Mark Scheme (Results) J anuary 2007

GCE Mathematics

Statistics (6683)

J anuary 2007
6683 Statistics S1
Mark Scheme

Question number	Scheme	Marks
1. (a)	(£) 17 Just $\underline{17}$	B1 (1)
(b)	$\sum t=212$ and $\sum m=61 \quad$ (Accept as totals under each column in qu.)	B1, B1
	$S_{t m}=2485-\frac{61 \times 212}{10},=1191.8 \quad$ awrt $\underline{1190}$ or 119 (3sf)	M1, A1
	$S_{t t}=983.6$ (awrt 984) and $S_{m m}=1728.9$ (awrt 1730) (or 98.4 and 173)	A1, A1 (6)
(c)	$r=\frac{1191.8}{\sqrt{983.6 \times 1728.9}}$	M1, A1f.t.
	$=0.913922 \ldots$ awrt $\underline{\mathbf{0 . 9 1 4}}$	A1 (3)
(d)	0.914 (Must be the same as (c) or awrt 0.914)	B1f.t. ($\|r\|<1$)
	e.g. linear transformation, coding does not affect coefficient (or recalculate)	dB1 (2)
(e)	0.914 suggests longer spent shopping the more spent. (Idea more time, more spent	
	0.178 different amounts spent for same time.	B1 (2)
(f)	e.g. might spend short time buying 1 expensive item OR might spend a long time checking for bargains, talking, buying lots of cheap items.	B1g (1)
		15 marks
(b)	M1 for one correct formula seen, f.t. their $\sum t, \sum m$ [Use $1^{\text {st }} \mathrm{A} 1$ for 1 correct, $2^{\text {nd }} \mathrm{A} 1$ for 2 etc]	
(c)	M1 for attempt at correct formula, $\frac{2485}{\sqrt{2101 \times 5478}}$ scores M1A0A0	
	A1ft f.t. their values for $S_{t t}$ etc from (b) but don't give for $S_{t t}=5478$ etc (see ab	ove)
	Answer only (awrt 0.914) scores 3/3, 0.913 (i.e. truncation) can score M1A1ft by	mplication.
(d)	$2^{\text {nd }} \text { B1 dependent on } 1^{\text {st }} \text { B1 Accept } \sum m=261, \sum m^{2}=8541, \sum t m=6725 \rightarrow 0.914$	
(e)	One mark for a sensible comment relating to each coefficient	
	For 0.178 allow "little or no link between time and amount spent". Must be in context.	
	0.178 is weak correlation ...scores B0B0.	
(f)	B1g for a sensible, practical suggestion showing that other factors might affect	he amount spent. if busy)

Question number	Scheme	Marks
4. (a)	Positive skew (both bits)	B1 (1)
(b)	$19.5+\frac{(60-29)}{43} \times 10,=26.7093 \ldots . \quad \text { awrt } \underline{26.7}$	M1, A1 (2)
(c)	$\mu=\frac{3550}{120}=29.5833 \ldots \quad$ or $29 \frac{7}{12} \quad$ awrt $\underline{29.6}$	B1
	$\begin{aligned} & \sigma^{2}=\frac{138020}{120}-\mu^{2} \text { or } \sigma=\sqrt{\frac{138020}{120}-\mu^{2}} \\ & \sigma=16.5829 \ldots \text { or }(s=16.652 \ldots) \end{aligned}$ awrt $\underline{16.6}$ (or $s=16.7$)	M1 A1 (3)
(d)	$\frac{3(29.6-26.7)}{16.6}$	M1A1ft
	$\begin{array}{ll} =0.52 \ldots & \text { awrt } \mathbf{0 . 5 2 0} \text { (or with } s \text { awrt 0.518) } \\ & \text { (N.B. } 60.5 \text { in (b) ...awrt } 0.499 \text { [or with } s \text { awrt 0.497]) } \end{array}$	A1 (3)
(e)	$0.520>0$ correct statement about their (d) being >0 or <0 So it is consistent with (a) ft their (d)	$\begin{aligned} & \text { B1ft } \\ & \text { dB1ft } \end{aligned}$
(f)	Use Median Since the data is skewed or less affected by outliers/extreme values	$\begin{align*} & \mathrm{B} 1 \tag{2}\\ & \mathrm{~dB} 1 \end{align*}$
(g)	If the data are symmetrical or skewness is zero or normal/uniform distribution ("mean =median" or "no outliers" or "evenly distributed" all score B0)	$\begin{array}{\|lc} \text { B1 } & \begin{array}{c} \text { (1) } \end{array} \\ & \mathbf{1 4} \text { marks } \end{array}$
(b)	M1 for $(19.5$ or 20$)+\frac{(60-29)}{43} \times 10$ or better. Allow 60.5 giving awrt 26.8 for M1A1 Allow their $0.5 n$ [or $0.5(n+1)$] instead of 60 [or 60.5] for M1.	
(c)	M1 for a correct expression for σ, σ^{2}, s or s^{2}. NB $\sigma^{2}=274.99$ and $s^{2}=277.30$ Condone poor notation if answer is awrt16.6 (or 16.7 for s)	
(d)	M1 for attempt to use this formula using their values to any accuracy. Condone missing 3. $1^{\text {st }}$ A1ft for using their values to at least 3sf. Must have the 3 . $2^{\text {nd }} \mathrm{A} 1$ for using accurate enough values to get awrt 0.520 (or 0.518 if using s) NB Using only 3 sf gives 0.524 and scores M1A1A0	
(e)	$1^{\text {st }}$ B1 for saying or implying correct sign for their (d). B1g and B1ft. Ignore "correlation" if seen. $2^{\text {nd }} \mathrm{B} 1$ for a comment about consistency with their (d) and (a) being positive skew, ft their (d) only This is dependent on $1^{\text {st }} \mathrm{B} 1$: so if $(\mathrm{d})>0$, they say yes, if $(\mathrm{d})<0$ they say no.	
(f)	$2^{\text {nd }} \mathrm{B} 1$ is dependent upon choosing median.	

\begin{tabular}{|c|c|}
\hline Question number \& Scheme Marks \\
\hline \begin{tabular}{l}
5. (a) \\
(b) \\
(c) \\
(d)
\end{tabular} \& Time is a continuous variable or data is in a grouped frequency table
Area is proportional to frequency or \(A \propto f\) or \(A=k f\)
\[
3.6 \times 2=0.8 \times 9
\]
1 child represented by 0.8
(Total \(=\frac{24}{0.8},=\underline{\mathbf{3 0}}\) \begin{tabular}{ll}
B1 \\
M1 1 \\
A1 cso
\end{tabular} \\
\hline (b)
(c)

(d) \& | $1^{\text {st }} \mathrm{B} 1$ for one of these correct statements. |
| :--- |
| "Area proportional to frequency density" or "Area $=$ frequency" is B0 |
| $1^{\text {st }} \mathrm{M} 1$ for a correct combination of any 2 of the 4 numbers: 3.6, 2, 0.8 and 9 |
| e.g. 3.6×2 or $\frac{3.6}{0.8}$ or $\frac{0.8}{2}$ etc BUT e.g. $\frac{3.6}{2}$ is M0 |
| $2^{\text {nd }}$ M1 dependent on $1^{\text {st }}$ M1 and for a correct combination of 3 numbers leading to $4^{\text {th }}$. |
| May be in separate stages but must see all 4 numbers |
| A1cso for fully correct solution. Both Ms scored, no false working seen and comment required. |
| M1 for $\frac{24}{0.8}$ seen or implied. |

\hline
\end{tabular}

Question number	Scheme	Marks
6. (a)	Used to simplify or represent a real world problem Cheaper or quicker or easier (than the real situation) or more easily modified To improve understanding of the real world problem Used to predict outcomes from a real world problem (idea of predictions) (3 or 4) Model used to make predictions. (Idea of predicted values based (4 or 3) (Experimental) data collected	(any two lines) B1 B1 B1 B1 B1 (3) 5 marks
(a) (b)	$1^{\text {st }} \mathrm{B} 1$ For one line $2^{\text {nd }} B 1$ For a second line Be generous for $1^{\text {st }} \mathrm{B} 1$ but stricter for B 1 B 1 $1^{\text {st }} \& 2^{\text {nd }} \mathrm{B} 1 \quad$ These two points can be interchanged. Idea of values from (experimental) data and predicted values based on the model. $1^{\text {st }} \mathrm{B} 1$ for predicted values from model e.g. "model used to gain suitable data" $2^{\text {nd }} \mathrm{B} 1$ for data collected. Idea of experimental data but "experiment" needn't be explicitly seen $3^{\text {rd }}$ B1 This should be stage 7. Idea of refinement or revision or adjustment	

