Pure Mathematics P2 Mark scheme

Question	Scheme	Marks
1(a)	$\mathrm{f}(x)=x^{4}+x^{3}+2 x^{2}+a x+b$	
	Attempting $\mathrm{f}(1)$ or $\mathrm{f}(-1)$	M1
	$\mathrm{f}(1)=1+1+2+a+\mathrm{b}=7 \text { or } 4+a+\mathrm{b}=7 \Rightarrow a+\mathrm{b}=3$ (as required)	$\begin{gathered} \mathrm{A} 1^{*} \\ \text { cso } \end{gathered}$
		(2)
(b)	Attempting $\mathrm{f}(-2)$ or $\mathrm{f}(2)$	M1
	$\mathrm{f}(-2)=16-8+8-2 a+b=-8\{\Rightarrow-2 a+b=-24\}$	A1
	Solving both equations simultaneously to get as far as $a=\ldots$ or $b=$..	dM1
	Any one of $a=9$ or $b=-6$	A1
	Both $a=9$ and $b=-6$	A1
		(5)
(7marks)		
Notes:		
(a) M1: For attempting either $f(1)$ or $f(-1)$. A1: For applying $f(1)$, setting the result equal to 7 , and manipulating this correctly to give the result given on the paper as $a+b=3$. Note that the answer is given in part (a). Alternative M1: For long division by $(x-1)$ to give a remainder in a and b which is independent of x. A1: Or $\{$ Remainder $=\} b+a+4=7$ leading to the correct result of $a+b=3$ (answer given).		
(b) M1: Attempting either $\mathrm{f}(-2)$ or $\mathrm{f}(2)$. A1: correct underlined equation in a and b; e.g. $16-8+8-2 a+b=-8$ or equivalent, e.g. $-2 a+b=-24$. dM1: An attempt to eliminate one variable from 2 linear simultaneous equations in a and b. Note that this mark is dependent upon the award of the first method mark. A1: Any one of $a=9$ or $b=-6$. A1: Both $a=9$ and $b=-6$ and a correct solution only. Alternative M1: For long division by $(x+2)$ to give a remainder in a and b which is independent of x. A1: \quad For $\{$ Remainder $=\} \underline{b-2(a-8)=-8}\{\Rightarrow-2 a+b=-24\}$. Then dM1A1A1 are applied in the same way as before.		

Question	Scheme		Marks
2(a)	$S_{\infty}=\frac{20}{1-\frac{7}{8}} ;=160$	Use of a correct S_{∞} formula	M1
		160	A1
			(2)
(b)	$\begin{aligned} S_{12}=\frac{20\left(1-\left(\frac{7}{8}\right)^{12}\right)}{1-\frac{7}{8}} ; & =127.77324 \ldots \\ & =127.8(1 \mathrm{dp}) \end{aligned}$	M1: Use of a correct S_{n} formula with $n=12$ (condone missing brackets around $\frac{7}{8}$)	M1 A1
		A1: awrt 127.8	
			(2)
(c)	$160-\frac{20\left(1-\left(\frac{7}{8}\right)^{N}\right)}{1-\frac{7}{8}}<0.5$	Applies $S_{N}(\mathbf{G P}$ only) with $a=20$, $r=\frac{7}{8}$ and "uses" 0.5 and their S_{∞} at any point in their working.	M1
	$160\left(\frac{7}{8}\right)^{N}<(0.5)$ or $\left(\frac{7}{8}\right)^{N}<\left(\frac{0.5}{160}\right)$	Attempt to isolate $+160\left(\frac{7}{8}\right)^{N}$ or $\left(\frac{7}{8}\right)^{N}$	dM1
	$N \log \left(\frac{7}{8}\right)<\log \left(\frac{0.5}{160}\right)$	Uses the law of logarithms to obtain an equation or an inequality of the form $\begin{gathered} N \log \left(\frac{7}{8}\right)<\log \left(\frac{0.5}{\text { their } \mathrm{S}_{\infty}}\right) \\ \quad \text { or } \\ N>\log _{0.875}\left(\frac{0.5}{\text { their } \mathrm{S}_{\infty}}\right) \end{gathered}$	M1
	$\begin{aligned} & N>\frac{\log \left(\frac{0.5}{100}\right)}{\log \left(\frac{7}{8}\right)}=43.19823 \ldots \\ & \Rightarrow N=44 \end{aligned}$	$N=44$ (Allow $N \geq 44$ but no $N>44$	A1 cso
	An incorrect inequality statement at any stage in a candidate's working loses the final mark. Some candidates do not realise that the direction of the inequality is reversed in the final line of their solution. BUT it is possible to gain full marks for using $=$, as long as no incorrect working seen.		
			(4)
	Alternative: Trial \& Improvement Method in (c):		
	Attempts $160-S_{N}$ or S_{N} with at least one value for $N>40$		M1
	Attempts $160-S_{N}$ or S_{N} with $N=43$ or $N=44$		dM1
	For evidence of examining $160-S_{N}$ or S_{N} for both $N=43$ and $N=44$ with both values correct to 2 DP$\begin{gathered} \text { Eg: } 160-S_{43}=\operatorname{awrt~} 0.51 \text { and } 160-S_{44}=\text { awrt } 0.45 \text { or } \\ S_{43}=\operatorname{awrt} 159.49 \text { and } S_{44}=\operatorname{awrt} 159.55 \end{gathered}$		M1
	$N=44$		A1 cso
	Answer of $\boldsymbol{N}=\mathbf{4 4}$ only with no working scores no marks		
			(4)
(8 marks)			

Question	Scheme						Ma
3(a)							B1
	x	0	0.25	0.5	0.75	1	
	y	1	1.251	1.494	1.741	2	
(b)	$\frac{1}{2} \times 0.25, \quad\{(1+2)+2(1.251+1.494+1.741)\} \text { o.e. }$						
	$=1.4965$						
(c)	Gives any valid reason including - Decrease the width of the strips - Use more trapezia - Increase the number of strips Do not accept use more decimal places						B
(7 marks)							
Notes:							
(a) B1: For 1.494 B1: For 1.741 (1.740 is B0). Wrong accuracy e.g. 1.49, 1.74 is B1B0							
(b) B1: Need $1 / 2$ of 0.25 or 0.125 o.e. M1: Requires first bracket to contain first plus last values and second bracket to include no additional values from the three in the table. If the only mistake is to omit one value from second bracket this may be regarded as a slip and \mathbf{M} mark can be allowed (An extra repeated term forfeits the \mathbf{M} mark however) x values: M0 if values used in brackets are x values instead of y values A1ft: Follows their answers to part (a) and is for \{correct expression\} A1: Accept $1.4965,1.497$, or 1.50 only after correct work. (No follow through except one special case below following 1.740 in table). Separate trapezia may be used: B1 for 0.125 , M1 for $\frac{1}{2} h(a+b)$ used 3 or 4 times (and A1ft if it is all correct) e.g. $0.125(1+1.251)+0.125(1.251+1.494)+0.125(1.741+2)$ is M1 A0 equivalent to missing one term in $\}$ in main scheme.							

n	n^{2}	$n^{2}+2$	
1	1	3	Odd
2	4	6	Even
3	9	11	Odd
4	16	18	Even
5	25	27	Odd
6	36	38	Even

When n is odd, n^{2} is odd (odd \times odd $=$ odd) so $n^{2}+2$ is also odd
So for all odd numbers $n, n^{2}+2$ is also odd and so cannot be divisible by 4

When n is even, n^{2} is even and a multiple of 4 , so $n^{2}+2$ cannot be a

Fully correct and exhaustive proof. Award for both of the cases above plus a final statement "So for all $n, n^{2}+2$ cannot be divisible by 4"

Alternative - (algebraic) proof

If n is even, $n=2 k$, so $\frac{n^{2}+2}{4}=\frac{(2 k)^{2}+2}{4}=\frac{4 k^{2}+2}{4}=k^{2}+\frac{1}{2}$
If n is odd, $n=2 k+1$, so $\frac{n^{2}+2}{4}=\frac{(2 k+1)^{2}+2}{4}==\frac{4 k^{2}+4 k+3}{4}=k^{2}+k+\frac{3}{4}$
For a partial explanation stating that

- either of $k^{2}+\frac{1}{2}$ or $k^{2}+k+\frac{3}{4}$ are not a whole numbers.
- with some valid reason stating why this means that $n^{2}+2$ is not a multiple of 4 .
Full proof with no errors or omissions. This must include
- The conjecture
- Correct notation and algebra for both even and odd numbers
- A full explanation stating why, for all $n, n^{2}+2$ is not divisible by 4

Question	Scheme			Marks
5(a)	$(S=) a+(a+d)+\ldots+[a+(n-1) d]$		B1: requires at least 3 terms, must include first and last terms, an adjacent term and dots!	B1
	$(S=)[a+(n-1) d]+\ldots \ldots+a$		M1: for reversing series (dots needed)	M1
	$2 S=[2 a+(n-1) d]+\ldots \ldots+[2 a+(n-1) d]$		dM1: for adding, must have $2 S$ and be a genuine attempt. Either line is sufficient. Dependent on $1^{\text {st }} \mathrm{M} 1$.	dM1
	$\begin{aligned} & 2 S=n[2 a+(n-1) d] \\ & S=\frac{n}{2}[2 a+(n-1) d] \mathrm{cso} \end{aligned}$		(NB -Allow first 3 marks for use of l for last term but as given for final mark)	A1
				(4)
(b)	$600=200+(N-1) 20 \Rightarrow N=\ldots$	Use of 600 with a correct formula in an attempt to find N.		M1
	$N=21$	cso		A1
				(2)
(c)	Look for an AP first:			
	$\begin{gathered} S=\frac{21}{2}(2 \times 200+20 \times 20) \text { or } \\ \frac{21}{2}(200+600) \\ S=\frac{20}{2}(2 \times 200+19 \times 20) \text { or } \\ \frac{20}{2}(200+580) \\ (=8400 \text { or } 7800) \end{gathered}$	M1: Use of correct sum formula with their integer $n=N$ or $N-1$ from part (b) where $3<N<52$ and $a=200$ and d $=20$.		M1A1
	Then for the constant terms:			
	$600 \times(52-" N ")(=18600)$	A1: A correct un-simplified follow through expression with their k consistent with n so that $n+k=52$		M1 A1ft
	So total is 27000	cao		A1
	There are no marks in (c) for just finding $\mathbf{S 5 2}^{\text {2 }}$			
				(5)
(11 marks)				

Question	Scheme	Marks
6(i)	$\log _{2}\left(\frac{2 x}{5 x+4}\right)=-3 \quad$ or $\log _{2}\left(\frac{5 x+4}{2 x}\right)=3$ or $\log _{2}\left(\frac{5 x+4}{x}\right)=4$	M1
	$\left(\frac{2 x}{5 x+4}\right)=2^{-3}$ or $\quad\left(\frac{5 x+4}{2 x}\right)=2^{3} \quad$ or $\left(\frac{5 x+4}{x}\right)=2^{4}$	M1
	$16 x=5 x+4 \Rightarrow x=$ (depends on Ms and must be this equation or equiv)	dM1
	$x=\frac{4}{11}$ or exact recurring decimal $0.3 \dot{6}$ after correct work	A1 cso
	Alternative	
	$\log _{2}(2 x)+3=\log _{2}(5 x+4)$	
	So $\log _{2}(2 x)+\log _{2}(8)=\log _{2}(5 x+4)$ earns $2^{\text {nd }}$ M1 (3 replaced by $\log _{2} 8$)	$2^{\text {nd }} \mathrm{M} 1$
	Then $\log _{2}(16 x)=\log _{2}(5 x+4)$ earns $1^{\text {st }} \mathrm{M} 1 \quad$ (addition law of \log s)	$1^{\text {st }}$ M1
	Then final M1 A1 as before	dM1A1
		(4)
(ii)	$\log _{a} y+\log _{a} 2^{3}=5$	M1
	$\log _{a} 8 y=5$ Applies product law of logarithms	dM1
	$y=\frac{1}{8} a^{5} \quad$ cso $\quad y=\frac{1}{8} a^{5} \quad$ cso	A1
		(3)
(7 marks)		
Notes:		
(i) M1: Applying the subtraction or addition law of logarithms correctly to make two log terms into one log term . M1: For RHS of either $2^{-3}, 2^{3}, 2^{4}$ or $\log _{2}\left(\frac{1}{8}\right), \log _{2} 8$ or $\log _{2} 16$ i.e. using connection between \log base 2 and 2 to a power. This may follow an error. Use of 3^{2} is M0 dM1: Obtains correct linear equation in x. usually the one in the scheme and attempts $x=$ A1: cso. Answer of $4 / 11$ with no suspect \log work preceding this.		
(ii) M1: Applies power law of logarithms to replace $3 \log _{a} 2$ by $\log _{a} 2^{3}$ or $\log _{a} 8$ dM1: (Should not be following M0) Uses addition law of logs to give $\log _{a} 2^{3} y=5$ or $\log _{a} 8 y=5$		

Question	Scheme	Marks
7(a)	Obtain $\quad(x \pm 10)^{2}$ and $(y \pm 8)^{2}$	M1
	$(10,8)$	A1
		(2)
(b)	See $(x \pm 10)^{2}+(y \pm 8)^{2}=25\left(=r^{2}\right) \quad$ or $\quad\left(r^{2}=\right) " 100 "+" 64 "-139$	M1
	$r=5 *$	A1
		(2)
(c)	Substitute $x=13$ into the equation of circle and solve quadratic to give $y=$	M1
	$\begin{gathered} \text { e.g. } x=13 \Rightarrow(13-10)^{2}+(y-8)^{2}=25 \Rightarrow(y-8)^{2}=16 \\ \text { so } y=4 \text { or } 12 \end{gathered}$ N.B. This can be attempted via a $3,4,5$ triangle so spotting this and achieving one value for \mathbf{y} is M1 A1. Both values scores M1 A1 A1	A1 A1
		(3)
(d)	$O C=\sqrt{10^{2}+8^{2}}=\sqrt{164}$	M1
	Length of tangent $=\sqrt{164-5^{2}}=\sqrt{139}$	M1 A1
		(3)
(10 marks)		
Notes:		
(a) M1: Obtains $\quad(x \pm 10)^{2}$ and $(y \pm 8)^{2}$ May be implied by one correct coordina A1: $(10,8)$ Answer only scores both marks. Alternative: Method 2: From $x^{2}+y^{2}+2 g x+2 f y+c=0$ centre is $(\pm g, \pm f)$ M1: Obtains $(\pm 10, \pm 8)$ A1: Centre is $(-g,-f)$, and so centre is $(10,8)$.		
(b) M1: For a correct method leading to $r=\ldots$, or $r^{2}=$ Allow "100"+"64"-139 or an attempt at using $(x \pm 10)^{2}+(y \pm 8)^{2}=r^{2}$ form to identify $r=$ A1*: $r=5$ This is a printed answer, so a correct method must be seen.		
Alternative: (b) M1: Attempts to use $\sqrt{g^{2}+f^{2}-c}$ or $\left(r^{2}=\right) " 100 "+" 64 "-139$ A1*: $\quad r=5$ following a correct method.		
(c) M1: Substitutes $x=13$ into either form of the circle equation, forms and solves the quadratic equation in y A1: Either $y=4$ or 12 A1: \quad Both $y=4$ and 12		

Question 7 notes continued

(d)

M1: Uses Pythagoras' Theorem to find length OC using their $(10,8)$
M1: Uses Pythagoras' Theorem to find $O X$. Look for $\sqrt{O C^{2}-r^{2}}$
A1: $\sqrt{139}$ only

Question	Scheme	Marks
8(a)	Substitutes $x=1$ in $C_{1}: y=10 x-x^{2}-8=10-1-8=1$ and in $C_{2}: y=x^{3}=1^{3}=1 \Rightarrow(1,1)$ lies on both curves.	B1
		(1)
(b)	$\begin{aligned} & 10 x-x^{2}-8=x^{3} \\ & x^{3}+x^{2}-10 x+8=0 \end{aligned}$	B1
	$(x-1)\left(x^{2}+2 x-8\right)=0$	M1 A1
	$(x-1)(x+4)(x-2)=0 \quad x=2$	M1 A1
	$(2,8)$	A1
		(6)
(c)	$\int\left\{\left(10 x-x^{2}-8\right)-x^{3}\right\} \mathrm{d} x$	M1
	$=5 x^{2}-\frac{x^{3}}{3}-8 x-\frac{x^{4}}{4}$	M1 A1
	Using limits 2 and 1: $\left(20-\frac{8}{3}-16-4\right)-\left(5-\frac{1}{3}-8-\frac{1}{4}\right)$	M1
	$=\frac{11}{12}$	A1
		(5)
(12 marks)		
Notes:		
(a) B1: Substitutes $x=$ nto both $y=10 x-x^{2}-8$ and $y=x^{3} \mathbf{A N D}$ achieves $y=1$ in both.		
(b) B1: Sets equations equal to each other and proceeds to $x^{3}+x^{2}-10 x+8=0$ M1: Divides by $(x-1)$ to form a quadratic factor. Allow any suitable algebraic method including division or inspection. A1: \quad Correct quadratic factor $\left(x^{2}+2 x-8\right)$ M1: For factorising of their quadratic factor. A1: Achieves $x=2$ A1: \quad Coordinates of $B=(2,8)$		
(c)		
	knowing that the area of $R=\int\left\{\left(10 x-x^{2}-8\right)-x^{3}\right\} \mathrm{d} x$ may also be scored for finding separate areas and subtracting. aising the power of x seen in at least three terms. ect integration. It may be left un-simplified. That is allow $\frac{10 x^{2}}{2}$ for $5 x^{2}$	

Question 8 notes continued

M1: For using the limits " 2 " and 1 in their integrated expression. If separate areas have been attempted, " 2 " and 1 must be used in both integrated expressions.
A1: For $\frac{11}{12}$ or exact equivalent.

Question			Marks
9(i)	Way 1 Divides by $\cos 3 \theta$ to give $\tan 3 \theta=\sqrt{3} \text { so } \Rightarrow(3 \theta)=\frac{\pi}{3}$	Way 2 Or Squares both sides, uses $\cos ^{2} 3 \theta+\sin ^{2} 3 \theta=1$, obtains $\begin{gathered} \cos 3 \theta= \pm \frac{1}{2} \text { or } \sin 3 \theta= \pm \frac{\sqrt{3}}{2} \\ \text { so }(3 \theta)=\frac{\pi}{3} \end{gathered}$	M1
	Adds π or 2π to previous value of angle(to give $\frac{4 \pi}{3}$ or $\frac{7 \pi}{3}$)		M1
	So $\theta=\frac{\pi}{9}, \frac{4 \pi}{9}, \frac{7 \pi}{9}$ (all three, no extra in range)		A1
			(3)
(ii)(a)	$4\left(1-\cos ^{2} x\right)+\cos x=4-k$	Applies $\sin ^{2} x=1-\cos ^{2} x$	M1
	Attempts to solve $4 \cos ^{2} x-\cos x-k=0$, to give $\cos x=$		dM1
	$\cos x=\frac{1 \pm \sqrt{1+16 k}}{8} \quad \text { or } \quad \cos x=\frac{1}{8} \pm \sqrt{\frac{1}{64}+\frac{k}{4}}$ or other correct equivalent		A1
			(3)
(b)	$\cos x=\frac{1 \pm \sqrt{49}}{8}=1$ and $-\frac{3}{4}$ (see the note below if errors are made)		M1
	Obtains two solutions from $0,139,221$ (0 or 2.42 or 3.86 in radians)		dM1
	$x=0$ and 139 and 221 (allow awrt 139 and 221) must be in degrees		A1
			(3)
9 marks)			
Notes:			
M1: Obtains $\frac{\pi}{3}$. Allow $x=\frac{\pi}{3}$ or even $\theta=\frac{\pi}{3}$. Need not see working here. May be implied by $\theta=\frac{\pi}{9}$ in final answer (allow $(3 \theta)=1.05$ or $\theta=0.349$ as decimals or $(3 \theta)=60$ or $\theta=20$ as degrees for this mark). Do not allow $\tan 3 \theta=-\sqrt{3}$ nor $\tan 3 \theta= \pm \frac{1}{\sqrt{3}}$			

Question 9 notes continued

A1: Need all three correct answers in terms of π and no extras in range.
NB: $\quad \theta=20^{\circ}, 80^{\circ}, 140^{\circ}$ earns M1M1A0 and $0.349,1.40$ and 2.44 earns M1M1A0
(ii)(a)

M1: Applies $\sin ^{2} x=1-\cos ^{2} x$ (allow even if brackets are missing e.g. $4 \times 1-\cos ^{2} x$).
This must be awarded in (ii) (a) for an expression with k not after $k=3$ is substituted.
dM1: Uses formula or completion of square to obtain $\cos x=$ expression in k (Factorisation attempt is M0)
A1: cao - award for their final simplified expression
(ii)(b)

M1: Either attempts to substitute $k=3$ into their answer to obtain two values for $\cos x$ Or restarts with $k=3$ to find two values for $\cos x$ (They cannot earn marks in ii(a) for this). In both cases they need to have applied $\sin ^{2} x=1-\cos ^{2} x$ (brackets may be missing) and correct method for solving their quadratic (usual rules - see notes) The values for $\cos x$ may be >1 or <-1.
dM1: Obtains two correct values for x
A1: Obtains all three correct values in degrees (allow awrt 139 and 221) including 0. Ignore excess answers outside range (including 360 degrees) Lose this mark for excess answers in the range or radian answers.

