Mechanics M1 Mark scheme

1
$\left.\begin{array}{|l|l|l|}\hline 76=4 u+\frac{1}{2} a .4^{2} \text { or } \\ 76=\frac{1}{2}(u+\overline{u+4 a}) \times 4\end{array} \quad \begin{array}{l}\text { Use of } s=u t+\frac{1}{2} a t^{2} \text { for } \\ t=4, s=76 \text { and } u \neq 0 \text { (use } \\ \text { of } u=0 \text { is M0) }\end{array}\right)$ M1

Alternative

$\begin{aligned} & t=2, v_{2}=\frac{76}{4}=19 \\ & t=7, v_{7}=\frac{219}{6}=36.5 \end{aligned}$	Find the speed at $t=2, t=7$ Both values correct Averages with no links to times is M0	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$
$36.5=19+5 a \Rightarrow a=3.5$	Use of $v=u+5 a$ with their u, v Correct a	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$
$19=u+2 a$	Complete method for finding u Correct equation in u	$\begin{gathered} \mathrm{DM} 1 \\ \mathrm{~A} 1 \end{gathered}$
$u=19-7=12$		A1
		(7)

Question	Scheme		Marks
2(a)	$\begin{aligned} & m u-2 k m u=-\frac{1}{2} m u+k m u \\ & \text { or } \\ & m\left(\frac{1}{2} u+u\right)=-k m(-u-2 u) \end{aligned}$	Use of CLM or Equal and opposite impulses Need all 4 terms dimensionally correct. Masses and speeds must be paired correctly Condone sign errors Condone factor of g throughout.	M1
	Unsimplified equation with at most one error		A1
	Correct unsimplified equation		A1
	$k=\frac{1}{2}$	From correct working only	A1
			(4)
(b)	For $P: I= \pm m\left(\frac{1}{2} u \pm-u\right)$ For $\mathrm{Q}: I= \pm k m(u \pm-2 u)$	Impulse on P or impulse on Q. Mass must be used with the correct speeds e.g. $k m \times \frac{1}{2} u$ is M 0 If working on Q, allow equation using their k. Terms must be dimensionally correct. Use of g is M0	M1
	$\frac{3 m u}{2}$	Only From correct working only	A1
			(2)
(6 marks)			

Question	Scheme		Marks
4(a)			
	$M(A)(30 \mathrm{gx} 2)+(50 \mathrm{~g} \times 4)=0.6 S$ $M(C)(0.6 \times R)=(1.4 \times 30 \mathrm{~g})+(3.4 \times 50 \mathrm{~g})$ $M(G) \quad(2 \times R)=(1.4 \times S)+(2 \times 50 \mathrm{~g})$ $M(B)(4 \times R)+(2 \times 30 g)=(3.4 \times S)$	Moments equation. Requires all terms and dimensionally correct. Condone sign errors. Allow M1 if g missing	M1
		Correct unsimplified equation	A1
	$\begin{aligned} & (\uparrow) R+30 g+50 g=S \\ & (R+784=S) \end{aligned}$	Resolve vertically. Requires all 4 terms. Condone sign errors	M1
	Correct equation (with R or their R) NB: The second M1A1 can also be earned for a second moments equation		A1
	$R=3460 \text { or } 3500 \text { or } \frac{1060 g}{3}(\mathrm{~N})$ Not 353.3 g $S=4250 \text { or } 4200 \text { or } \frac{1300 g}{3}(\mathrm{~N})$ Not 433.3g	One force correct	A1
		Both forces correct If both forces are given as decimal multiples of g mark this as an accuracy penalty A0A1	A1
			(6)
(b)	$M(C) \quad(30 \mathrm{~g} \times 1.4)+(M \mathrm{~g} \times 3.4)=0.6 \times$Use $R=5000$ and complete method to form an equation in M or weight. Needs all terms present and dimensionally correct. Condone sign errors. Accept inequality. Use of R and S from (a) is M0		M1
		Correct equation in M (not weight) (implied by $M=77.68$)	A1
	$M=77 \mathrm{~kg}$	77.7 is A 0 even is the penalty for over-specified answers has already been applied	A1
			(3)

Question	Scheme		Marks
4(c)	The weight of the diver acts at a point.	Accept "the mass of the diver is at a point".	B1
		(1)	

Question	Scheme		Marks
6(a)	$v=u+a t \Rightarrow 14=3.5 a$	Use of suvat to form an equation in a	M1
	$a=4$		A1
			(2)
(b)		Graph for A or B	B1
		Second graph correct and both graphs extending beyond the point of intersection	B1
		Values $3.5,14, T$ shown on axes, with T not at the point of intersection. Accept labels with delineators.	B1
	NB: 2 separate diagrams scores max B1B0B1		(3)
(c)	$\frac{1}{2} T .3 T, \quad \frac{(T+T-3.5)}{2} .14$	Find distance for A or B in terms of T only. Correct area formulae: must see $\frac{1}{2}$ in area formula and be adding in trapezium	M1
	One distance correct		A1
	Both distances correct		A1
	$\begin{aligned} \frac{1}{2} T .3 T & =\frac{(T+T-3.5)}{2} .14 \\ \frac{1}{2} T .3 T & =\frac{1}{2} \times 4 \times 3.5^{2}+14(T-3.5) \end{aligned}$	Equate distances and simplify to a 3 term quadratic in T in the form $a T^{2}+b T+c=0$	M1
	$3 T^{2}-28 T+49=0$	Correct quadratic	A1
	$(3 T-7)(T-7)=0$	Solve 3 term quadratic for T	M1
	$T=\frac{7}{3}$ or 7	Correct solution(s) - can be implied if only ever see $T=7$ from correct work.	A1
	but $T>3.5, \quad T=7$		A1
			(8)
(d)	73.5 m From correct work only. B0 if extra answers.		B1
			(1)

Question	Schem		Marks
6(e)		(A) Condone missing 4	B1
		(B) Condone graph going beyond $T=7$ Must go beyond 3.5. Condone no 3.	B1
		(A) Condone graph going beyond $T=7$ Must go beyond 3.5. B0 if see a solid vertical line. Sometimes very difficult to see. If you think it is there, give the mark.	B1
			(3)
	Condone separate diagrams.		
	Alternative for (c) for candidates with a sketch like this:	Treat as a special case. B 1 B 1 B 0 on the graph and then $\max 5 / 8$ for (c) if they do not solve for the T in the question.	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & \text { B0 } \end{aligned}$
	$\frac{1}{2} \times 3 \times(T+3.5)^{2}=\frac{1}{2} \times 4 \times 3.5^{2}+14 T$	Use diagram to find area	M1
		One distance correct	A1
		Both distances correct	A1
	$12 T^{2}-28 T-49=0$	Simplify to a 3 term quadratic in T	M1
		Correct quadratic	A1
	$(2 T-7)(6 T+7)=0$	Complete method to solve for the T in the question	M1
	$T=\frac{7}{2}$ or $\quad \frac{-7}{6}$	Correct solution(s) - can be implied if only ever see Total $=7$	A1
	Total time $=7$		A1
	(8)		

Question	Scheme		Marks
7(a)	$F=0.25 R$		B1
	$\begin{aligned} & \sin \alpha=\frac{3}{5} \text { or } \cos \alpha=\frac{4}{5} \\ & \sin \beta=\frac{4}{5} \text { or } \cos \beta=\frac{3}{5} \end{aligned}$	Use of correct trig ratios for α or β	B1
	$\text { (31.36) } \quad R=4 g \cos \alpha$	Normal reaction on P Condone trig confusion (using α)	M1
		Correct equation	A1
	$T+F=4 g \sin \alpha$	Equation of motion for P. Requires all 3 terms. Condone consistent trig confusion Condone an acceleration not equated to 0 : $T+F-4 g \sin \alpha=4 a$	M1
	$\begin{aligned} & (T+7.84=23.52) \\ & (T=15.68) \end{aligned}$	Correct equation	A1
	$T=m g \sin \beta$	Equation of motion for Q Condone trig confusion Condone an acceleration not equated to 0 : $T-m g \sin \beta=-m a$	M1
	$(T=7.84 m)$	Correct equation	A1
	Solve for m	Dependent on the 3 preceding M marks Not available if their equations used $a \neq 0$	DM1
	$m=2$		A1
	NB Condone a whole system equation $4 g \sin \alpha-F=m g \sin \beta$ followed by $m=2$ for $6 / 6$ M2 for an equation with all 3 terms. Condon trig confusion. Condone an acceleration $\neq 0$ A2 (-1 each error) for a correct equation:		
			(10)
7(b)	$\begin{gathered} F=\sqrt{T^{2}+T^{2}} \text { or } 2 T \cos 45^{\circ} \text { or } \\ \frac{T}{\cos 45} \end{gathered}$	Complete method for finding F in terms of T Accept $\sqrt{\left(R_{h}\right)^{2}+\left(R_{v}\right)^{2}}$	M1
	Correct expression in T		A1
	Substitute their T into a correct expression. Dependent on the previous M mark		DM1
	$F=\sqrt{2} \frac{8 g}{5}=22 \text { or } 22.2(\mathrm{~N})$	Watch out - resolving vertically is not a correct method and gives 21.9 N .	A1
			(4)

Question	Scheme		Marks
7(c)	Along the angle bisector at the pulley	Or equivalent - accept angle + arrow shown on diagram. $\left(8.1^{\circ}\right.$ to downward vertical) Do not accept a bearing	
		$\mathbf{(1 5)}$	

