Question Number	Scheme	Marks
1. (a)	(5,-4)	B1
(b)	(3,4)	B1
(c)	(3,-2)	B1
(d)	(3,0)	B1
		(4) (4 marks)

Allow the coordinates to be given separately. Eg (5, -4) as x = 5, y = -4

Scheme	Marks
$2x^{2} + 3x = \frac{1}{2}x + 3 = 0 \Longrightarrow 4x^{2} + 5x - 6 = 0$	M1
$(4x-3)(x+2) = 0 \Longrightarrow x = \frac{3}{4}, -2$	dM1 A1
$x = \frac{3}{4}, y = \frac{27}{8}$ $x = -2, y = 2$	ddM1 A1
	(5)
Chooses outside (for x) $x_{,,-2}, x_{,-\frac{3}{4}}$	M1A1
	(2) (7 marks)
	$2x^{2} + 3x = \frac{1}{2}x + 3 = 0 \Longrightarrow 4x^{2} + 5x - 6 = 0$

M1 Sets equations equal to each other and attempts to put in quadratic form

dM1 Attempts to solve 3TQ=0

A1
$$x = \frac{3}{4}, -2$$

ddM1 Finds at least one *y* coordinate from their *x* coordinate

A1 Both correct pairs
$$x = \frac{3}{4}$$
, $y = \frac{27}{8}$ $x = -2$, $y = 2$

M1 Chooses the outside region for their *x* values

A1 $x_{,,-2}, x_{,-3} = \frac{3}{4}$

Question Number	Scheme	Marks
3. (a)	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{3}{16} x^2 - 2x^{-\frac{1}{2}} - \frac{8}{x^2}$	M1A1 A1
		(3)
(b)	$\frac{dy}{dx}\Big _{x=4} = \frac{3}{16} \times 4^2 - 2 \times \frac{1}{\sqrt{4}} - \frac{8}{4^2} = \left(\frac{3}{2}\right)$ Method for gradient of normal is $-\frac{2}{3}$	M1
	Method for gradient of normal is $-\frac{2}{3}$	dM1
	$y+2 = -\frac{2}{3}(x-4) \Longrightarrow 2x+3y-2 = 0$	M1 A1
		(4) (7 marks)

(a)

- M1 For reducing the power by one on any *x* term
- A1 Two terms correct (but may be un simplified)

A1 All terms correct (and now simplified). Accept exact simplified equivalents. Eg $\frac{3x^2}{16} - \frac{2}{\sqrt{x}} - 8x^{-2}$

(b)

- M1 For substituting x = 4 into their $\frac{dy}{dx}$
- dM1 For the correct method of using the negative reciprocal to find the equation of the tangent
- M1 For an attempt at finding the equation of the normal. It is for using a changed gradient and the point (4, -2) Condone one error on the sign of the 4 and -2.

If the form y = mx + c is used they must proceed to c = ...

A1 2x+3y-2=0 or any integer multiple

Question Number	Scheme	Marks
4 (i)	Attempts to write in powers of 2 $\frac{4^a}{2^{3b}} = 32\sqrt{2} \Rightarrow \frac{2^{2a}}{2^{3b}} = 2^5 \times 2^{\frac{1}{2}}$	M1
	Uses correct index laws $2^{2a-3b} = 2^{5.5}$	M1
	Forms equation in a and b and makes a the subject $2a-3b=5.5 \Rightarrow a =$	ddM1
	a = 1.5b + 2.75	A1
(ii)	$3x = \sqrt{2}x + 14 \Longrightarrow x = \frac{14}{3 - \sqrt{2}}$	(4) M1
	$\Rightarrow x = \frac{14}{(3-\sqrt{2})} \times \frac{(3+\sqrt{2})}{(3+\sqrt{2})} =$ $\Rightarrow x = 2(3+\sqrt{2}) \text{oe}$	dM1
	$\Rightarrow x = 2(3 + \sqrt{2})$ oe	A1
		(3)
		(7 marks)
		(, , , , , , , , , , , , , , , , , , ,

(a)

M1 For attempting to write each term in the same power (usually 2 but could be 4 etc)

M1 Uses a correct index law seen on one side

ddM1 Uses correct index laws on both sides, and, after setting the indexes equal to each other, makes *a* the subject

A1 a = 1.5b + 2.75 oe

(b)

- M1 For attempting to collect the terms in x on one side of the equation, factorising and making x the subject
- dM1 For rationalising
- A1 $x = 2\left(3 + \sqrt{2}\right)$ oe

.....

Alt

M1 Makes $\sqrt{2}x$ the subject and squares both sides $2x^2 = (3x - 14)^2 \rightarrow$

dM1 Re-arranging and solving $0 = x^2 - 12x + 28 \Rightarrow (x-6)^2 - 8 = 0 \Rightarrow x = ...$

A1 $6 + \sqrt{8}$ oe

Question Number	Scheme	Marks
5. (a)	Correct attempt for <i>AB</i> Eg $AB^2 = 3^2 + 3^2 - 2 \times 3 \times 3 \times \cos 1.25$ (3.51) Correct attempt at arc length <i>ACB</i> = $3 \times (2\pi - 1.25)$ (15.10) Perimeter of pond = $3.51058+15.09955=18.61$ m	M1 M1 dM1 A1
(b)	Attempts area $AOB = \frac{1}{2} \times 3 \times 3 \times \sin 1.25$ (4.27) Attempts area $AOBCA = \frac{1}{2} \times 3^2 \times (2\pi - 1.25)$ (22.65)	(4) M1 M1
	Attempts volume of pond = $(4.2704+22.6493) \times 1.5 = 40.4 \text{ m}^3$	dM1 A1 (4) (8 marks)

(a)

M1	Scored for a correct attempt for the length of AB
	See scheme. Also accept $2 \times 3 \sin 0.625$ or awrt 3.51
M1	Attempts $r\theta$ with $r = 3$ and $\theta = (2\pi - 1.25)$ or awrt 5.03
dM1 A1	A correct method is implied by an arc length of awrt 15.1 Attempts to add two values found by a correct method Awrt 18.61 m
(b) M1	Attempts area <i>AOB</i>

See scheme. Allow $3\cos 0.625 \times 3\sin 0.625$ or awrt 4.27

- M1 Attempts area $\frac{1}{2}r^2\theta$ with $r = 3, \theta = (2\pi 1.25)$ or awrt 5.03 A correct method is implied by an area for the sector of awrt 22.65
- dM1 Attempts volume of pond = $("4.27"+"22.65") \times 1.5$

A1 Awrt 40.4 m³

Question Number	Scheme	Marks
6.(a)	Attempts gradient $PR = \frac{8-2}{-5+1} = -\frac{3}{2}$	B1
	Coordinates of $M = (3,5)$	B1
	Attempts parallel line through $M y-5 = -\frac{3}{2}(x-3) \Rightarrow 3x+2y-19 = 0$	M1 A1
(b) (i)	Substitutes $y = 8 \Longrightarrow 3x + 2y - 19 = 0 \Longrightarrow x = 1$	(4) M1 A1 A1
(ii)	9 units ²	(3)
		(7 marks)

(a)

B1 Gradient $PR = -\frac{3}{2}$ oe B1 Coordinates of M = (3,5)

- M1 Attempts parallel line through *M*
- A1 k(2y+3x-19) = 0 where $k \neq 0, k \in \mathbb{Z}$
- (b)
- M1 Substitutes y = 8 in their $3x + 2y 19 = 0 \Rightarrow x = ...$
- A1 x=1 y=8
- B1 9 units 2
- (b) Alternative method using similar triangles.
- M1 Uses ratio $MQ: RQ = 1:2 \Rightarrow$ point N is at the mid-point of PQ
- A1 $x = 1 \quad y = 8$
- A1 9 units 2

```
Ratio MNQ: PQR = 1:4 \rightarrow Area triangle MNQ = \frac{1}{4} \times area triangle PQR = \frac{1}{4} \times \left(\frac{1}{2} \times 12 \times 6\right) = 9 units <sup>2</sup>
```

Question Number	Scheme	Marks
7.(a)	y 3 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5	M1 A1 M1 A1
		(4)
(b)(i) (b)(ii)	2n 2n+1	B1 B1
		(2) (6 marks)

(a)

- M1 Look for a symmetrical curve with maxima at 0 and 360, a minimum at 180 and passing through the x axis at 90 and 270. Ignore the curve for x < 0 for this mark. Condone a curve between -1 and 1
- A1 Completely correct with reasonable curvature (not straight lines)
- M1 Look for a curve crossing the x axis at 0, 180 and 360 with asymptotes at 90 and 270 Ignore the curve for x < 0 for this mark.
- A1 Completely correct with reasonable curvature
- (b)
- B1 For 2*n*
- B1 For 2n+1

Question Number	Scheme	Marks
8. (a)	$(x+2)(x-10)(2x-3) > 0 \implies -2 < x < \frac{3}{2}, x > 10$	M1 A1
		(2)
(b)	$y = (x+2)(x-10)(2x+3) = \left(x^2 - 8x - 20\right)(2x-3)$	M1
	$=2x^{3}-16x^{2}-40x-3x^{2}+24x+60$	dM1
	$=2x^{3}-19x^{2}-16x+60$	A1
		(3)
	y = 60	
(c)(i)	Shape for $y = \frac{k}{x} + 60, x > 0$	M1
	Shape and position for $y = \frac{k}{x} + 60, x \in \mathbb{R} - \{0\}$	A1
	y = 60 (the asymptote) marked and in the correct position relative to y = f(x)	A1
(ii)	Two roots	B1
		(4) (9 marks)

(a)

M1 For one of the intervals but condone for this mark -2, $x_{,,} = \frac{3}{2}$ or $x \dots 10$

A1
$$-2 < x < \frac{3}{2}, x > 10$$

(b)

M1 Attempts to multiply two of the brackets together. Look for at least first and third terms correct dM1 And then multiplies the result by the third bracket. Look for a cubic expression

A1 =
$$2x^3 - 19x^2 - 16x + 60$$

(c)

See scheme

Question Number	Scheme	Marks
9. (a)	Attempts coordinate of $P 9y^2 = 64 \Rightarrow y = -\frac{8}{3}$	M1 A1
	Equation of l_1 is $y = 2x - \frac{8}{3}$	A1
(b)	Attempts to substitute $2x = y - k$ into $4x^2 + 9y^2 + 4xy = 64$	(3)
	$(y-k)^{2}+9y^{2}+2(y-k)y=64$	M1 A1
	$12y^2 - 4ky + k^2 - 64 = 0 *$	A1* (3)
(c)	Attempts $"b^{2} - 4ac" = 0 \Longrightarrow 16k^{2} - 4 \times 12 \times (k^{2} - 64) = 0$	M1
	Critical values $k = \pm 4\sqrt{6}$	A1
	Inside region $-4\sqrt{6} < k < 4\sqrt{6}$	dM1 A1
		(4) (10 marks)

M1 Sets x = 0 in $4x^2 + 9y^2 + 4xy = 64$ and attempts to find y

A1 $y = -\frac{8}{3}$

A1
$$y = 2x - \frac{8}{3}$$

(b)

M1 Attempts to substitute 2x = y - k into $4x^2 + 9y^2 + 4xy = 64$ to achieve an equation in y only Alternatively substitutes $x = \frac{y - k}{2}$ into $4x^2 + 9y^2 + 4xy = 64$ to achieve an equation in y only A1 A correct un-simplified equation $(y - k)^2 + 9y^2 + 2(y - k)y = 64$ not involving fractions

- A1* cso $12y^2 4ky + k^2 64 = 0$
- (c)

M1 Attempts
$$b^2 - 4ac = 0 \Rightarrow 16k^2 - 4 \times 12 \times (k^2 - 64) = 0$$
 condoning poor bracketing

- A1 For critical values of $k = \pm 4\sqrt{6}$
- dM1 Selects inside region for their critical values
- A1 $-4\sqrt{6} < k < 4\sqrt{6}$

Question Number	Scheme	Marks
10. (i)	$\frac{2x-1}{4\sqrt{x}} = \frac{2x}{4\sqrt{x}} - \frac{1}{4\sqrt{x}} = \frac{1}{2}x^{\frac{1}{2}} - \frac{1}{4}x^{-\frac{1}{2}}$ $\int \frac{2x-1}{4\sqrt{x}} dx = \frac{1}{3}x^{\frac{3}{2}} - \frac{1}{2}x^{\frac{1}{2}} + c$	M1 A1
	$\int \frac{2x-1}{4\sqrt{x}} dx = \frac{1}{3}x^{\frac{3}{2}} - \frac{1}{2}x^{\frac{1}{2}} + c$	dM1 A1 A1
		(5)
(ii)	$f(x) = \frac{1}{3}ax^3 + bx + c$	M1
	Substitutes $x = 3$, $y = 5$ into their $f(x) = \frac{1}{3}ax^3 + bx + c \Longrightarrow 5 = 9a + 3b + c$	dM1
	Substitutes $x = 3$, $f'(x) = 4$ into $f'(x) = ax^2 + b \Longrightarrow 4 = 9a + b$	M1
	Uses $c' = -5$ and solves simultaneously	dddM1
	$f(x) = \frac{1}{27}x^3 + 3x - 5$	A1 (5) (10 marks)
lM1 Ra A1 Fo	$x^{\frac{1}{2}} - \frac{1}{4}x^{-\frac{1}{2}}$ oe. For example accept $\frac{1}{2}\sqrt{x} - \frac{1}{4\sqrt{x}}$ dises the power by one. One index must have been correct $\rightarrowx^{\frac{3}{2}} +x^{\frac{1}{2}}$ r one correct term either $\frac{1}{3}x^{\frac{3}{2}}$ or $-\frac{1}{2}x^{\frac{1}{2}}$ lly correct $\frac{1}{3}x^{\frac{3}{2}} - \frac{1}{2}x^{\frac{1}{2}} + c$ including the + c seen on one line.	
	ccept exact simplified equivalents such as $\frac{1}{3}\sqrt{x^3} - \frac{1}{2}\sqrt{x} + c$ or $\frac{\sqrt{x}}{6}(2x-3) + c$	с
ii)	tempts to integrate and achieves $f(x) =ax^3 + bx(+c)$ with or without the +	
	bstitutes $x = 3$, $y = 5$ into their $f(x) =ax^3 + bx + c \Rightarrow$ equation in a, b and c	
/11 Su	bstitutes $x = 3$, $f'(x) = 4$ into $f'(x) = ax^2 + b \Rightarrow$ equation in a and b	
lddM1 a a	Dependent upon all previous M's. It is for solving their two equation with c and b .	= -5 to find values
1 f($(x) = \frac{1}{x^3} + 3x - 5$	

A1
$$f(x) = \frac{1}{27}x^3 + 3x - 5$$