Pure Mathematics P1 Assessment Sample 2018 Mark scheme

Question	Scheme	Marks
1(a)	$y=4 x^{3}-\frac{5}{x^{2}}$	
	$x^{n} \rightarrow x^{n-1}$ e.g. sight of x^{2} or x^{-3} or $\frac{1}{x^{3}}$	M1
	$3 \times 4 x^{2}$ or $-5 \times-2 x^{-3}$ (o.e.) (Ignore +c for this mark)	A1
	$12 x^{2}+\frac{10}{x^{3}}$ or $12 x^{2}+10 x^{-3}$ all on one line and no +c	A1
		(3)
(b)	$x^{n} \rightarrow x^{n+1}$ e.g. sight of x^{4} or x^{-1} or $\frac{1}{x^{1}}$	M1
	Do not award for integrating their answer to part (a) $4 \frac{x^{4}}{4} \quad \text { or } \quad-5 \times \frac{x^{-1}}{-1}$	A1
	For fully correct and simplified answer with +c all on one line. Allow $\begin{aligned} & \Rightarrow \text { Allow } x^{4}+5 \times \frac{1}{x}+c \\ & \Rightarrow \text { Allow } 1 x^{4} \text { for } x^{4} \end{aligned}$	A1
		(3)
(6 marks)		

Notes:

(a)

M1: Scored for a full attempt to write $3^{-1.5}$ in the form $a \sqrt{3}$ or, as an alternative, makes a the subject and attempts to combine the powers of 3
A1: For $a=\frac{1}{9}$ Note: A correct answer with no working scores full marks
(b)

M1: For an attempt to expand $\left(2 x^{\frac{1}{2}}\right)^{3}$ Scored for one correct power either 2^{3} or $x^{\frac{3}{2}}$. $\left(2 x^{\frac{1}{2}}\right) \times\left(2 x^{\frac{1}{2}}\right) \times\left(2 x^{\frac{1}{2}}\right)$ on its own is not sufficient for this mark.
dM1: For dividing their coefficients of x and subtracting their powers of x. Dependent upon the previous M1
A1: Correct answer $2 x^{-\frac{1}{2}}$ or $\frac{2}{\sqrt{x}}$

3

Attempts to makes y the subject of the linear equation and substitutes into the other equation.	M1
Correct 3 term quadratic	A1
dM1: Solves a 3 term quadratic by the usual rules	dM1A1
A1: $(x=)-\frac{1}{7},-\frac{1}{3}$	M1 A1
M1: Substitutes to find at least one y value	
A1: $y=-\frac{3}{7}, \frac{1}{3}$	(6)

Alternative

$x=-\frac{1}{4} y-\frac{1}{4}$		
$\Rightarrow y^{2}+5\left(-\frac{1}{4} y-\frac{1}{4}\right)^{2}+2\left(-\frac{1}{4} y-\frac{1}{4}\right)=0$	Attempts to makes x the subject of the linear equation and substitutes into the other equation.	M 1
$\frac{21}{16} y^{2}+\frac{1}{8} y-\frac{3}{16}=0$		
$\left(21 y^{2}+2 y-3=0\right)$		

Question	Scheme	Marks
4	Sets $2 x^{2}+8 x+3=4 x+c$ and collects x terms together	M1
	Obtains $2 x^{2}+4 x+3-c=0$ o.e.	A1
	States that $b^{2}-4 a c=0$	dM1
	$4^{2}-4 \times 2 \times(3-c)=0$ and so $c=$	dM1
	$c=1$ cso	A1
		(5)
	Alternative 1A	
	Sets derivative " $4 x+8$ " $=4 \Rightarrow x=$	M1
	$x=-1$	A1
	Substitute $x=-1$ in $y=2 x^{2}+8 x+3 \quad(\Rightarrow y=-3)$	dM1
	Substitute $x=-1$ and $y=-3$ in $y=4 x+c$ or into $(y+3)=4(x+1)$ and expand	dM1
	$c=1$ or writing $y=4 x+1$ cso	A1
		(5)
	Alternative 1B	
	Sets derivative $4 x+8$ " $=4 \Rightarrow x=$,	M1
	$x=-1$	A1
	Substitute $x=-1$ in $2 x^{2}+8 x+3=4 x+c$	dM1
	Attempts to find value of c	dM1
	$c=1$ or writing $y=4 x+1$ cso	A1
		(5)
	Alternative 2	
	Sets $2 x^{2}+8 x+3=4 x+\mathrm{c}$ and collects x terms together	M1
	Obtains $2 x^{2}+4 x+3-c=0$ or equivalent	A1
	States that $b^{2}-4 a c=0$	dM1
	$4^{2}-4 \times 2 \times(3-c)=0$ and so $c=$	dM1
	$c=1$ cso	A1
		(5)
	Alternative 3	
	Sets $2 x^{2}+8 x+3=4 x+\mathrm{c}$ and collects x terms together	M1
	Obtains $2 x^{2}+4 x+3-c=0$ or equivalent	A1
	Uses $2(x+1)^{2}-2+3-c=0$ or equivalent	dM1
	Writes $-2+3-c=0$	dM1
	So $c=1$ cso	A1
		(5)
(5 marks)		

Question 4 continued

Notes:

Method 1A

M1: Attempts to solve their $\frac{\mathrm{d} y}{\mathrm{~d} x}=4$. They must reach $x=\ldots$ (Just differentiating is M0 A0).
A1: $x=-1$ (If this follows $\frac{\mathrm{d} y}{\mathrm{~d} x}=4 x+8$, then give M1 A1 by implication).
dM1: (Depends on previous M mark) Substitutes their $\mathrm{x}=-1$ into $\mathrm{f}(x)$ or into "their $\mathrm{f}(x)$ from (b)" to find y.
dM1: (Depends on both previous M marks) Substitutes their $x=-1$ and their $y=-3$ values into $y=$ $4 x+c$ to find c or uses equation of line is $(y+" 3 ")=4(x+" 1$ ") and rearranges to $y=m x+c$
A1: $\quad c=1$ or allow for $y=4 x+1$ cso.

Method 1B

M1A1: Exactly as in Method 1A above.
dM1: (Depends on previous M mark) Substitutes their $x=-1$ into $2 x^{2}+8 x+3=4 x+c$
dM1: Attempts to find value of c then A1 as before.

Method 2

M1: Sets $2 x^{2}+8 x+3=4 x+\mathrm{c}$ and tries to collect x terms together.
A1: Collects terms e.g. $2 x^{2}+4 x+3-c=0$ or $-2 x^{2}-4 x-3+c=0$ or $2 x^{2}+4 x+3=c$ or even $2 x^{2}+4 x=c-3$. Allow " $=0$ " to be missing on RHS.
dM1: Then use completion of square $2(x+1)^{2}-2+3-c=0$ (Allow $2(x+1)^{2}-k+3-\mathrm{c}=0$) where k is non zero. It is enough to give the correct or almost correct (with k) completion of the square.
dM1: $-2+3-c=0$ AND leading to a solution for c (Allow $-1+3-c=0)(x=-1$ has been used)
A1: $\quad c=1$ cso

Method 3

M1: Sets $2 x^{2}+8 x+3=4 x+c$ and tries to collect x terms together. May be implied by $2 x^{2}+8 x+3-4 x \pm$ con one side.
A1: Collects terms e.g. $2 x^{2}+4 x+3-c=0$ or $-2 x^{2}-4 x-3+c=0$ or $2 x^{2}+4 x+3=c$ even $2 x^{2}+4 x=c-3$. Allow " $=0$ " to be missing on RHS.
dM1: Then use completion of square $2(x+1)^{2}-k+3-\mathrm{c}=0$ (Allow $2(x+1)^{2}-k+3-\mathrm{c}=0$) where k is non zero. It is enough to give the correct or almost correct (with k) completion of the square.
dM1: $-2+3-c=0$ AND leading to a solution for c (Allow $-1+3-c=0)(x=-1$ has been used)
A1: $\quad c=1$ cso

5(a)

Question	Scheme	Marks
8(a)	$2 x+3 y=26 \Rightarrow 3 y=26 \pm 2 x$ and attempt to find m from $y=m x+c$	M1
	$\left(\Rightarrow y=\frac{26}{3}-\frac{2}{3} x\right)$ so gradient $=-\frac{2}{3}$	A1
	$\text { Gradient of perpendicular }=\frac{-1}{\text { their gradient }} \quad\left(=\frac{3}{2}\right)$	M1
	Line goes through $(0,0)$ so $y=\frac{3}{2} x$	A1
		(4)
(b)	Solves their $y=\frac{3}{2} x$ with their $2 x+3 y=26$ to form equation in x or in y	M1
	Solves their equation in x or in y to obtain $x=$ or $y=$	dM1
	$x=4$ or any equivalent e.g. $\frac{156}{39}$ or $y=6$ o.a.e	A1
	$B=\left(0, \frac{26}{3}\right)$ used or stated in (b)	B1
	4边 Area $=\frac{1}{2} \times 44 " \times \frac{26 "}{3}$	dM1
	$\frac{26}{3}$ $\downarrow=4$ and denominator)	A1
		(6)
(10 marks)		
Notes:		
(a)		
M1: Complete method for finding gradient. (This may be implied by later correct answers.) e.g. Rearranges $2 x+3 y=26 \Rightarrow y=m x+c$ so $m=$ Or finds coordinates of two points on line and finds gradient e.g. $(13,0)$ and $(1,8)$ so $m=\frac{8-0}{1-13}$		
A1: States or implies that gradient $=-\frac{2}{3}$ condone $=-\frac{2}{3} x$ if they continue correctly. Ignore errors in constant term in straight line equation.		
M1: Uses $m_{1} \times m_{2}=-1$ to find the gradient of l_{2}. This can be implied by the use of $\overline{\text { their gradient }}$ A1: $y=\frac{3}{2} x$ or $2 y-3 x=0$ Allow $y=\frac{3}{2} x+0$ Also accept $2 y=3 x, y=\frac{39}{26} x$ or even $y-0=\frac{3}{2}(x-0)$ and isw.		

Question 8 notes continued

(b)

M1: Eliminates variable between their $y=\frac{3}{2} x$ and their (possibly rearranged) $2 x+3 y=26$ to form an equation in x or y. (They may have made errors in their rearrangement).
dM1: (Depends on previous M mark) Attempts to solve their equation to find the value of x or y
A1: $x=4$ or equivalent or $y=6$ or equivalent
B1: y coordinate of B is $\frac{26}{3}$ (stated or implied) - isw if written as $\left(\frac{26}{3}, 0\right)$.

Must be used or stated in (b)

dM1: (Depends on previous M mark) Complete method to find area of triangle $O B C$ (using their values of x and/or y at point C and their $\frac{26}{3}$)
A1: Cao $\frac{52}{3}$ or $\frac{104}{6}$ or $\frac{1352}{78}$ o.e

Alternative 1

Uses the area of a triangle formula $1 / 2 \times O B \times(x$ coordinate of $C)$
Alternative methods: Several Methods are shown below. The only mark which differs from
Alternative 1 is the last M mark and its use in each case is described below:

Alternative 2

In 8(b) using $\frac{1}{2} \times B C \times O C$
dM1: Uses the area of a triangle formula $1 / 2 \times B C \times O C$ Also finds $O C(=\sqrt{52})$ and $\mathrm{BC}=\left(\frac{4}{3} \sqrt{13}\right)$

Alternative 3

In 8(b) using $\frac{1}{2}\left|\begin{array}{lll}0 & 4 & 0\end{array}\right|$
dM1: States the area of a triangle formula $\frac{1}{2} \left\lvert\, \begin{array}{lll}0 & 4 & 0\end{array} 0\right.$

Alternative 4

In $8(\mathrm{~b})$ using area of triangle $O B X$ - area of triangle $O C X$ where X is point $(13,0)$
dM1: Uses the correct subtraction $\frac{1}{2} \times 13 \times 1 \frac{26}{3} "-\frac{1}{2} \times 13 \times 16 "$

Alternative 5

In $8(b)$ using area $=1 / 2(6 \times 4)+1 / 2(4 \times 8 / 3)$ drawing a line from C parallel to the x axis and dividing triangle into two right angled triangles
dM1: For correct method area $=1 / 2(" 6 " \times$ " 4 " $)+1 / 2(" 4 " \times[" 26 / 3 "-" 6 "])$

Method 6 Uses calculus

dM1: $\int_{0}^{4} " \frac{26}{3} "-\frac{2 x}{3}-\frac{3 x}{2} \mathrm{~d} x=\left[\frac{26}{3} x-\frac{x^{2}}{3}-\frac{3 x^{2}}{4}\right]_{0}^{4}$

Question	Scheme	Marks
9(a)	Substitutes $x=2$ into $y=20-4 \times 2-\frac{18}{2}$ and gets 3	B1
	$\frac{\mathrm{d} y}{\mathrm{~d} x}=-4+\frac{18}{x^{2}}$	M1 A1
	Substitute $x=2 \Rightarrow \frac{\mathrm{~d} y}{\mathrm{~d} x}=\left(\frac{1}{2}\right)$ then finds negative reciprocal (-2)	dM1
	States or uses $y-3=-2(x-2)$ or $y=-2 x+c$ with their $(2,3)$	ddM1
	to deduce that $y=-2 x+7$	A1*
		(6)
(b)	Put $20-4 x-\frac{18}{x}=-2 x+7$ and simplify to give $2 x^{2}-13 x+18=0$ Or put $\quad y=20-4\left(\frac{7-y}{2}\right)-\frac{18}{\left(\frac{7-y}{2}\right)}$ to give $y^{2}-y-6=0$	M1 A1
	$(2 x-9)(x-2)=0$ so $x=$ or $\quad(y-3)(y+2)=0 \quad$ so $y=$	dM1
	$\left(\frac{9}{2},-2\right)$	A1 A1
		(5)
(11 marks)		

Notes:

(a)

B1: Substitutes $x=2$ into expression for y and gets 3 cao (must be in part (a) and must use curve equation - not line equation). This must be seen to be substituted.
M1: For an attempt to differentiate the negative power with x^{-1} to x^{-2}.
A1: Correct expression for $\frac{\mathrm{d} y}{\mathrm{~d} x}=-4+\frac{18}{x^{2}}$
dM1: Dependent on first M1 substitutes $x=2$ into their derivative to obtain a numerical gradient and find negative reciprocal or states that $-2 \times \frac{1}{2}=-1$

Alternative 1

dM1: Dependent on first M1. Finds equation of line using changed gradient (not their $\frac{1}{2}$ but $-\frac{1}{2}$ 2 or -2) e.g. $y-" 3 "=-" 2 "(x-2)$ or $y="-2 " x+\mathrm{c}$ and use of $(2, " 3 ")$ to find $c=$
A1*: cso. This is a given answer $y=-2 x+7$ obtained with no errors seen and equation should be stated.
Alternative 2 - checking given answer
dM1: Uses given equation of line and checks that $(2,3)$ lies on the line.
A1*: cso. This is a given answer $y=-2 x+7$ so statement that normal and line have the same gradient and pass through the same point must be stated.

Question 9 notes continued

(b)

M1: Equate the two given expressions, collect terms and simplify to a 3 TQ . There may be sign errors when collecting terms but putting for example $20 x-4 x^{2}-18=-2 x+7$ is M0 here.
A1: \quad Correct $3 \mathrm{TQ}=0$ (need $=0$ for A mark) $2 x^{2}-13 x+18=0$
dM1: Attempt to solve an appropriate quadratic by factorisation, use of formula, or completion of the square (see general instructions).
A1: $\quad x=\frac{9}{2}$ o.e or $y=-2$ (allow second answers for this mark so ignore $x=2$ or $\mathrm{y}=3$)
A1: Correct solutions only so both $x=\frac{9}{2}, y=-2$ or $\left(\frac{9}{2},-2\right)$
If $x=2, y=3$ is included as an answer and point B is not identified then last mark is A 0 . Answer only - with no working - send to review. The question stated 'use algebra'.

