Specimen Paper WMA12/01

Question Number	Scheme	Marks
1. (a)	$\left(1 - \frac{1}{8}x\right)^{10} = 1 + 10\left(-\frac{1}{8}x\right)^{1} + \frac{10 \times 9}{2}\left(-\frac{1}{8}x\right)^{2} + \frac{10 \times 9 \times 8}{3!}\left(-\frac{1}{8}x\right)^{3} + \dots$	M1
	$=1-\frac{5}{4}x+\frac{45}{64}x^2-\frac{15}{64}x^3$	A1, A1
		(3)
(b)	$g(x) = (3+10x) \left(1 - \frac{5}{4}x + \frac{45}{64}x^2 - \frac{15}{64}x^3 + \right)$	
	Coefficient of $x^3 = 10 \times \frac{45}{64} + 3 \times -\frac{15}{64} = \frac{405}{64}$	M1 A1
		(2) (5 marks)

(a)

M1 For an attempt at the binomial expansion. Score for a correct attempt at term 2, 3 or 4. Accept sight of ${}^{10}C_1\left(\pm\frac{1}{8}x\right)^1$ or ${}^{10}C_2\left(\pm\frac{1}{8}x\right)^2$ or ${}^{10}C_3\left(\pm\frac{1}{8}x\right)^3$ condoning the omission of brackets. Accept any coefficient appearing from Pascal's triangle. FYI 10, 45, 120 A1 For any two non constant terms of $1-\frac{5}{4}x+\frac{45}{64}x^2-\frac{15}{64}x^3$ A1 For all four terms $1-\frac{5}{4}x+\frac{45}{64}x^2-\frac{15}{64}x^3$ ignoring terms with greater powers (b) M1 For attempting to find 10b+3c for their $(3+10x)(1+ax+bx^2+cx^3+)$

A1 For $\frac{405}{64}$

Specimen Paper WMA12/01

Question Number	Scheme	Marks
2	$y = 2x^{\frac{3}{2}} - 16x^{-2} - 6x + 9$	B1
	$\int 2x^{\frac{3}{2}} - 16x^{-2} - 6x + 9 dx = \frac{4}{5}x^{\frac{5}{2}} + \frac{16}{x} - 3x^{2} + 9x$ $\int_{4}^{9} \left(\frac{4}{5}x^{\frac{5}{2}} + \frac{16}{x} - 3x^{2} + 9x\right) dx = \left(\frac{4}{5} \times 9^{\frac{5}{2}} + \frac{16}{9} - 3 \times 9^{2} + 9 \times 9\right) - \left(\frac{4}{5} \times 4^{\frac{5}{2}} + \frac{16}{4} - 3 \times 4^{2} + 9 \times 4\right)$ $= 16^{\frac{26}{45}}$	M1 A1 A1 dM1 A1
		(6) (6 marks)

B1 For
$$y = 2x^{\frac{3}{2}} - 16x^{-2} - 6x + 9$$

M1 Any correct index

A1 Two correct terms of (may be un-simplified) $\frac{4}{5}x^{\frac{5}{2}} + \frac{16}{x} - 3x^2 + 9x$

- A1 All terms correct of (may be un-simplified) $\frac{4}{5}x^{\frac{5}{2}} + \frac{16}{x} 3x^2 + 9x$
- dM1 Substitutes 9 and 4 into their integral and subtracts either way around
- A1 $16\frac{26}{45}$

www.igexams.com Specimen Paper WMA12/01

edexce

Question Number	Scheme	Marks
3. (a)	$a+5d=11$ and $\frac{3}{2}\{2a+2d\}=-15$	B1 B1
	Solves simultaneously $\Rightarrow d = 4, a = -9*$	M1 A1
		(4)
(b)	Attempts $\frac{n}{2} \{ 2 \times -9 + (n-1) \times 4 \} \dots 888$	M1
	$2n^2 - 11n - 8880 \Longrightarrow n = (24)$	M1
	<i>n</i> = 25	A1 (3)
		(7 marks)

(a)

One of a+5d = 11 or $\frac{3}{2} \{2a+3d\} = -15$ B1

For the sum you may see a + a + d + a + 2d = -15

Both formulae correct. May be un-simplified B1

Solves their two formulae (one of which must be correct) and finds at least a or d M1

For d = 4, a = -9*A1

(b)

- Attempts to use the AP $\frac{n}{2} \{2 \times -9 + (n-1) \times 4\}$...888 with their *a* and *d* M1
- Solves their equation for *n*. Allow trial and improvement/ calculator /factoristion /formulae. M1 FYI the correct equations are $n(2n-11) = 888 2n^2 - 11n - 888 = 0$
- (The n = -18.5 if found must not be given as a possible answer) *n* = 25 A1

Specimen Paper WMA12/01

Question Number	Scheme	Marks
	$f(x) = 2x^{3} + \frac{3}{2}x^{2} - 18x + 3$	
4.(a)	$f'(x) = 6x^2 + 3x - 18$	B1
	Sets $f'(x) = 0 \Longrightarrow 6x^2 + 3x - 18 = 0 \Longrightarrow x = -2, \frac{3}{2}$	M1 A1
	$-2 < x < \frac{3}{2}$	A1 ft
		(4)
(b)	Attempts to find $f(-2)$ or $f\left(\frac{3}{2}\right)$	M1
	Finds the local max and min values 29 and -13.875	A1
	k < -13.875, k > 29	Alft
		(3)
		(7 marks)

(a)

B1 $f'(x) = 6x^2 + 3x - 18$ which may be un-simplified

M1 Sets their f'(x) = 0 and attempts to solve using any allowable method including use of a calculator

A1 $x = -2, \frac{3}{2}$

A1 ft
$$-2 < x < \frac{3}{2}$$
 or -2 , $x_{,,x} = \frac{3}{2}$ but follow through on the inside region for their $x = -2, \frac{3}{2}$

(b)

M1 Attempts to find the y value at either of their turning points found in (a) f(-2) or $f\left(\frac{3}{2}\right)$

A1 Finds the local maximum and minimum values of 29 and -13.875

A1ft k < -13.875, k > 29 but follow through on the outside region for their -13.875 and 29

Specimen Paper WMA12/01

Que Nu	estion mber	Scheme	Marks
5	5. (a)	Sets $f(\pm 2) = -24 \rightarrow$ equation in <i>a</i> Eg. $-8 + 16 + a = -24$ $\Rightarrow a = -32 *$	M1 A1* (2)
0	b) (i)	$x^{3} - 8x - 32 = (x - 4)(x^{2} + 4x + 8)$	M1 A1
	(ii)	Attempts to find roots of $x^2 + 4x + 8 = 0 \Longrightarrow (x+2)^2 = -4$	M1
		States that $x^2 + 4x + 8 = 0$ has no (real) roots as there are no real solutions to $\sqrt{-4}$ so $f(x) = 0$ has only one (real) root, $x = 4$	A1
			(4) (6 marks)
(a) M1	Sets f	$f(\pm 2) = -24 \rightarrow$ equation in a Eg. $-8 + 16 + a = -24$. Condone sign slips	I
A1*	Sets f	$(-2) = -24 \rightarrow Completes proof with at least one intermediate "solvable" line s$	such as
	-8 + 1	6 + a = -24	
(b)(1) M1	Attempt to divide or factorise out $(x-4)$		
	By fac	etorisation look for $x^{3} - 8x - 32 = (x - 4)(x^{2} + kx \pm 8)$ $k \neq 0$	
	By div	vision look for $x-4\overline{\smash{\big)}x^3+0x^2-8x-32}$ $\underline{x^3-4x^2}$	
A1	Correc	ct factors $(x-4)(x^2+4x+8)$	
(b)(ii)			
M1	Attem	pt to find the (number of) roots of their $(x^2 + 4x + 8)$	
	Allow Allow	completing the square (See scheme) formula	
A1	Allow CSO.	a attempt at $b^2 - 4ac$ This requires	
	•	Correct factors $(x-4)(x^2+4x+8)$	
	•	Correct working leading to conclusion that $(x^2 + 4x + 8)$ has no real roots	
	•	A statement that $f(x) = 0$ has only one real root, $x = 4$	

Specimen Paper WMA12/01

Question Number	Scheme	Marks	
6.(a)	y f		
	Shape or intercept at 1	M1	
	Fully correct	A1	
	O		(2)
	h = 0.4	B1	
(b)	Area $\approx \frac{0.4}{2} \{ 11 + 85 + 2 \times (16.37 + 24.47 + 36.83 + 55.8) \}$	M1	
	=72.6	A1	(3)
(c)	$\int_{2}^{4} \left(3^{x+1} + x\right) dx = \int_{2}^{4} 3 \times \left(3^{x} + x\right) - 2x dx = 3 \times (b) - \int_{2}^{4} 2x dx$	M1	(3)
	$=3\times(b)-\left[x^2\right]_2^4$	dM1	
	= 205.8	A1ft	
		(8 marks)	(3)

(a)

- M1 For either the shape (any position) or the *y*-intercept at 1
- A1 Fully correct. Shape in quadrants 1 and 2 only with the *y* -intercept at 1

(b)

- B1 For h = 0.4 This is implied by sight of $\frac{0.4}{2}$ in front of the bracket
- M1 For a correct bracket condoning slips.

A1 awrt 72.6

(c)

M1 For realising that
$$\int_{2}^{4} \left(3^{x+1} + x\right) dx = \int_{2}^{4} 3 \times \left(3^{x} + x\right) - 2x \, dx = 3 \times (b) \pm \int_{2}^{4} px \, dx$$

dM1 For $3 \times (b) \pm \left[\frac{px^{2}}{2}\right]_{2}^{4}$

A1ft awrt 205.8 or follow through on the answer to their 3(b) - 12

Specimen Paper WMA12/	01
-----------------------	----

Question Number	Sch	eme	Marks
7.(i)		2^{3x}	M1
	$\log_2 3 + \log_2 2^{x-2} = \log_2 8^x$	$\frac{1}{2^{x-2}} = 3$	
	$\Rightarrow \log_2 3 + x - 2 = 3x$	$2^{2x+2} = 3 \Longrightarrow (2x+2) = \log_2 3$	A1
	$\Rightarrow 2x = \log_2 3 - 2$	$\Rightarrow 2x = \log_2 3 - 2$	dM1
	$\Rightarrow x = \frac{\log_2 3}{2} - 1$	$\Rightarrow x = \frac{\log_2 3}{2} - 1$	A1
(**)			(4)
(11)	$2\log_5(2y+1) - \log_5(2-y) = 1$		
	$\log_5 \frac{(2y+1)^2}{(2-y)} = 1$		M1
	$\frac{(2y+1)^2}{(2-y)} = 5$		A1
	$4y^2 + 9y - 9 = 0 \Longrightarrow y = \frac{3}{4}, -3$		dM1
	States that -3 cannot be a solution as	$\log_5(2y+1)$ doesn't exist for $y = -3$	A1
	Only solution is $y = \frac{3}{4}$		(4)
			(8 marks)
(i)			

(i) M1

Takes logs of both sides and uses one rule correctly. Either $\log_2 3 \times 2^{x-2} = \log_2 3 + \log_2 2^{x-2}$ or $\log_2 8^x = x \log_2 8$

Alternatively attempts to collect terms in x together writing 8^x as 2^{3x}

A1 For a correct equation linear equation in *x*

Allow for $\log_2 3 + x - 2 = 3x$

 $\log_2 3 + x - 2 = x \log_2 8$ $(2x+2) = \log_2 3$

 $(2x+2)\log_2 2 = \log_2 3$

dM1 Having achieved a linear equation in x, and used two log rules correctly, it is scored for making x the subject. The solution may be still in terms of $\log_2 8$

A1
$$x = \frac{\log_2 3}{2} - 1$$
 or exact equivalent such as $x = \frac{\log_2 3 - 2}{2}$.

(ii)

M1 Uses two log laws Eg. $2\log_5(2y+1) - \log_5(2-y) = \log_5\frac{(2y+1)^2}{(2-y)}$

- A1 A correct equation in y
- dM1 Dependent upon having scored the M1. It is for proceeding to find at least one value for *y* using a correct method including use of a calculator.

A1 States that -3 cannot be a solution as
$$\log_5(2y+1)$$
 is not defined for/doesn't exist for $y = -3$

Hence only solution is $y = \frac{3}{4}$

Specimen Paper WMA12/01

Quest Numl	tion ber	Scheme	Marks	
8 (a	a)	$t=1 \Rightarrow H=3-1.2\sin\left(\frac{\pi}{6}\right)=2.4 \text{ (m)}^{*}$	B1*	
(b))	Maximum = 4.2 m	B1 (1) (1)	
(0	c)	$H = 3.5 \Longrightarrow 3.5 = 3 - 1.2 \sin\left(\frac{\pi t}{6}\right)$		
		$\Rightarrow \sin\left(\frac{\pi t}{6}\right) = -\frac{5}{12}$	M1 A1	
		$\Rightarrow \sin\left(\frac{\pi t}{6}\right) = -\frac{5}{12} \Rightarrow t = \frac{6 \times \left(\pi + \arcsin\left(\frac{5}{12}\right)\right)}{\pi} = 6.82(081) \rightarrow 11:49 \text{ am}$	M1A1	
		And $\Rightarrow t = \frac{6 \times \left(2\pi - \arcsin\left(\frac{5}{12}\right)\right)}{\pi} = 11.17(919) = 4:11 \mathrm{pm}$	M1A1	
			(6) (8 marks)	
(a) B1* This is a given answer. Score for sight of $3-1.2\sin\left(\frac{\pi}{6}\right) = 2.4$ (m) OR $3-1.2 \times \frac{1}{2} = 2.4$ (m)				
(b) B1 For 4.2 (m) (c)				
M1 F	M1 For substituting $H = 3.5$ into $H = 3 - 1.2 \sin\left(\frac{\pi t}{6}\right)$ WITH some attempt to make $\sin\left(\frac{\pi t}{6}\right)$ the subject.			
You may	You may see the $\left(\frac{\pi t}{6}\right)$ being replaced by another variable which is fine for the first two marks			
A1 s	$\sin\left(\frac{\pi t}{6}\right)$	$\left(\frac{5}{12}\right) = -\frac{5}{12}$ oe Condone awrt $\sin\left(\frac{\pi t}{6}\right) = -0.417$		
M1 F	for a co	prrect attempt to find one of the first two values of t using their $-\frac{5}{12}$.		
Either $t = \frac{6 \times \left(2\pi - \arcsin\left(\frac{5}{12}\right)\right)}{12}$ or $\frac{6 \times \left(\pi + \arcsin\left(\frac{5}{12}\right)\right)}{12}$				

One correct value of *t* awrt 6.8 or awrt 11.2 A1

π

For a (correct) attempt to find the second value of t using their $-\frac{5}{12}$ M1

A1 Both 11:49 am and 4:11 pm

Note: Some candidates may choose to do part (c) using degrees. This is fine and the scheme can be applied

π

M1 A1 $\sin(30t) = -\frac{5}{12}$

M1 Attempts to find one value of t (but the units must be consistent)

$$\sin(30t) = -\frac{5}{12} \Rightarrow 30t = 204.6 \text{ or } 335.4 \Rightarrow t =$$

Questic Numbe	n Scheme	Marks	
9.(a)	Uses common ratio's $\Rightarrow \frac{\cos\theta}{\sin\theta} = \frac{0.5}{\cos\theta}$	B1	
	Uses $\cos^2 \theta = 1 - \sin^2 \theta \ \cos^2 \theta = 0.5 \sin \theta \Rightarrow 1 - \sin^2 \theta = 0.5 \sin \theta$	M1	
	$2\sin^2\theta + \sin\theta - 2 = 0 *$	A1*	
		(3)	
(b)	Attempts to solve $2\sin^2 \theta + \sin \theta - 2 = 0 \Rightarrow \sin \theta = \frac{-1 \pm \sqrt{17}}{4}$	M1	
	$\sin\theta = \frac{-1 + \sqrt{17}}{4}$	A1	
	Solves by using arcsin to find solution(s)	M1	
	$\theta = 128.7^{\circ}$	A1	
		(4)	
(c)	Attempts $r = \frac{\cos \theta}{\sin \theta}$ with $\theta = 128.7^{\circ} \Rightarrow r = -0.80$	M1 A1	
	States that as $ r < 1$ the series is convergent	B1	
(d)		(3)	
	(ii) Attempts $S_{\infty} = \frac{\sin \theta}{1 - "r"} = 0.43$	M1 A1	
		(2)	
(2)		(12 marks)	
B1 Us	Uses common ratios to produce a correct equation usually $\frac{\cos\theta}{\sin\theta} = \frac{0.5}{\cos\theta}$ or $\cos\theta \times \frac{\cos\theta}{\sin\theta} = 0.5$		
M1 Use	1 Uses $\cos^2 \theta = 1 - \sin^2 \theta \cos^2 \theta = 0.5 \sin \theta \Rightarrow 1 - \sin^2 \theta = 0.5 \sin \theta$		
A1* csc (b)	$l^* \cos 2\sin^2 \theta + \sin \theta - 2 = 0$		
M1 Att	empts to solve $2\sin^2\theta + \sin\theta - 2 = 0$ using the formula or calculator		
A1 Ac	Achieves $\sin \theta = \frac{-1 + \sqrt{17}}{4}$ or awrt 0.78		
M1 Use A1 awa (c)	es arcsin to find at least one solution t $\theta = 128.7^{\circ}$ only		

Specimen Paper WMA12/01

M1 Attempts to find $r = \frac{\cos \theta}{\sin \theta}$ with $\theta = 128.7^{\circ} \Rightarrow r = ...$ Alternatively uses $r = \frac{0.5}{\cos \theta}$ with $\theta = 128.7^{\circ} \Rightarrow r = ...$

A1 awrt
$$r = -0.80$$

B1 States as |r| < 1 the series is convergent

Alternatively as -1 < -0.80 < 1 the series is convergent

(d)

M1 Attempts $S_{\infty} = \frac{\sin \theta}{1 - r''} =$

A1 awrt 0.43

Specimen Paper WMA12/01

Scheme	Marks	
M = (7,0)	B1	
Attempts gradient of $PQ = \frac{6 - (-6)}{4 - 10} = (-2)$	M1	
Equation of <i>l</i> is $y-0 = \frac{1}{2}(x-7)$	dM1	
x - 2y - 7 = 0	A1	
		(4)
Substitutes $y = -2$ into $y = \frac{1}{2}x - \frac{7}{2} \Longrightarrow x =$	M1	
Obtains centre of circle $(3, -2)$	A1	
Attempts $r^2 = (4 - "3")^2 + (6 - "-2")^2$	M1	
$(x-3)^2 + (y+2)^2 = 65$	A1	
		(4)
	(8 marks)	-
	Scheme $M = (7,0)$ Attempts gradient of $PQ = \frac{6 - (-6)}{4 - 10} = (-2)$ Equation of <i>l</i> is $y - 0 = \frac{1}{2}(x - 7)$ $x - 2y - 7 = 0$ Substitutes $y = -2$ into $y = \frac{1}{2}x - \frac{7}{2} \Rightarrow x =$ Obtains centre of circle $(3, -2)$ Attempts $r^2 = (4 - "3")^2 + (6 - "-2")^2$ $(x - 3)^2 + (y + 2)^2 = 65$	Scheme Marks $M = (7,0)$ B1 Attempts gradient of $PQ = \frac{6 - (-6)}{4 - 10} = (-2)$ M1 Equation of l is $y - 0 = \frac{1}{2}(x - 7)$ dM1 $x - 2y - 7 = 0$ A1 Substitutes $y = -2$ into $y = \frac{1}{2}x - \frac{7}{2} \Rightarrow x =$ M1 Obtains centre of circle $(3, -2)$ A1 Attempts $r^2 = (4 - "3")^2 + (6 - "-2")^2$ M1 $(x - 3)^2 + (y + 2)^2 = 65$ A1 (8 marks) (8 marks)

(a)

B1 States or implies that M = (7,0)

- M1 Attempts to find the gradient of PQ Required to find $\frac{\Delta y}{\Delta x}$
- M1 Uses M = (7,0) and the negative reciprocal gradient to find equation of line l
- A1 x-2y-7=0 or any multiple thereof.
- (b) M1 Attempts to find the *x* coordinate of *C* by substituting y = -2 into *l*

A1 For
$$C = (3, -2)$$

It may also be awarded for a circle equation in the form $(x-3)^2 + (y+2)^2 = k$, k > 0

- M1 Attempts to find the distance between their (3, -2) and either P(4, 6) or Q(10, -6)
- A1 $(x-3)^2 + (y+2)^2 = 65$