Pearson Edexcel

edexcel

Mark Scheme (Results)

January 2020

Pearson Edexcel International Advanced Level in Statistics S1 (WST01) Paper 01

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please visit our website at www.edexcel.com.

Our website subject pages hold useful resources, support material and live feeds from our subject advisors giving you access to a portal of information. If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

www.edexcel.com/contactus

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

January 2020
Publications Code WST01_01_2001_MS*
All the material in this publication is copyright
© Pearson Education Ltd 2020

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Special notes for marking Statistics exams (for AAs only)

- Any correct method should gain credit. If you cannot see how to apply the mark scheme but believe the method to be correct then please send to review.
- For method marks, we generally allow or condone a slip or transcription error if these are seen in an expression. We do not, however, condone or allow these errors in accuracy marks.
- If a candidate is "hedging their bets" e.g. give Attempt 1...Attempt 2...etc then please send to review.

Question Number	Scheme ${ }^{\text {arks }}$
1.	
	Notes
	Each of the 3 Ms can be awarded at any point for either the correct equation seen or clearly implied by its use e.g. choosing their $\boldsymbol{b}(\mathbf{0}<\boldsymbol{b}<0.7)$ so that $\boldsymbol{a}+\boldsymbol{b}+\boldsymbol{c}=\mathbf{0 . 7}\left(\mathbf{1}^{\text {st }} \mathbf{M 1}\right)$ $1^{\text {st }} \mathrm{M} 1$ for use of sum of probabilities to form an equation in a, b and c. Can allow the use of their value for c in the equation or implied by its use to find b $2^{\text {nd }}$ M1 for equation in a and b from using $\mathrm{F}(1)=0.63$ e.g. $a+b=0.48$ or $c+0.15=0.37$ $1^{\text {st }} \mathrm{A} 1$ for deducing $c=0.22$ $3^{\text {rd }} \mathrm{M} 1$ for using $\mathrm{E}(X)=1$ to deduce $a=c$ ft their value of c (provided $0 \leqslant a \leqslant 0.35$) NB $\mathrm{E}(X)=1$ gives $-a+b+3 c=0.7$ but only scores M1 when they state $a=c$ or give their value of $a(0 \leqslant a \leqslant 0.35)=$ their value of c $2^{\text {nd }} \mathrm{A} 1$ for $b=0.26$ All $\mathbf{3}$ correct answers only (no working) scores 5 marks (they may be seen in the table) If answers seen in the table contradict answers with working in the body of the script the script takes preference.

Question Number	Scheme	Marks
2. (a)		B1 B1 B1 B1
(b)	Since no family has a dog and a rabbit a mutually exclusive pair is D	B1 (4)
	Since no fanily has a dog and a rabit a mually exclusive pair is $\underline{D, R}$	B1 (1)
(c)	$\left[\frac{2+" 4 "}{40}\right]=\frac{3}{20}$	B1ft (1)
(d)	e.g. $\mathrm{P}(D \cap C)=\frac{2}{40}=\frac{1}{20} \quad \mathrm{P}(D)=\frac{12}{40}=\frac{3}{10} \quad \mathrm{P}(C)=\frac{14}{40}=\frac{7}{20} \quad$ or	M1
	$\frac{1}{20} \neq \frac{3}{10} \times \frac{7}{20}=\left[\frac{21}{200}\right] \quad$ so they are not independent	A1
ALT	$\mathrm{P}(C)=\frac{14}{40}=\frac{7}{20}$ vs $\mathrm{P}(C \mid D)=\frac{2}{12}=\frac{1}{6}$ or $\mathrm{P}(D)=\frac{12}{40}=\frac{3}{10}$ vs $\mathrm{P}(D \mid C)=\frac{2}{14}=\frac{1}{7}$	(2)
(e)	$\text { e.g. }[\mathrm{P}(R \mid C)=] \frac{\mathrm{P}(R \cap C)}{\mathrm{P}(C)} \text { or } \frac{.4 \frac{4}{40} "}{\frac{14}{14}}$	M1
	$=\frac{4}{14}=\frac{2}{\underline{7}}$	A1ft
		(2)
(f)	$\frac{" 10 "+" 7 "}{" 10 "+" 7 "+9} \text { (o.e.) } \quad ;=\frac{17}{26} \quad(\text { accept } 0.653846 \mathrm{i})$	M1; A1
		$[12]^{(2)}$
	Notes	
(a)	$1^{\text {st }} \mathrm{B} 1$ for 3 intersecting circles with $\mathrm{n}(D \cap R)=0$ (either diagram) [Blan $2^{\text {nd }} \mathrm{B} 1$ for a box and 9 outside the circles $3^{\text {rd }} \mathrm{B} 1$ for $\mathrm{n}(D \cap C)=2$ and $\mathrm{n}\left(D \cap C^{\prime}\right)=10$ $4^{\text {th }}$ B1 for 8,4 and 7 correctly placed	ot equiv'to 0] babilities (out ecimals or
(b)	B1 for D and R with a suitable reason (extra pairs is B0) e.g. $\mathrm{P}(D \cap R)=0$ Condone \varnothing for 0 or no intersection/overlap. Must see an attempt at a reason. Must be $D, R \operatorname{not} \mathrm{P}(D), \mathrm{P}(R)$ $\mathrm{P}(D \cup R)=\mathrm{P}(D)+\mathrm{P}(R)$ is not a suitable reason though.	
(c)	B1ft ft their " 4 " (but must give a proper fraction) ft blank as 0 or $\frac{3}{20}$ or exact equivalent	
(d)	M1 for stating all the probabilities (values) required for a suitable test, must be labelled. Must use D and C ft their VD. Must be clear which test they are trying to use. A1 for the correct probabilities and correct calculation or comparison and correct conclusion	
(e)	M1 for a correct ratio of probabilities (ft their 4): either as an expression or values A1 ft for $\frac{2}{7}$ or exact equivalent (allow ft of their $4[\neq 0]$ provided it gives an exact fraction)	
(f)	M1 for a correct ratio (possibly of probabilities) ft their 10 and their 7 [Not expression here] A1 for $\frac{17}{26}$ or exact equivalent (e.g. 0.654 will score M1A0)	

Question Number	Scheme	Marks
3. (a)	$\mathrm{S}_{m p}=32958-\frac{1124 \times 281}{10} \quad[=1373.6] \quad(*)$	B1cso
(b)	$[r=] \frac{1373.6}{\sqrt{6046.4 \times 382.9}}$	M1
	$=0.9027 \ldots \quad$ awrt $\underline{\mathbf{0 . 9 0 3}}$	A1 (2)
(c)	In scatter diagram points are close to a line or r is close to (or near to) 1 It is consistent with the manager's belief	B1
(d)	$\frac{\sum m}{\sum p}=\frac{1124}{281}$	M1
(e)	So $k=\underline{4}$	A1 (2)
	$b=\frac{1373.6}{6046.4} \quad[=0.22717 \ldots]$	M1
(f)	$\begin{array}{cc} & a=28.1-" 0.2271 \ldots . . \times 112.4 \quad[=2.5653 \ldots] \\ p=2.565 \ldots+0.2271 \ldots m & \boldsymbol{p}=\mathbf{2 . 5 7}+\mathbf{0 . 2 2 7 \boldsymbol { m }} \end{array}$	M1 A1; A1
	$[2.565 \ldots+0.2271 \ldots \times 70=] 18.467 \ldots \quad$ accept answers in range $[\underline{\mathbf{1 8}, \mathbf{1 8} .6}]$	(4) B1
(g)	Manager's model (when $m=70$) estimates $p=17.5$ So use manager's model since wants the lower estimate. (o.e.)	$\begin{aligned} & \text { B1ft } \\ & \text { BB1 } \\ & \text { dB1 } \end{aligned}$
		$[13]^{(2)}$
	Notes	
(a)(b)(c)	B1cso for a correct expression seen (need all 4 numbers seen)	
	M1 for a correct expression or an answer only of 0.90 (2sf) or 0.902 (truncation) A1 for awrt 0.903	
	B1 for "points close to a line" or " r is close to 1 " or "strong correlation" (o.e. but "nearer to and "consistent with manager" or " consistent with belief" (o.e.) or "yes	is B0
(d)	M1 for a correct calculation or equation in k A1 for $k=4 \quad$ NB using the point $(140,35)$ is M0A0 despite giving $k=4$	
(e)	$1^{\text {st }} \mathrm{A} 1$ for $b=$ awrt 0.227 in an equation in p and m or allow y and x Allow a transciption error (e.g. 0.277 etc) if 0.227 is seen in earlier working. $2^{\text {nd }} \mathrm{A} 1$ for $a=$ awrt 2.57 in an equation in p and m only	
(g)	$\begin{aligned} & 1^{\text {st }} \mathrm{B} 1 \mathrm{ft} \quad \text { for } 17.5 \quad \text { or } \quad 70 \div k \text { for their value of } k \\ & 2^{\text {nd }} \mathrm{dB} 1 \begin{array}{l} \text { (dep on } 1^{\text {st }} \mathrm{B} 1 \text {) for therefore choosing manager's model because it has the lower } \\ \text { estimate. (o.e.) (Must be true for their values) } \end{array} \\ & \hline \end{aligned}$	

Question Number	Scheme ${ }^{\text {arks }}$
5. (a)	
	Notes
(a) (b) Ans only Ans only (c)	$1^{\text {st }}$ M1 for standardising 7 (or 13) with 10 and 6 (allow \pm) $2^{\text {nd }} \mathrm{M} 1$ for $1-p$ (where $0.68<p<0.70$) A1 for awrt 0.309 (calc. $0.3085375 \ldots .$. .) (Ans only scores 3/3) M1 Standardising $10 \pm k$ with 10 and 6 and setting equal to z value $0.8<\|z\|<0.9$ B1 for $z= \pm 0.8416$ or better (calc gives $0.8416212 \ldots .$.) used in a linear equation for k A1 $k=5.05$ or better (or use of $z=0.84$ and answer of 5.04) awrt 5.04 scores M1B0A1 Answer in the range $5.049 \sim 5.0499$ scores M1B1A1 but answer only of 5.05 is M1B0A1 $1^{\text {st }}$ M1 for a suitable expression for the area of the rectangle (in x or X) $\left[\Rightarrow\right.$ by $2^{\text {nd }}$ or $3^{\text {rd }}$ M1] $2^{\text {nd }}$ M1 for a correct quadratic inequality (accept $x(x-3)>40$ [o.e.]) $3^{\text {rd }} \mathrm{M} 1$ for an attempt to solve their 3 TQ to find critical values (allow $=0$) (e.g. factorise) Allow $(X+8)(X-5)$ or use of formula with $\leqslant 1$ sign error or $\left(X-\frac{3}{2}\right)^{2}-k-40(k>0)$ $1^{\text {st }} \mathrm{A} 1$ for the correct critical values (cvs) of 8 and -5 $4^{\text {th }}$ M1 for solving their quadratic inequality - taking the "outside" region (ft their cvs) [P(..) not required] $5^{\text {th }}$ M1 for standardising at least one of their values (with 10 and 6) correctly (ft their cvs) $6^{\text {th }}$ dM1 for an attempt at both probabilities: one ≈ 0.006 and one >0.6 and adding or for $1-q$ where $q=0.36$ or better This mark is dependent on all the other 5 M marks being scored $2^{\text {nd }} \mathrm{A} 1$ for answer in range $[0.6355,0.637]$ with clear attempt at both probabilities used (calc 0.636768...)
Ans only	If $6^{\text {th }} \mathrm{M} 1$ is not explicitly seen then must have an answer awrt 0.636 or 0.637

Pearson Education Limited. Registered company number 872828
with its registered office at 80 Strand, London, WC2R ORL, United Kingdom

