Question Number	Scheme	Marks
1.(a)	$(5,-4)$	B1
(b)	$(3,4)$	B1
(c)	$(3,-2)$	B1
(d)	$(3,0)$	B1

Allow the coordinates to be given separately. Eg $(5,-4)$ as $x=5, y=-4$

Question Number	Scheme	Marks
2.(a)	$2 x^{2}+3 x=\frac{1}{2} x+3=0 \Rightarrow 4 x^{2}+5 x-6=0$ $(4 x-3)(x+2)=0 \Rightarrow x=\frac{3}{4},-2$	M1
		$x=\frac{3}{4}, y=\frac{27}{8} \quad x=-2, y=2$
(b)	Chooses outside (for $x)$	$x,-2, x \ldots \frac{3}{4}$

M1 Sets equations equal to each other and attempts to put in quadratic form
dM1 Attempts to solve $3 T Q=0$
A1 $x=\frac{3}{4},-2$
ddM1 Finds at least one y coordinate from their x coordinate
A1 Both correct pairs $x=\frac{3}{4}, y=\frac{27}{8} \quad x=-2, y=2$
(b)

M1 Chooses the outside region for their x values
A1 $x,-2, x \ldots \frac{3}{4}$

Question Number	Scheme	Marks
3.(a)	$\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{3}{16} x^{2}-2 x^{-\frac{1}{2}}-\frac{8}{x^{2}}$	M1A1 A1
(b)$\left.\frac{\mathrm{d} y}{\mathrm{~d} x}\right\|_{x=4}=\frac{3}{16} \times 4^{2}-2 \times \frac{1}{\sqrt{4}}-\frac{8}{4^{2}}=\left(\frac{3}{2}\right)$ Method for gradient of normal is $-\frac{2}{3}$ $y+2=-\frac{2}{3}(x-4) \Rightarrow 2 x+3 y-2=0$	M1	
(3)		
(7 marks)		

(a)

M1 For reducing the power by one on any x term
A1 Two terms correct (but may be un simplified)
A1 All terms correct (and now simplified). Accept exact simplified equivalents. $\operatorname{Eg} \frac{3 x^{2}}{16}-\frac{2}{\sqrt{x}}-8 x^{-2}$
(b)

M1 For substituting $x=4$ into their $\frac{\mathrm{d} y}{\mathrm{~d} x}$
dM1 For the correct method of using the negative reciprocal to find the equation of the tangent
M1 For an attempt at finding the equation of the normal. It is for using a changed gradient and the point $(4,-2)$ Condone one error on the sign of the 4 and -2 . If the form $y=m x+c$ is used they must proceed to $c=\ldots$
A1 $2 x+3 y-2=0$ or any integer multiple

Question Number	Scheme	Marks
4 (i)	Attempts to write in powers of $2 \quad \frac{4^{a}}{2^{3 b}}=32 \sqrt{2} \Rightarrow \frac{2^{2 a}}{2^{3 b}}=2^{5} \times 2^{\frac{1}{2}}$ Uses correct index laws $\quad 2^{2 a-3 b}=2^{5.5}$ Forms equation in a and b and makes a the subject $\begin{aligned} 2 a-3 b=5.5 & \Rightarrow a=\ldots \\ & \Rightarrow a=1.5 b+2.75 \end{aligned}$	M1 M1 ddM1 A1 (4)
(ii)	$\begin{aligned} 3 x=\sqrt{2} x+14 & \Rightarrow x \end{aligned}=\frac{14}{3-\sqrt{2}}, ~ \begin{aligned} \Rightarrow x & =\frac{14}{(3-\sqrt{2})} \times \frac{(3+\sqrt{2})}{(3+\sqrt{2})}= \\ & \Rightarrow x=2(3+\sqrt{2}) \text { oe } \end{aligned}$	M1 dM1 A1
		(3) (7 marks)

(a)

M1 For attempting to write each term in the same power (usually 2 but could be 4 etc)
M1 Uses a correct index law seen on one side
ddM1 Uses correct index laws on both sides, and, after setting the indexes equal to each other, makes a the subject
A1 $a=1.5 b+2.75$ oe
(b)

M1 For attempting to collect the terms in x on one side of the equation, factorising and making x the subject
dM1 For rationalising
A1 $\quad x=2(3+\sqrt{2})$ oe
Alt
M1 Makes $\sqrt{2} x$ the subject and squares both sides $2 x^{2}=(3 x-14)^{2} \rightarrow$
dM1 Re-arranging and solving $0=x^{2}-12 x+28 \Rightarrow(x-6)^{2}-8=0 \Rightarrow x=\ldots$

A1 $6+\sqrt{8}$ oe

Question Number	Scheme	Marks
5. (a)	$\begin{align*} & \text { Correct attempt for } A B \operatorname{Eg} A B^{2}=3^{2}+3^{2}-2 \times 3 \times 3 \times \cos 1.25 \tag{3.51}\\ & \text { Correct attempt at arc length } A C B=3 \times(2 \pi-1.25) \tag{15.10}\\ & \text { Perimeter of pond }=3.51058 . .+15.09955 . .=18.61 \mathrm{~m} \end{align*}$	M1 M1 dM1 A1 (4)
(b)	Attempts area $A O B=\frac{1}{2} \times 3 \times 3 \times \sin 1.25$ Attempts area $A O B C A=\frac{1}{2} \times 3^{2} \times(2 \pi-1.25)$ Attempts volume of pond $=(4.2704 . .+22.6493 \ldots) \times 1.5=40.4 \mathrm{~m}^{3}$	M1 M1 dM1 A1
		(8 marks)

(a)

M1 Scored for a correct attempt for the length of $A B$
See scheme. Also accept $2 \times 3 \sin 0.625$ or awrt 3.51
M1 Attempts $r \theta$ with $r=3$ and $\theta=(2 \pi-1.25)$ or awrt 5.03
A correct method is implied by an arc length of awrt 15.1
dM1 Attempts to add two values found by a correct method
A1 Awrt 18.61 m
(b)

M1 Attempts area $A O B$
See scheme. Allow $3 \cos 0.625 \times 3 \sin 0.625$ or awrt 4.27
M1 Attempts area $\frac{1}{2} r^{2} \theta$ with $r=3, \theta=(2 \pi-1.25)$ or awrt 5.03
A correct method is implied by an area for the sector of awrt 22.65
dM1 Attempts volume of pond $=($ " 4.27 " + " 22.65 " $) \times 1.5$
A1 Awrt 40.4 m 3

Question Number	Scheme	Marks
6.(a)	Attempts gradient $P R=\frac{8-2}{-5+1}=-\frac{3}{2}$ Coordinates of $M=(3,5)$ Attempts parallel line through $M y-5=-\frac{3}{2}(x-3) \Rightarrow 3 x+2 y-19=0$ (b) (i) Substitutes $y=8 \Rightarrow 3 x+2 y-19=0 \Rightarrow x=1$ (ii) 9 units 2	B1
M1 A1		

(a)

B1 Gradient $P R=-\frac{3}{2}$ oe
B1 Coordinates of $M=(3,5)$
M1 Attempts parallel line through M
A1 $\quad k(2 y+3 x-19)=0$ where $k \neq 0, k \in Z$
(b)

M1 Substitutes $y=8$ in their $3 x+2 y-19=0 \Rightarrow x=\ldots$
A1 $x=1 \quad y=8$
B1 9 units 2
(b) Alternative method using similar triangles.

M1 Uses ratio $M Q: R Q=1: 2 \Rightarrow$ point N is at the mid-point of $P Q$
A1 $x=1 \quad y=8$
A1 9 units 2
Ratio $M N Q: P Q R=1: 4 \rightarrow$ Area triangle $M N Q=\frac{1}{4} \times$ area triangle $P Q R=\frac{1}{4} \times\left(\frac{1}{2} \times 12 \times 6\right)=9$ units 2

(a)

M1 Look for a symmetrical curve with maxima at 0 and 360, a minimum at 180 and passing through the x axis at 90 and 270. Ignore the curve for $x<0$ for this mark. Condone a curve between -1 and 1
A1 Completely correct with reasonable curvature (not straight lines)
M1 Look for a curve crossing the x - axis at 0,180 and 360 with asymptotes at 90 and 270 Ignore the curve for $x<0$ for this mark.
A1 Completely correct with reasonable curvature
(b)

B1 For $2 n$
B1 For $2 n+1$

(a)

M1 For one of the intervals but condone for this mark $-2, x, \frac{3}{2}$ or $x \ldots 10$
A1 $-2<x<\frac{3}{2}, \quad x>10$
(b)

M1 Attempts to multiply two of the brackets together. Look for at least first and third terms correct
dM1 And then multiplies the result by the third bracket. Look for a cubic expression
A1 $=2 x^{3}-19 x^{2}-16 x+60$
(c)

See scheme

Question Number	Scheme	Marks
9.(a)	Attempts coordinate of $P 9 y^{2}=64 \Rightarrow y=-\frac{8}{3}$ Equation of l_{1} is $y=2 x-\frac{8}{3}$	M1 A1 A1
(b)	Attempts to substitute $2 x=y-k$ into $4 x^{2}+9 y^{2}+4 x y=64$ $\begin{aligned} & (y-k)^{2}+9 y^{2}+2(y-k) y=64 \\ & 12 y^{2}-4 k y+k^{2}-64=0 * \end{aligned}$	M1 A1 A1*
(c)	$\begin{gather*} \text { Attempts " } b^{2}-4 a c "=0 \Rightarrow 16 k^{2}-4 \times 12 \times\left(k^{2}-64\right)=0 \\ \\ \text { Critical values } k= \pm 4 \sqrt{6} \tag{4}\\ \text { Inside region } \quad-4 \sqrt{6}<k<4 \sqrt{6} \end{gather*}$	M1 A1 dM1 A1
		(10 marks)

(a)

M1 Sets $x=0$ in $4 x^{2}+9 y^{2}+4 x y=64$ and attempts to find y
A1 $y=-\frac{8}{3}$
A1 $y=2 x-\frac{8}{3}$
(b)

M1 Attempts to substitute $2 x=y-k$ into $4 x^{2}+9 y^{2}+4 x y=64$ to achieve an equation in y only Alternatively substitutes $x=\frac{y-k}{2}$ into $4 x^{2}+9 y^{2}+4 x y=64$ to achieve an equation in y only
A1 A correct un-simplified equation $(y-k)^{2}+9 y^{2}+2(y-k) y=64$ not involving fractions
A1* $\operatorname{cso} 12 y^{2}-4 k y+k^{2}-64=0$
(c)

M1 Attempts " $b^{2}-4 a c$ " $=0 \Rightarrow 16 k^{2}-4 \times 12 \times\left(k^{2}-64\right)=0$ condoning poor bracketing
A1 For critical values of $k= \pm 4 \sqrt{6}$
dM1 Selects inside region for their critical values
A1 $-4 \sqrt{6}<k<4 \sqrt{6}$

Question Number	Scheme	Marks
10. (i)	$\frac{2 x-1}{4 \sqrt{x}}=\frac{2 x}{4 \sqrt{x}}-\frac{1}{4 \sqrt{x}}=\frac{1}{2} x^{\frac{1}{2}}-\frac{1}{4} x^{-\frac{1}{2}}$	M1 A1
	$\int \frac{2 x-1}{4 \sqrt{x}} d x=\frac{1}{3} x^{\frac{3}{2}}-\frac{1}{2} x^{\frac{1}{2}}+c$	dM1 A1 A1 (5)
(ii)	$\mathrm{f}(x)=\frac{1}{3} a x^{3}+b x+c$	M1
	Substitutes $x=3, y=5$ into their $\mathrm{f}(x)=\frac{1}{3} a x^{3}+b x+c \Rightarrow 5=9 a+3 b+c$	dM1
	Substitutes $x=3, \mathrm{f}^{\prime}(x)=4$ into $\mathrm{f}^{\prime}(x)=a x^{2}+b \Rightarrow 4=9 a+b$	
	Uses ' c ' $=-5$ and solves simultaneously	dddM1
	$\begin{equation*} f(x)=\frac{1}{27} x^{3}+3 x-5 \tag{5} \end{equation*}$	A1
		(10 marks)

(i)

M1 Attempts to write as a sum of terms. Award if any coefficient or any index is correct
A1 $\frac{1}{2} x^{\frac{1}{2}}-\frac{1}{4} x^{-\frac{1}{2}}$ oe. For example accept $\frac{1}{2} \sqrt{x}-\frac{1}{4 \sqrt{x}}$
dM1 Raises the power by one. One index must have been correct $\rightarrow \ldots x^{\frac{3}{2}}+\ldots x^{\frac{1}{2}}$
A1 For one correct term either $\frac{1}{3} x^{\frac{3}{2}}$ or $-\frac{1}{2} x^{\frac{1}{2}}$
A1 Fully correct $\frac{1}{3} x^{\frac{3}{2}}-\frac{1}{2} x^{\frac{1}{2}}+c$ including the $+c$ seen on one line.
Accept exact simplified equivalents such as $\frac{1}{3} \sqrt{x^{3}}-\frac{1}{2} \sqrt{x}+c$ or $\frac{\sqrt{x}}{6}(2 x-3)+c$
(ii)

M1 Attempts to integrate and achieves $\mathrm{f}(x)=\ldots a x^{3}+b x(+c)$ with or without the $+c$
dM 1 Substitutes $x=3, y=5$ into their $\mathrm{f}(x)=\ldots a x^{3}+b x+c \Rightarrow$ equation in a, b and c (Must now have $+c$)
M1 Substitutes $x=3, \mathrm{f}^{\prime}(x)=4$ into $\mathrm{f}^{\prime}(x)=a x^{2}+b \Rightarrow$ equation in a and b
dddM1 Dependent upon all previous M's. It is for solving their two equation with $c=-5$ to find values for a and b.

A1 $\mathrm{f}(x)=\frac{1}{27} x^{3}+3 x-5$

