Pure Mathematics P2 Mark scheme

Questio	n Scheme	Marks		
1(a)	$f(x) = x^4 + x^3 + 2x^2 + ax + b$			
	Attempting $f(1)$ or $f(-1)$	M1		
	$f(1) = 1 + 1 + 2 + a + b = 7$ or $4 + a + b = 7 \implies a + b = 3$			
	(as required) AG			
		(2)		
(b)	Attempting $f(-2)$ or $f(2)$	M1		
	$f(-2) = 16 - 8 + 8 - 2a + b = -8 \ \{ \Rightarrow -2a + b = -24 \}$	A1		
	Solving both equations simultaneously to get as far as $a =$ or $b =$	dM1		
	Any one of $a = 9$ or $b = -6$	A1		
	Both $a = 9$ and $b = -6$	A1		
		(5)		
		(7marks)		
Notes:				
A1: F th Alternati M1: F A1: C	the result given on the paper as $a + b = 3$. Note that the answer is given in part (a). Alternative M1: For long division by $(x - 1)$ to give a remainder in a and b which is independent of x . A1: Or {Remainder =} $b + a + 4 = 7$ leading to the correct result of $a + b = 3$ (answer given). (b)			
A1: <u>co</u>	<u>correct underlined equation</u> in <i>a</i> and <i>b</i> ; e.g. $16-8+8-2a+b=-8$ or equivalent,			
	g. $-2a + b = -24$.			
N				
A1: A	Any one of $a = 9$ or $b = -6$.			
A1: B	oth $a = 9$ and $b = -6$ and a correct solution only.			
Alternat		_		
	or long division by $(x + 2)$ to give a remainder in <i>a</i> and <i>b</i> which is independent of	f <i>x</i> .		
A1: Fo	or {Remainder = } $\underline{b-2(a-8)=-8}$ { $\Rightarrow -2a+b=-24$ }.			
Т	nen dM1A1A1 are applied in the same way as before.			

Question	Sche	me	Marks
2(a)	$S_{\infty} = \frac{20}{1-\frac{7}{2}}; = 160$	Use of a correct S_{∞} formula	M1
	$S_{\infty} = \frac{1}{1 - \frac{7}{8}}, 100$	160	A1
		·	(2)
(b)	$S_{12} = \frac{20(1 - (\frac{7}{8})^{12})}{1 - \frac{7}{8}}; = 127.77324$ $= 127.8 (1 \text{ dp})$	M1: Use of a correct S_n formula with $n = 12$ (condone missing brackets around $\frac{7}{8}$) A1: awrt 127.8	M1 A1
			(2)
(c)	$160 - \frac{20(1 - (\frac{7}{8})^N)}{1 - \frac{7}{8}} < 0.5$	Applies S_N (GP only) with $a = 20$, $r = \frac{7}{8}$ and "uses" 0.5 and their S_{∞} at any point in their working.	M1
	$160\left(\frac{7}{8}\right)^{N} < (0.5) \text{ or } \left(\frac{7}{8}\right)^{N} < \left(\frac{0.5}{160}\right)$	Attempt to isolate $+160\left(\frac{7}{8}\right)^{N}$ or $\left(\frac{7}{8}\right)^{N}$	dM1
	$N\log\left(\frac{7}{8}\right) < \log\left(\frac{0.5}{160}\right)$	Uses the law of logarithms to obtain an equation or an inequality of the form $N \log \left(\frac{7}{8}\right) < \log \left(\frac{0.5}{\text{their } S_{\infty}}\right)$ or $N > \log_{0.875} \left(\frac{0.5}{\text{their } S_{\infty}}\right)$	M1
	$N > \frac{\log\left(\frac{0.5}{160}\right)}{\log\left(\frac{7}{8}\right)} = 43.19823$ $\Rightarrow N = 44$ cso	$N = 44 \text{ (Allow } N \ge 44 \text{ but no } N > 44$	A1 cso
	An incorrect inequality statement at an the final mark. Some candidates do inequality is reversed in the final line o gain full marks for using =, as long as n	not realise that the direction of the of their solution. BUT it is possible to	
			(4)
	Alternative: Trial & Improvement M	lethod in (c):	
	Attempts $160 - S_N$ or S_N with at least one value for $N > 40$		
	Attempts $160 - S_N$ or S_N with $N = 43$ or $N = 44$		
	For evidence of examining $160 - S_N$ or S_N for both $N = 43$ and $N = 44$ with both values correct to 2 DP Eg: $160 - S_{43} = awrt 0.51$ and $160 - S_{44} = awrt 0.45$ or $S_{43} = awrt 159.49$ and $S_{44} = awrt 159.55$		M1
	N = 44		
	Answer of $N = 44$ only with n	o working scores no marks	
			(4)
		(8 marks)

Quest	tion Scheme	Marks		
3 (a) $\begin{array}{ c c c c c c c c c c c c c c c c c c c$	B1 B1		
		(2)		
(b)	$\frac{1}{2} \times 0.25, \ \{(1+2) + 2(1.251 + 1.494 + 1.741)\} \text{ o.e.}$	B1 M1 A1ft		
	= 1.4	965 A1		
		(4)		
(c)	 c) Gives any valid reason including Decrease the width of the strips Use more trapezia Increase the number of strips Do not accept use more decimal places 			
		(1)		
Notes:		(7 marks)		
(a) B1: B1: (b) B1: M1: A1ft: A1:	 For 1.494 For 1.741 (1.740 is B0). Wrong accuracy e.g. 1.49, 1.74 is B1B0 Need ½ of 0.25 or 0.125 o.e. Requires first bracket to contain first plus last values and second bracket to include no additional values from the three in the table. If the only mistake is to omit one value from second bracket this may be regarded as a slip and M mark can be allowed (An extra repeated term forfeits the M mark however) <i>x</i> values: M0 if values used in brackets are <i>x</i> values instead of <i>y</i> values ft: Follows their answers to part (a) and is for {correct expression} 			
	Separate trapezia may be used: B1 for 0.125, M1 for $\frac{1}{2}h(a+b)$ A1 ft if it is all correct) e.g. 0.125(1+ 1.251) + 0.125(1.251+1.4) M1 A0 equivalent to missing one term in { } in main scheme.	×		

n				Scheme		Marks
A	solution	n based are	ound a tab	le of resul	ts	
	n	n^2	$n^2 + 2$			
	1	1	3	Odd		
_	2	4	6	Even		
	3	9	11	Odd		
	4	16	18	Even		
	5	25	27	Odd		
	6	36	38	Even		
V	Vhen <i>n</i> i	s odd, n^2 i	s odd (odd	\times odd = od	dd) so $n^2 + 2$ is also odd	M1
S	o for all		rs <i>n</i> , n^2 +	2 is also o	dd and so cannot be divisible by 4	Al
	Vhen <i>n</i> i nultiple o		is even an	d a multip	le of 4, so $n^2 + 2$ cannot be a	M1
	-		-		for both of the cases above plus a be divisible by 4"	A1*
						(4)
A	lternati	ve - (algebi	raic) proof	ſ		1
			1	1	$ = \frac{4k^2 + 2}{4} = k^2 + \frac{1}{2} $	M1
I	f <i>n</i> is odd	n = 2k + 1	, so $\frac{n^2 + 2}{4}$	$\frac{2}{4} = \frac{\left(2k+1\right)}{4}$	$\frac{k^2+2}{4} = \frac{4k^2+4k+3}{4} = k^2+k+\frac{3}{4}$	M1
F	or a part	ial explanat	ion stating	that		
• either of $k^2 + \frac{1}{2}$ or $k^2 + k + \frac{3}{4}$ are not a whole numbers.					A1	
• with some valid reason stating why this means that $n^2 + 2$ is not a multiple of 4.						
F	ull proof	with no er	rors or omi	ssions. Thi	s must include	
		e conjectur		1 0 1		
• Correct notation and algebra for both even and odd numbers				A1*		
	• A by		ation statin	g why, for	all n , $n^2 + 2$ is not divisible	
						(4)
					(4 marks

uestion		Scheme		Marks	
5(a)	$(S=)a + (a+d) + \dots + [a+(n-1)d]$		B1: requires at least 3 terms, must include first and last terms, an adjacent term and dots!	B1	
	$(S =)[a+(n-1)d] + \dots + a$		M1: for reversing series (dots needed)	M1	
	$2S = [2a + (n-1)d] + \dots + [2a + (n-1)d]$	n – 1)d]	dM1: for adding, must have $2S$ and be a genuine attempt. Either line is sufficient. Dependent on 1^{st} M1.	dM1	
	2S = n[2a + (n-1)d]		(NB –Allow first 3 marks for use of <i>l</i> for last term but as given for final mark)		
	$S = \frac{n}{2} \left[2a + (n-1)d \right] \operatorname{cso}$			A1	
				(4)	
(b)	$600 = 200 + (N-1)20 \Longrightarrow N = \dots$		600 with a <u>correct</u> formula in an t to find <i>N</i> .	M1	
	N = 21	cso		A1	
			a	(2)	
(c)	Look for an AP first:				
	$S = \frac{21}{2} (2 \times 200 + 20 \times 20) \text{ or}$ $\frac{21}{2} (200 + 600)$	M1: Use of correct sum formula with their integer $n = N$ or $N - 1$ from part (b) where $3 < N < 52$ and $a = 200$ and $d = 20$.			
	$S = \frac{20}{2} (2 \times 200 + 19 \times 20) \text{ or}$ $\frac{20}{2} (200 + 580)$ $(= 8400 \text{ or } 7800)$	M1: Us their in (b) whe = 20 .	M1A1		
	Then for the constant terms:				
	$600 \times (52 - "N") (= 18600)$	M1: $600 \times k$ where k is an integer and 3 $< k < 52$		M1	
		through	correct un-simplified follow n expression with their k ent with n so that 52	A1ft	
	So total is 27000	cao		A1	
		1			
	There are no mark	ks in (c) f	for just finding S52		

Quest	on	Scheme			
6(i)	6(i) $\log_2\left(\frac{2x}{5x+4}\right) = -3$ or $\log_2\left(\frac{5x+4}{2x}\right) = 3$ or $\log_2\left(\frac{5x+4}{x}\right) = 4$		M1		
	$\left(\frac{2x}{5x+4}\right) = 2^{-3} \text{or} \left(\frac{5x+4}{2x}\right) = 2^3 \text{or} \left(\frac{5x+4}{x}\right) = 2^4$		M1		
	$16x = 5x + 4 \implies x = (depends on N)$	Is and must be this equation or equiv)	dM1		
	$x = \frac{4}{11}$ or exact recurring decimal	0.36 after correct work	A1 cso		
	Alternative				
	$\log_2(2x)$ -	$+3 = \log_2(5x+4)$			
	So $\log_2(2x) + \log_2(8) = \log_2(5x + 4)$	earns 2^{nd} M1 (3 replaced by $\log_2 8$)	2 nd M1		
	Then $\log_2(16x) = \log_2(5x+4)$ earr	ns 1 st M1 (addition law of logs)	1 st M1		
	Then final M1 A1 as before		dM1A1		
			(4)		
(ii)	$\log_a y + \log_a 2^3 = 5$		M1		
	$\log_a 8y = 5$	Applies product law of logarithms	dM1		
	$y = \frac{1}{8}a^5$ cso $y = \frac{1}{8}a^5$ cso		A1		
			(3)		
			(7 marks)		
Notes:					
M1:	For RHS of either 2 ⁻³ , 2 ³ , 2 ⁴ or $\log_2\left(\frac{1}{8}\right)$, $\log_2 8$ or $\log_2 16$ i.e. using connection				
dM1:	between log base 2 and 2 to a power. This may follow an error. Use of 3^2 is M0 Obtains correct linear equation in x. usually the one in the scheme and attempts $x =$ cso. Answer of 4/11 with no suspect log work preceding this.				
	Applies power law of logarithms to replace $3\log_a 2$ by $\log_a 2^3$ or $\log_a 8$ (Should not be following M0) Uses addition law of logs to give $\log_a 2^3 y = 5$ or $\log_a 8y = 5$				

Questi	on Scheme	Marks	
7(a)	Obtain $(x \pm 10)^2$ and $(y \pm 8)^2$	M1	
	(10, 8)	A1	
		(2)	
(b)	See $(x \pm 10)^2 + (y \pm 8)^2 = 25 (= r^2)$ or $(r^2 =) "100" + "64" - 139$	M1	
	r = 5*	A1	
		(2)	
(c)	Substitute $x = 13$ into the equation of circle and solve quadratic to give $y =$	M1	
	e.g. $x = 13 \implies (13 - 10)^2 + (y - 8)^2 = 25 \implies (y - 8)^2 = 16$	A1 A1	
	so $y = 4$ or 12		
	N.B. This can be attempted via a 3, 4, 5 triangle so spotting this and achieving one value for y is M1 A1. Both values scores M1 A1 A1		
		(3)	
(d)	$OC = \sqrt{10^2 + 8^2} = \sqrt{164}$	M1	
	Length of tangent = $\sqrt{164 - 5^2} = \sqrt{139}$	M1 A1	
		(3)	
	(10 marks)	
Alterna	Obtains $(x \pm 10)^2$ and $(y \pm 8)^2$ May be implied by one correct coordinate (10, 8) Answer only scores both marks. Ative: <i>Method 2:</i> From $x^2 + y^2 + 2gx + 2fy + c = 0$ centre is $(\pm g, \pm f)$ Obtains $(\pm 10, \pm 8)$		
	Centre is $(-g, -f)$, and so centre is (10, 8).		
(b)			
	For a correct method leading to $r = \dots$, or $r^2 =$		
	Allow "100"+"64"-139 or an attempt at using $(x \pm 10)^2 + (y \pm 8)^2 = r^2$ form to ident $r = 5$ This is a printed answer, so a correct method must be seen.	r = 1	
Alterna (b)	tive:		
	Attempts to use $\sqrt{g^2 + f^2 - c}$ or $(r^2 =)$ "100"+"64"-139		
A1*:	r = 5 following a correct method.		
	Substitutes $x = 13$ into either form of the circle equation, forms and solves the quadratic equation in y		
	her $y = 4$ or 12		
A1:	Both $y = 4$ and 12		

Question 7 notes continued

(d)

- M1: Uses Pythagoras' Theorem to find length OC using their (10,8)
- M1: Uses Pythagoras' Theorem to find OX. Look for $\sqrt{OC^2 r^2}$
- A1: $\sqrt{139}$ only

	n Scheme	Marks
8(a)	Substitutes $x = 1$ in C_1 : $y = 10x - x^2 - 8 = 10 - 1 - 8 = 1$	B1
	and in C_2 : $y = x^3 = 1^3 = 1 \implies (1, 1)$ lies on both curves.	
		(1)
(b)	$10x - x^2 - 8 = x^3$	B1
	$x^3 + x^2 - 10x + 8 = 0$	
	$(x-1)(x^2+2x-8) = 0$	M1 A1
	$(x-1)(x+4)(x-2) = 0 \qquad x = 2$	M1 A1
	(2, 8)	A1
()		(6)
(c)	$\int \left\{ \left(10x - x^2 - 8 \right) - x^3 \right\} dx$	M1
	$=5x^2 - \frac{x^3}{3} - 8x - \frac{x^4}{4}$	M1 A1
	Using limits 2 and 1: $\left(20 - \frac{8}{3} - 16 - 4\right) - \left(5 - \frac{1}{3} - 8 - \frac{1}{4}\right)$	M1
	$=\frac{11}{12}$	A1
		(5)
		(12 marks)
Notes:		
(a)		
	ubstitutes r = nto both $y = 10r$, $r^2 = 8$ and $y = r^3 AND$ achieves $y = 1$ in both	
B1: S	ubstitutes x = nto both $y = 10x - x^2 - 8$ and $y = x^3$ AND achieves $y = 1$ in both.	
(b)		
(b) B1: S	ets equations equal to each other and proceeds to $x^3 + x^2 - 10x + 8 = 0$	including
(b) B1: S M1: I	ets equations equal to each other and proceeds to $x^3 + x^2 - 10x + 8 = 0$ vivides by $(x - 1)$ to form a quadratic factor. Allow any suitable algebraic method	including
(b) B1: S M1: I d	ets equations equal to each other and proceeds to $x^3 + x^2 - 10x + 8 = 0$	including
(b) B1: S M1: I d A1: C	ets equations equal to each other and proceeds to $x^3 + x^2 - 10x + 8 = 0$ vivides by $(x - 1)$ to form a quadratic factor. Allow any suitable algebraic method ivision or inspection.	including
(b) B1: S M1: I d A1: C M1: F	ets equations equal to each other and proceeds to $x^3 + x^2 - 10x + 8 = 0$ vivides by $(x - 1)$ to form a quadratic factor. Allow any suitable algebraic method ivision or inspection.	including
(b) B1: S M1: I d A1: C M1: F A1: A	ets equations equal to each other and proceeds to $x^3 + x^2 - 10x + 8 = 0$ vivides by $(x - 1)$ to form a quadratic factor. Allow any suitable algebraic method ivision or inspection. orrect quadratic factor $(x^2 + 2x - 8)$ or factorising of their quadratic factor.	including
(b) B1: S M1: I d A1: C M1: F A1: A	ets equations equal to each other and proceeds to $x^3 + x^2 - 10x + 8 = 0$ vivides by $(x - 1)$ to form a quadratic factor. Allow any suitable algebraic method ivision or inspection. Forrect quadratic factor $(x^2 + 2x - 8)$ or factorising of their quadratic factor. Suchieves $x= 2$	including
(b) B1: S M1: I d A1: C M1: F A1: A A1: C (c)	ets equations equal to each other and proceeds to $x^3 + x^2 - 10x + 8 = 0$ vivides by $(x - 1)$ to form a quadratic factor. Allow any suitable algebraic method ivision or inspection. Forrect quadratic factor $(x^2 + 2x - 8)$ or factorising of their quadratic factor. Suchieves $x= 2$	including
(b) B1: S M1: I d A1: C M1: F A1: A A1: C (c) M1: F	ets equations equal to each other and proceeds to $x^3 + x^2 - 10x + 8 = 0$ vivides by $(x - 1)$ to form a quadratic factor. Allow any suitable algebraic method ivision or inspection. orrect quadratic factor $(x^2 + 2x - 8)$ or factorising of their quadratic factor. chieves $x=2$ oordinates of $B = (2, 8)$ or knowing that the area of $R = \int \{(10x - x^2 - 8) - x^3\} dx$	including
(b) B1: S M1: I d A1: C M1: F A1: A A1: C (c) M1: F	ets equations equal to each other and proceeds to $x^3 + x^2 - 10x + 8 = 0$ vivides by $(x - 1)$ to form a quadratic factor. Allow any suitable algebraic method ivision or inspection. orrect quadratic factor $(x^2 + 2x - 8)$ or factorising of their quadratic factor. chieves $x = 2$ oordinates of $B = (2, 8)$	including

Question 8 notes continued		
M1:	For using the limits "2" and 1 in their integrated expression. If separate areas have been attempted, "2" and 1 must be used in both integrated expressions.	
A1:	For $\frac{11}{12}$ or exact equivalent.	

Question	Scheme			
9(i)	Way 1	Way 2	M1	
	Divides by $\cos 3\theta$ to give	Or Squares both sides, uses		
	$\tan 3\theta = \sqrt{3} \text{ so} \Rightarrow (3\theta) = \frac{\pi}{3}$	$\cos^2 3\theta + \sin^2 3\theta = 1$, obtains		
	3	$\cos 3\theta = \pm \frac{1}{2} \text{ or } \sin 3\theta = \pm \frac{\sqrt{3}}{2}$		
		so $(3\theta) = \frac{\pi}{3}$		
	Adds π or 2π to previous value of an	gle(to give $\frac{4\pi}{3}$ or $\frac{7\pi}{3}$)	M1	
	So $\theta = \frac{\pi}{9}$,	$\frac{4\pi}{9}$, $\frac{7\pi}{9}$ (all three, no extra in range)	A1	
			(3)	
(ii)(a)	$4(1 - \cos^2 x) + \cos x = 4 - k$	Applies $\sin^2 x = 1 - \cos^2 x$	M1	
	Attempts to solve $4\cos^2 x - \cos x - k$	$k = 0$, to give $\cos x =$	dM1	
	$\cos x = \frac{1 \pm \sqrt{1 + 16k}}{8} \qquad \text{or} \qquad \cos x = \frac{1 \pm \sqrt{1 + 16k}}{8}$	$x = \frac{1}{8} \pm \sqrt{\frac{1}{64} + \frac{k}{4}}$	A1	
	or other correct equivalent			
			(3)	
(b)	$\cos x = \frac{1 \pm \sqrt{49}}{8} = 1 \text{ and } -\frac{3}{4}$ (see the note below if errors are made)	M1	
	Obtains two solutions from 0, 139, 221			
	(0 or 2.42 or 3.86 in radians)			
	``````````````````````````````````````	t 139 and 221) must be in degrees	A1	
			(3)	
			(9 marks)	
Notes:			(> mar x5)	
(i)				
	$ns\frac{\pi}{3}$ . Allow $x = \frac{\pi}{3}$ or even $\theta = \frac{\pi}{3}$ . New	ed not see working here. May be implied	by	
)		$\theta = 0.349$ as decimals or $(3\theta) = 60$ or $\theta$	=20 as	
	es for this mark). Do not allow $\tan 3\theta$	<b>N</b> 5		
		er obtained. It is not dependent on the pre		
		$\theta = \frac{4\pi}{9}$ or $\frac{7\pi}{9}$ ). This mark may also be	given for	
answe	ers as decimals [4.19 or 7.33], or degree	225 (240 01 420).		

Question 9 notes continued				
A1:	Need all three correct answers in terms of $\pi$ and <b>no extras in range</b> .			
NB:	$\theta = 20^{\circ}, 80^{\circ}, 140^{\circ}$ earns M1M1A0 and 0.349, 1.40 and 2.44 earns M1M1A0			
(ii)(a)				
M1:	Applies $\sin^2 x = 1 - \cos^2 x$ (allow even if brackets are missing e.g. $4 \times 1 - \cos^2 x$ ).			
	This must be awarded in (ii) (a) for an expression with $k$ not after $k = 3$ is substituted.			
dM1:	Uses formula or completion of square to obtain $\cos x = \exp(\sin h x)$			
	(Factorisation attempt is M0)			
A1:	cao - award for their final simplified expression			
(ii)(b)				
M1:	<b>Either</b> attempts to substitute $k = 3$ into their answer to obtain two values for $\cos x$			
	<b>Or</b> restarts with $k = 3$ to find two values for $\cos x$ (They cannot earn marks in ii(a) for			
	this). In both cases they need to have applied $\sin^2 x = 1 - \cos^2 x$ (brackets may be missing)			
	and correct method for solving their quadratic (usual rules – see notes) The values for $\cos x$ may be >1 or < -1.			
dM1:	Obtains <b>two correct</b> values for <i>x</i>			
A1:	Obtains <b>all three correct values</b> in degrees (allow awrt 139 and 221) including 0. Ignore excess answers outside range (including 360 degrees) Lose this mark for excess answers in the range or radian answers.			