Statistics S1 Mark scheme

Question	Scheme	Marks
1(a)	$\mathrm{S}_{w w}=41252-\frac{640^{2}}{10}=\quad \underline{\mathbf{2 9 2}}$	M1A1
	$\mathrm{S}_{w p}=27557.8-\frac{640 \times 431}{10}=\quad \underline{\mathbf{- 2 6 . 2}}$	A1
		(3)
(b)	$r=\frac{-26.2}{\sqrt{292 \times 2.72}}$	M1
	$=-0.9297$ awrt $\underline{\underline{\mathbf{0 . 9 3 0}}}$	A1
		(2)
(c)	As weight increases the percentage of oil content decreases o.e.	B1
		(1)
(d)	$b=\frac{-26.2}{292}=-0.0897 \ldots \quad$ awrt $\underline{\mathbf{0 . 0 9}}$	M1 A1
	$a=\frac{431}{10}-\left(\frac{-26.2}{292}\right) \times\left(\frac{640}{10}\right)=48.842 \ldots$	M1
	$p=48.8-0.0897 w$	A1
		(4)
(e)	$p=48.8-0.0897 \times 60$	M1
	$=43.4 / 43.5$ awrt 43.4/43.5	A1
		(2)
(12 marks)		
Notes:		
(a) M1: for a correct expression for $\mathrm{S}_{w w}$ or $\mathrm{S}_{w p}$ (may be implied by one correct answer) 1 $^{\text {st }} \mathbf{A 1}$: for either $\mathrm{S}_{w w}=292$ or $\mathrm{S}_{w p}=-26.2$ $2^{\text {nd }} \mathbf{A 1}$: for both $S_{w w}=292$ and $S_{w p}=-26.2$		
(b) M1: for a correct expression (Allow ft of their $\mathrm{S}_{w w}$ or $\mathrm{S}_{w p}$ provided $\mathrm{S}_{w w} \neq 41252$ and $\mathrm{S}_{w p} \neq$ 27557.8). Condone missing "-"" A1: for awrt -0.930 (Condone -0.93 for M1A1 if correct expression is seen) (Answer only awrt -0.930 scores $2 / 2$ but answer only -0.93 is M1A0)		
(c) B1: For a correct contextual description of negative correlation which must include weight and oil (but w increases as p decreases is not sufficient)		
(d) $\mathbf{1}^{\text {st }} \mathbf{M 1}$: for a correct expression for b (Allow ft)		
$\mathbf{1}^{\text {st }}$ A1: for awrt -0.09		
$\mathbf{2}^{\text {nd }}$ M1: for a correct method for $a \mathrm{ft}$ their value of b (Allow $a=43.1+b \times 64$)		
$2^{\text {nd }} \mathbf{A 1}$: for a correct equation for p and w with $a=$ awrt 48.8 and $b=$ awrt -0.0897 No fractions. Equation in x and y is A0		
(e) M1: substituting $w=60$ into their equation A1: \quad awrt 43.4 or 43.5 (Answer only scores 2/2)		

Question	Scheme	Marks
2	$1.5 \times 12=18$ 20 people represented by $18\left(\mathrm{~cm}^{2}\right)$ or 1 person is represented by $0.9\left(\mathrm{~cm}^{2}\right)$	M1
	$\begin{aligned} & x=\frac{20 \times 94.5}{18} \mathrm{oe} \\ & =105(\text { people }) \end{aligned}$	$\begin{gathered} \text { M1 } \\ \text { A1 cao } \end{gathered}$
(3 marks)		
Notes:		
M1: For an attempt to relate area to frequency (e.g. $\frac{20}{18}$ or $\frac{18}{20}$ seen) M1: For a correct expression/equation for total frequency e.g. $\frac{18}{20}=\frac{94.5}{x}$ A1: For 105 cao		

Question	Scheme		Marks
3(a)	(Discrete) Uniform		B1
			(1)
(b)	$\mathrm{P}(X=4)=\frac{1}{5}$ oe		B1
			(1)
(c)	$F(3)=\frac{3}{5}$ oe		B1
			(1)
(d)	$\mathrm{P}(3 X-3>X+4)=\mathrm{P}(X>3.5)$		M1
	$=\frac{2}{5}$ oe		A1
			(2)
(e)	$\mathrm{E}(X)=\underline{\mathbf{3}}$		
			B1
			(1)
(f)	$\mathrm{E}\left(X^{2}\right)=\frac{1}{5}\left(1^{2}+2^{2}+3^{2}+4^{2}+5^{2}\right)$		M1
	$=\underline{11}$		A1
			(2)
(g)	$\operatorname{Var}(X)=11-3^{2} \quad \text { or } \quad \frac{(5+1)(5-1)}{12}$		M1
	$=\underline{\mathbf{2}}$		A1
			(2)
(h)	$11.4=a \mathrm{E}(X)-3$ or $11.4=3 a-3$		M1
	$a=4.8$		A1
	$\operatorname{Var}(4.8 X-3)={ }^{\prime} 4.8^{\prime 2} \times{ }^{\prime} 2{ }^{\prime}$		M1
	$=46.08$	awrt 46.1	A1
			(4)
(14 marks)			

Question 3 continued

Notes:

(a)

B1: For uniform.
(d)

M1: For identifying the correct probabilities i.e. $\mathrm{P}(X>3.5)$ or $\mathrm{P}(X=4)+\mathrm{P}(X=5)$
(f)

M1: For a correct expression.
(g)

M1: For either 'their (f)' - 'their (e) ${ }^{\prime 2}$ or for a correct expression $\frac{(5+1)(5-1)}{12}$
(h)
$\mathbf{1}^{\text {st }} \mathbf{M 1}$: For setting up a correct linear equation using $a \mathrm{E}(X)-3=11.4$
$\mathbf{1}^{\text {st }} \mathbf{A 1}$: May be implied by a correct answer.
$\mathbf{2}^{\text {nd }}$ M1: For "their a^{2} " \times "their $\operatorname{Var}(X)$ " (must see values substituted) (may be implied by a correct answer or correct ft answer) NB: 'their $\operatorname{Var}(X)$ ' <0 is M0 here.

Question	Scheme	Marks
4(a)	7.5 and 25	B1
		(1)
(b)	Mean $=10.3125$ awrt $\underline{\mathbf{1 0 . 3}}$	B1
		(1)
(c)	$\sigma=\sqrt{\frac{120125}{80}-^{\prime} 10.3125^{2}}$	M1
	$=6.6188 . . \quad(s=6.6605 \ldots)$ awrt $\underline{6.62}$	A1
		(2)
(d)	Median $=\{5\}+\frac{20}{24} \times 5$ or $\{10\}-\frac{4}{24} \times 5$	M1
	$=9.16666$ awrt $\underline{\underline{\mathbf{9} 17}}$	A1
		(2)
(e)	Mean $>$ median \therefore positive skew	M1A1
		(2)
(f)	$t=10 v+5$	
	Mean $=10 \times 10.3125+5$	M1
	$=108.125$ awrt $\underline{\mathbf{1 0 8}}$	A1
	$\sigma=10 \times 6.6188$	M1
	$=66.188 . .(66.605$ from $s)$ awrt $\underline{66.2}$	A1
		(4)
(12 marks)		
Notes:		
(a) B1: Both values correct (may be seen in table)		
(b) B1: For awrt 10.3 (Do not allow improper fractions).		
(c) M1: For a correct expression including the square root (allow ft from their mean) A1: For awrt 6.62 (Allow $s=$ awrt 6.66)		
M1: For a correct fraction: $\frac{20}{24} \times 5$ or if using $n+1$ for $\frac{20.5}{24} \times 5$ may be scored from working down $-\frac{4}{24} \times 5$ A1: For awrt 9.17 or (if using $n+1$) for awrt 9.27		

Question 4 notes continued

(e)

M1: For a correct comparison of 'their b' and 'their d' (must have an answer to both (b) and (d)) Comparison may be part of bigger expression e.g. 3(mean - median)/s.d.
Allow use of $Q_{3}-Q_{2}>Q_{2}-Q_{1}$ only if $Q_{1}=5$ and $Q_{3}=15$ are both seen
A1: For positive skew (which must follow from their values)
(f)

M1: $\quad\left(\mathbf{1}^{\text {st }} \mathbf{M 1}\right)$ For $10 \times$ "their mean" +5
M1: $\quad\left(2^{\text {nd }} \mathbf{M 1}\right)$ or $10 \times$ "their sd"
Use of decoded data to find mean must be fully correct,
i.e. $8650 / 80=$ awrt 108 (M1A1)

Use of decoded data to find s.d. must be fully correct,
i.e. $\sqrt{\frac{1285750}{80}-\left(\frac{8650}{80}\right)^{2}}=$ awrt 66.2 (M1A1)

Question	Scheme	Marks
5(a)	$\mathrm{P}(T=2)=3 \times \frac{1}{6} \times \frac{1}{6}=\frac{1}{12} \mathrm{oe}$	M1 A1
		(2)
(b)	$\mathrm{P}(T=3)=[\mathrm{P}(0,3)+\mathrm{P}(1,2)+\mathrm{P}(2,1)]+\mathrm{P}(3)$	
	$=\left(\frac{1}{6} \times \frac{1}{2}\right)+\left(\frac{1}{6} \times \frac{1}{6}\right)+\left(\frac{1}{6} \times \frac{1}{6}\right)+\frac{1}{2}$	M1 M1
	$=\frac{23}{36} \mathrm{oe}$	A1
		(3)
(c)	$\mathrm{P}(T=3 \mid \text { rolled twice })=\frac{\mathrm{P}((T=3) \cap \text { die rolled twice })}{\mathrm{P}(\text { die rolled twice })}$	M1
	$=\frac{\frac{5}{36}}{\frac{1}{2}}$	M1
	$=\frac{5}{18} \mathrm{oe}$	A1
		(3)
(8 marks)		
Notes:		
Correct answer only in (a), (b) or (c) scores full marks for that part. Methods leading to answers > 1 score 0 marks		
(a) M1: For a correct expression. A1: Allow exact equivalent $\left(\frac{1}{6} \times \frac{1}{2}=\frac{1}{12}\right.$ is M0A0 $)$.		
(b) M1: For $\frac{1}{2}+$ at least one correct product. M1: For fully correct expression. A1: Allow exact equivalent.		
(c) M1: For correct conditional probability ratio (this mark may be implied by $2^{\text {nd }} \mathrm{M} 1$) but going on to assume independence [using numerator $\mathrm{P}(T=3) \times \mathrm{P}($ rolled twice $)$] is M0M0A0. M1: For a correct numerical ratio of probabilities (allow ft of (their $(\mathrm{b})-\frac{1}{2}$) as numerator). A1: Allow exact equivalent.		

6(a)	$[\mathrm{P}(A \cup C)=] \frac{9}{10}$ oe		B1
			(1)
(b)	$\mathrm{P}(A \cup B)=\mathrm{P}(A)+\mathrm{P}(B)-\mathrm{P}(A) \times \mathrm{P}(B)$		M1
	$\frac{5}{8}=\frac{2}{5}+\mathrm{P}(B)-\frac{2}{5} \mathrm{P}(B)$		M1 A1
	$\mathrm{P}(B)=\frac{3}{8} *$		A1cso
			(4)
(c)	$[\mathrm{P}(A \mid B)=\mathrm{P}(A)=] \frac{2}{5} \mathrm{oe}$		B1
			(1)
(d)		Diagram 0.15 and 0.25 $\begin{array}{r} 0.05 \text { and } 0.05 \\ 0.175 \text { and } 0.325 \end{array}$	B1 M1 M1 M1 A1
			(5)

Notes:

(b)

M1: For use of $\mathrm{P}(A \cup B)=\mathrm{P}(A)+P(B)-\mathrm{P}(A \cap B)$
M1: For use of $\mathrm{P}(A \cap B)=\mathrm{P}(A) \times \mathrm{P}(B)$ (But just seeing $\frac{2}{5} \times \frac{3}{8}=\frac{3}{20}$ on its own is M0M0)
A1: A correct equation
A1: (No wrong working seen dependent on all previous marks)
(allow a full verification method, however, substitution of $\mathrm{P}(B)=3 / 8$ into only one $\mathrm{P}(B)$ to find the other $\mathrm{P}(B)$ (e.g. using $3 / 20$ to find $3 / 8$) can score M1M0A0A0)

Question 6 notes continued

(d)

B1: 3 circles intersecting, see diagram above, (at least 2 labelled) with the two zeros showing A does not intersect C (Do not allow blank spaces for the two zeros)
$\underline{\text { or }} 3$ circles, see diagram below, (at least 2 labelled) where B intersects A and C but A and C do not intersect.
M1: 0.15 placed in $\left(A \cap B \cap C^{\prime}\right)$ and 0.25 placed in $\left(A \cap B^{\prime} \cap C^{\prime}\right)$
M1: 0.3 - 'their 0.25 ' and $1-$ ('their 0.15 ' + 'their 0.25 ' + 'their 0.05 ' $+\frac{1}{2}$)
M1: $\frac{3}{8}$ - ("their $0.15 "+$ "their $\underline{0.05}$ "), i.e. $\mathrm{P}(B)=\frac{3}{8}$ and $\frac{1}{2}-$ "their 0.175 ", i.e. $\mathrm{P}(C)=\frac{1}{2}$
For the $3{ }^{\text {rd }} \mathrm{M}$ mark, blank regions inside $\mathrm{P}(B)$ and $\mathrm{P}(C)$ are not treated as 0 s and score M 0
A1: fully correct with box

Question	Scheme	Marks
7(a)(i)	$\mathrm{P}(X>505)=\mathrm{P}\left(Z>\frac{505-503}{1.6}\right)$	M1
	$=1-\mathrm{P}(Z<1.25)=1-0.8944$	M1
	$=0.1056$ awrt $\underline{\mathbf{0 . 1 0 6}}$	A1
		(3)
(ii)	$\mathrm{P}(501<X<505)=1-2 \times 0.1056$ or $0.8944-0.1056$	M1
	$=0.7888$ awrt $\underline{\mathbf{0 . 7 8 9}}$	A1
		(2)
(b)	$\mathrm{P}(X<w)=0.9713$ or $\mathrm{P}(X>w)=0.0287$ (may be implied by $z= \pm 1.9$)	M1
	$\frac{w-503}{1.6}=1.9 \quad$ or $\quad \frac{(1006-w)-503}{1.6}=-1.9$	M1
	$w=506.04 \ldots \quad$ awrt $\underline{506}$	A1
		(3)
(c)	$\frac{r-503}{q}=-2.3263$	M1A1
	$\frac{r+6-503}{q}=1.6449$	M1A1
	$1.6449 q-6=-2.3263 q$	ddM1
	$q=1.51 \ldots$ awrt $\underline{\mathbf{1 . 5 1}}$	A1
	$r=499.48 \ldots \ldots$ awrt $\underline{499}$	A1
		(7)
(15 marks)		
Notes:		
(a) (i) M1: Standardising with 505, 503 and 1.6. May be implied by use of 1.25 (Allow \pm) M1: For $1-\mathrm{P}(Z<1.25)$ i.e. a correct method for finding $\mathrm{P}(Z>1.25)$, e.g. $1-p$ where $0.5<p<0.99$ (ii) M1: $\quad 1-2 \times$ their(i)		
(b) M1: For using symmetry to find the area of one tail (may be seen in a diagram) M1: A single standardisation with 503, 1.6 and w (or $1006-w$) and set $= \pm z$ value $(1.8<\|z\|<2)$ A1: For awrt 506 which must come from correct working. (Answer only: 506 scores $0 / 3$, but $506.0 \ldots$ with no working send to review)		

Question 7 notes continued

(c)

M1: $\quad \frac{r-503}{q}=z$ value where $|z|>2$
A1: $\quad \frac{r-503}{q}=$ awrt -2.3263 (signs must be compatible)
M1: $\quad \frac{r+6-503}{q}=z$ value where $|z|>1$
A1: $\quad \frac{r+6-503}{q}=$ awrt 1.6449 (signs must be compatible)

Special Case:

Less than $4 \mathrm{dp} z$-values: use of awrt $2.32 / 2.33 / 2.34$ and awrt $1.64 / 1.65$ could score M1 A0 M1 and then A1 provided both equations have compatible signs.
$3^{\text {rd }} \mathbf{M 1}$:(dep on both Ms) attempt to solve simultaneous equations leading to a value for q or r
$\mathbf{3}^{\text {rd }} \mathbf{A 1}$: Or awrt 1.51
$4^{\text {th }} \mathbf{A 1}$: For awrt 499 (allow 499.5)

