then max 5/8 for (c) if they do not solve for the <i>T</i> in the question.	B1 B1 B0
	$\frac{1}{2} \times 3 \times (T+3.5)^2 = \frac{1}{2} \times 4 \times 3.5^2 + 14T$	Use diagram to find area	M1
		One distance correct	Al
		Both distances correct	Al
	$12T^2 - 28T - 49 = 0$	Simplify to a 3 term quadratic in T	M1
		Correct quadratic	A1
	(2T - 7)(6T + 7) = 0	Complete method to solve for the <i>T</i> in the question	M1
	$T = \frac{7}{2}$ or $\frac{-7}{6}$	Correct solution(s) - can be implied if only ever see Total = 7	A1
	Total time = 7		A1
			(8)
		(17	' marks)

Question		Scheme	Marks
7(a)	F = 0.25R		B1
	$\sin \alpha = \frac{3}{5} \text{ or } \cos \alpha = \frac{4}{5}$ $\sin \beta = \frac{4}{5} \text{ or } \cos \beta = \frac{3}{5}$	Use of correct trig ratios for α or β	B1
	$R = 4g \cos\alpha$ (31.36)	Normal reaction on P Condone trig confusion (using α)	M1
		Correct equation	A1
		Equation of motion for <i>P</i> . Requires all 3 terms.	
	$T + F = 4g\sin\alpha$	Condone consistent trig confusion Condone an acceleration not equated to 0 : $T+F-4g\sin\alpha = 4a$	M1
	(T + 7.84 = 23.52) $(T = 15.68)$	Correct equation	A1
	$T = mg\sin\beta$	Equation of motion for Q Condone trig confusion Condone an acceleration not equated to 0: $T - mg \sin \beta = -ma$	M1
	(T = 7.84m)	Correct equation	A1
	Solve for <i>m</i>	Dependent on the 3 preceding M marks Not available if their equations used $a \neq 0$	DM1
	<i>m</i> = 2		A1
	NB Condone a whole system eq m = 2 for 6/6 M2 for an equation with all 3 ter acceleration $\neq 0$ A2 (-1 each error) for a correct e	puation $4g \sin \alpha - F = mg \sin \beta$ followed by ms. Condon trig confusion. Condone an quation:	
			(10)
7(b)	$F = \sqrt{T^2 + T^2} \text{or} 2T \cos 45^\circ \text{ or} \frac{T}{\cos 45}$	or Complete method for finding F in terms of T Accept $\sqrt{(R_h)^2 + (R_v)^2}$	M1
	Correct expression in T		A1
	Substitute their <i>T</i> into a correct e mark	expression. Dependent on the previous M	DM1
	$F = \sqrt{2} \frac{8g}{5} = 22$ or 22.2 (N)	Watch out - resolving vertically is not a correct method and gives 21.9 N.	A1
			(4)

Question	Scheme		Marks
7(c)	Along the angle bisector at the pulley	Or equivalent - accept angle + arrow shown on diagram. (8.1° to downward vertical)	
		Do not accept a bearing	(1)
(15 m			5 marks)