Pearson Edexcel

Mark Scheme (Results)

January 2021

Pearson Edexcel International Advanced Level In Statistics 3 (WST03/01)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please visit our website at www.edexcel.com.

Our website subject pages hold useful resources, support material and live feeds from our subject advisors giving you access to a portal of information. If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

www.edexcel.com/contactus

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

January 2021
Publications Code WST03_01_2101_MS
All the material in this publication is copyright
© Pearson Education Ltd 2021

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Special notes for marking Statistics exams (for AAs only)

- If a method leads to "probabilities" which are greater than 1 or less than 0 then MO should be awarded unless the mark scheme specifies otherwise.
- Any correct method should gain credit. If you cannot see how to apply the mark scheme but believe the method to be correct then please send to review.
- For method marks, we generally allow or condone a slip or transcription error if these are seen in an expression. We do not, however, condone or allow these errors in accuracy marks.
- If a candidate is "hedging their bets" e.g. give Attempt 1...Attempt 2...etc then please send to review.

Question Number	Scheme	Marks
1. (a)	[In QP: 33, 15, 23] 29, 34, 39, 06, 31, 13, 42	M1A1 (2)
(b)	This will give 4 girls with numbers $15,23,06,13$ This will give 6 boys with numbers $33,29,34,39,31,42$	$\begin{aligned} & \mathrm{B} 1 \\ & \mathrm{~B} 1 \end{aligned}$
(c)	Since the highest number is 42 ...therefore may miss older players	$\begin{aligned} & \text { M1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$
		$\begin{array}{r} (2) \\ \text { [} 6 \text { marks] } \\ \hline \end{array}$
Notes		
(a)	M1 for 7 numbers (at least 4 correct in any order) (Condone repeats but only count once towards the "4") e.g. 29, 33, 34, $\underline{39}, 15,29, \underline{31}$ The 33 and 15 are repeats of those in QP and 29 is a repeat but all will count for the " 7 " This will score M1 as there are 4 of the correct numbers listed: 29, 34, 39 and 31 A1 for all 7 correct with no repeats	
(b)	$1^{\text {st }} \mathrm{B} 1$ for showing the 4 girls in sample (No ft for incorrect random numbers) $2^{\text {nd }} \mathrm{B} 1$ for showing the 6 boys in the sample (Noft for incorrect random numbers)	
(c)	M1 for mention of highest number of 42 (or ft their highest number as long as <60) A1 for stating that this means older players may be missing from the sample This can be awarded if their highest number is stated for M1 and is <42	

Question Number	Scheme	Marks
3. (a)	All expected frequencies are $(88 \div 4)=\underline{\mathbf{2 2}}$ Degrees of freedom $=3$, so critical value $\chi_{3}^{2}(5 \%)=7.815$ (Not significant so) insufficient evidence to suggest not uniformly distributed	B1 B1, B1ft B1 (4)
(b)	e.g. H_{0} : School is independent of club chosen H_{1} : Club chosen depends on which school a student is from	B1
(c)	$\frac{28 \times 17}{88}=5.409 \ldots \quad$ awrt $\underline{\mathbf{5 . 4 1}}$	B1
		(1)
(d)	Expected frequency for Music and School $C=4.77<5$ (Allow $\frac{105}{22}$ for 4.77)	B1
	So combine Music column with another column giving 3×3 table so 4 df	B1 (2)
(e)	Critical value $\chi_{4}{ }^{2}(5 \%)=9.488$	
	[Not significant so] insufficient evidence of an association between school and choice of club	B1
		[10 marks]
Notes		
(a)	Ignore values of any test statistics calculated in (a) or (e)	
	$1^{\text {st }} \mathrm{B} 1 \quad$ for 22	
	$2^{\text {nd }} \mathrm{B} 1$ for degrees of freedom $=3$ (can be implied by sight of 7.815 as cv)	
	$3^{\text {rd }} \mathrm{B} 1 \mathrm{ft}$ for 7.815 (or better - cal: $7.814727910 \ldots$ or correct $5 \% \mathrm{cv}$ for their $4^{\text {th }} \mathrm{B} 1$ for comment suggesting uniform distribution is a suitable model. Must follow from comparing 6.09 with their cv. Do not allow contradictory statements e.g. "significant" so uniform dis	is suitable
(b)	B1 for both hypotheses with some context ("club" and "school" mentioned at least once) Use of "independence" or "association"	
(c)	B1 for a correct expression or awrt 5.41 (allow $\frac{119}{22}$)	
(d)	$1^{\text {st }} \mathrm{B} 1$ for identifying that Music \& School C has E_{i} that is <5 (a value to 2 sf should be seen, may be in (c), but must state this $E_{i}<5$ $2^{\text {nd }} \mathrm{B} 1$ for pooling music with another column leading to 3×3 table and 4 degre Must clearly state the pooling and evidence for 4 df e.g. allow (3-1)×(well) of freedom $(-1-1)$
	[NB pooling with Art gives 4.3987.., with Sports 4.3247..., with Compu	ers 7.2879...]
(e)	$1^{\text {st }} \mathrm{B} 1$ for 9.488 (or awrt 9.488) $2^{\text {nd }}$ B1 for a correct, not significant, conclusion mentioning school and clubs	

Question Number	Scheme ${ }^{\text {a }}$ Marks
4. (a)	
Notes	
(a)	M1 for use of correct expression with 18, 25 and $1<z<3$ (Ignore \bar{x} for this mark) B1 for $z=2.3263$ or better (calc: 2.32634787..) $1^{\text {st }}$ A1 for awrt 44.0 (ans only of $44.02 \ldots$ or awrt 44.03 scores M1B1 implied) $2^{\text {nd }}$ A1 for awrt 60.8 (ans only of $60.77 \ldots$ or awrt 60.77 scores M1B1 implied) $1^{\text {st }} \mathrm{B} 1$ for both hypotheses in terms of $\mu \mathrm{s}$ (If using μ_{1} etc they must define which is which) $1^{\text {st }}$ M1 for a correct denominator (18 needn't be outside square root) [4.87(44...)] $2^{\text {nd }}$ dM1 for a correct expression for test statistic $1^{\text {st }} \mathrm{A} 1$ for awrt (\pm) 1.11 $2^{\text {nd }}$ B1 for critical value of 1.6449 or better (If B0 in (a) for 2.33 allow 1.64 or 1.645 here) [Allow p-value of awrt 0.134 and condone awrt 0.866 if compared with 0.95] $2^{\text {nd }} \mathrm{A} 1$ Correct contextual conclusion, ft comparing their " 1.11 " with 1.64 (or their cv) but must be not significant and mention "claim" or "score in town A " and "score in town B " $1^{\text {st }}$ M1 for a correct starting inequality with any z such that $\|z\|>1$ (Allow \geqslant) $1^{\text {st }} \mathrm{A} 1$ for either correct inequality for μ, allow $z=1.64$ or better $2^{\text {nd }}$ M1 for both cases of $\bar{x}+z \frac{18}{\sqrt{n}}(z>1)$ can allow " $=$ " or inequality, may be in CI $2^{\text {nd }}$ A1 (dep on both Ms) for sight of both awrt 58.3 and awrt 63.2 and selecting awrt 58.3

Question Number	Scheme						Marks
5. (a)	$\mathrm{H}_{0}: \mathrm{N}\left(6,0.75^{2}\right)$ is a suitable model for the length of fallen pine cones $H_{1}: N\left(6,0.75^{2}\right)$ is NOT a suitable model for the lengths of the pine cones $\begin{aligned} & \text { e.g. } E_{i}: 5 \leqslant x<5.5=80 \times \mathrm{P}(5 \leqslant X<5.5)=80 \times \mathrm{P}\left(-\frac{4}{3} \leqslant Z<-\frac{2}{3}\right)[=\mathbf{1 2 . 7 7} \mathbf{1 2 . 9 0}] \\ & \text { or } E_{i}: 6 \leqslant x<6.5=80 \times \mathrm{P}\left(0 \leqslant Z<\frac{2}{3}\right)[=\mathbf{1 9 . 8 0 \sim 1 9 . 8 9}] \\ & E_{i}: 5.5 \leqslant x<6=\mathbf{1 9 . 8 0 \sim 1 9 . 8 9} \text { or } x \geqslant 6.5=40-" 19.80 "=\mathbf{2 0 . 1 1 \sim 2 0 . 2 0} \end{aligned}$						B1 M1 A1 M1
		$x<5$	$5 \leqslant x<5.5$	$5.5 \leqslant x<6$	$6 \leqslant x<6.5$		M1
	E_{i}	7.30~7.43	12.77~12.90	19.80~19.89	19.80~19.89	20.11~20.20	A1
	$\frac{(O-E)^{2}}{E}$	0.23~0.28	0.093~0.12	0.84~0.90	1.87~1.95	5.08~5.16	
	$\begin{aligned} & \sum \frac{\left(O_{i}-E_{i}\right)^{2}}{E_{i}} \text { or } \sum \frac{O_{i}^{2}}{E_{i}}-80=8.308 \ldots ; \text { answer in }[8.15 \sim 8.4] \\ & v=5-1=4 \Rightarrow ; \quad \chi_{4}^{2}(10 \%)=7.779 \end{aligned}$ (significant result so) the data do not support Chrystal's belief						dM1; A1 B1; B1ft Alft (10)
(b)	$\hat{\mu}=\frac{464}{80}=\underline{\mathbf{5 . 8}}(\mathrm{cm}) ; \quad s^{2}=\frac{2722.59-80 \times " 5.8^{2} "}{79} s^{2}=0.39734 \ldots \text { awrt } \underline{\mathbf{0 . 3 9 7}}\left(\mathrm{cm}^{2}\right)$						B1; M1
(c)	$v=5-3=2 \quad ; \quad \text { so } \quad \chi_{2}^{2}(10 \%)=4.605$ (Not sig') so a normal distribution is a plausible model for length of pine cones						B1; B1ft B1ft
(d)	$\begin{aligned} \mathrm{P}(X>7 \mid \mu=5.8 \text { and } s=\sigma=0.63035 \ldots) & =\mathrm{P}\left(Z>\frac{7-" 5.8^{\prime \prime}}{\sqrt{0.397 . .}}\right)=\mathrm{P}(Z>1.90 . .) \\ & =\underline{\mathbf{0 . 0 2 8} \sim \mathbf{0 . 0 2 9}} \end{aligned}$						(3) M1 A1 (2) [18m'ks]
Notes							
(a)	$1^{\text {st }} \mathrm{B} 1$ for both hypotheses. Must include the model and mention "length(s)" and "cones" $1^{\text {st }}$ M1 for correct use of normal to find E_{i} for one cell $1^{\text {st }} \mathrm{A} 1$ for a middle value e.g. awrt 12.77~12.90 inclusive (12.77 is from tables, 12.90 calc) $2^{\text {nd }}$ M1 for use of symmetry to get E_{i} for $5.5 \leqslant x<6$ (same as $6 \leqslant x<6.5$) or $x \geqslant 6.5(40-\ldots$) $2^{\text {nd }}$ A1 for a correct set of expected frequencies (all awrt in given ranges) $3^{\text {rd }}$ dM1 (dep on $1^{\text {st }}$ M1) for a correct attempt to find test statistic...at least one correct term $3^{\text {rd }} \mathrm{A} 1$ for answer in the range 8.15-8.4 (inclusive) $2^{\text {nd }} B 1$ for degrees of freedom $=4$ $3^{\text {rd }} \mathrm{B} 1 \mathrm{ft}$ for a correct 10% critical value using their degrees of freedom $4^{\text {th }}$ A1ft dep on M3 and cv $=$ awrt 7.78 for contextual conclusion: length, cones, $\mathrm{N}(\mu, \sigma$ not needed $)$ or Chrystal's belief						
(b)	B1 for 5.8 M1 for a correct expression (ft their mean) A1 for awrt 0.397 (Condone $\frac{3139}{7900}$)						
(c)	$\begin{array}{ll} 1^{\text {st }} \mathrm{B} 1 & \text { for degrees of freedom }=2 \\ 2^{\text {nd }} \mathrm{B} 1 \mathrm{ft} & \text { for a correct } \mathrm{cv} \text { (different from their part (a))) } \mathrm{ft} \text { their } \mathrm{df} \\ 3^{\text {rd }} \mathrm{B} 1 \mathrm{ft} & \text { for a correct conclusion in context } \mathrm{ft} \mathrm{cv} \text { ("length" and "cones") Ignore any } \mu \text { or } \sigma \end{array}$						
(d)	M1 for standardising with 7 , their $5.8(\neq 6)$ and their s.d. from (b). Ignore any $\times 80$ A1 for a correct proportion of 0.028 or 0.029 . (ISW if correct ans followed by $\times 80$)						

