

Mark Scheme (Results) January 2009

GCE

GCE Mathematics (6683/01)

January 2009 6683 Statistics S1 Mark Scheme

Question Number	Scheme	Marks
1 (a)	$S_{xx} = 57.22 - \frac{(21.4)^2}{10} = 11.424$ $S_{xy} = 313.7 - \frac{21.4 \times 96}{10} = 108.26$ $b = \frac{S_{xy}}{S_{xx}} = 9.4765$	M1 A1
(4)	$S_{xy} = 313.7 - \frac{21.4 \times 96}{10} = 108.26$	A1 (3)
(b)	$b = \frac{S_{xy}}{S_{xx}} = 9.4765$	M1 A1 M1
	$a = \overline{y} - b\overline{x} = 9.6 - 2.14b = (-10.679)$	A1 (4)
(c)	y = -10.7 + 9.48x Every (extra) <u>hour</u> spent using the programme produces about <u>9.5 marks improvement</u>	B1ft (1)
(d)	$y = -10.7 + 9.48 \times 3.3 = 20.6$ awrt 21	M1,A1 (2)
(e)	Model may not be valid since [8h is] outside the range [0.5 - 4].	B1 (1) [11]
(a)	M1 for a correct expression 1^{st} A1 for AWRT 11.4 for S_{xx}	
	2^{nd} A1 for AWRT 108 for S_{xy}	
(b)	Correct answers only: One value correct scores M1 and appropriate A1, both correct M1A	A1A1
	1 st M1 for using their values in correct formula 1 st A1 for AWRT 9.5 2 nd M1 for correct method for a (minus sign required) 2 nd A1 for equation with a and b AWRT 3 sf (e.g. $y = -10.68 + 9.48x$ is fine)	
(c)	Must have a full equation with <i>a</i> and <i>b</i> correct to awrt 3 sf B1ft for comment conveying the idea of <u>b</u> marks per hour. Must mention value of <i>b</i> to fit their value of <i>b</i> . No need to mention "extra" but must mention "marks" and "le.g. "9.5 times per hour" scores B0	
(d)	M1 for sub $x = 3.3$ into their regression equation from the end of part (b) A1 for awrt 21	
(e)	B1 for a statement that says or implies that it may <u>not</u> be valid because <u>outside the rate</u> . They do not have to mention the values concerned here namely 8 h or 0.5 - 4	nnge.

Question Number	Scheme	Mark	ΚS
2 (a)	E = take regular exercise B = always eat breakfast $P(E \cap B) = P(E \mid B) \times P(B)$ $= \frac{9}{25} \times \frac{2}{3} = 0.24 \text{ or } \frac{6}{25} \text{ or } \frac{18}{75}$	M1 A1	(2)
(b)	$P(E \cup B) = \frac{2}{3} + \frac{2}{5} - \frac{6}{25} \text{or} P(E' \mid B') \text{or} P(B' \cap E) \text{or} P(B \cap E')$ $= \frac{62}{75} \qquad = \frac{13}{25} \qquad = \frac{12}{75} \qquad = \frac{32}{75}$ $P(E' \cap B') = 1 - P(E \cup B) = \frac{13}{75} \text{or} 0.17\dot{3}$ $P(E \mid B) = 0.36 \neq 0.40 = P(E) \text{or} P(E \cap B) = \frac{6}{25} \neq \frac{2}{5} \times \frac{2}{3} = P(E) \times P(B)$	M1 A1 M1 A1	(4)
(c)	$P(E \mid B) = 0.36 \neq 0.40 = P(E) \text{or} P(E \cap B) = \frac{6}{25} \neq \frac{2}{5} \times \frac{2}{3} = P(E) \times P(B)$ So <i>E</i> and <i>B</i> are <u>not</u> statistically independent	M1 A1	(2) [8]
(a)	M1 for $\frac{9}{25} \times \frac{2}{3}$ or $P(E B) \times P(B)$ and at least one correct value seen. A1 for 0.24 or exact equiv. NB $\frac{2}{5} \times \frac{2}{3}$ alone or $\frac{2}{5} \times \frac{9}{25}$ alone scores M0A0. Correct answer scores full marks.		
(b)	1st M1 for use of the addition rule. Must have 3 terms and some values, can ft their (a) Or a full method for $P(E' B')$ requires $1 - P(E B')$ and equation for $P(E B')$: (a) $+\frac{x}{3} = \frac{2}{5}$ Or a full method for $P(B' \cap E)$ or $P(B \cap E')$ [or other valid method] 2nd M1 for a method leading to answer e.g. $1 - P(E \cup B)$ or $P(B') \times P(E' \mid B')$ or $P(B') - P(B' \cap E)$ or $P(E') - P(B \cap E')$ Venn Diagram 1st M1 for diagram with attempt at $\frac{2}{5} - P(B \cap E)$ or $\frac{2}{3} - P(B \cap E)$. Can ft their (a) 1st A1 for a correct first probability as listed or 32, 18 and 12 on Venn Diagram 2nd M1 for attempting 75 - their (18 +32 + 12) M1 for identifying suitable values to test for independence e.g. $P(E) = 0.40$ and $P(E B) = 0.36$ Or $P(E) \times P(B) =$ and $P(E \cap B) = $ their (a) [but their (a) $\neq \frac{2}{5} \times \frac{2}{3}$]. Values seen somewhere A1 for correct values and a correct comment Diagrams You may see these or find these useful for identifying probabilities.		
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	scores M	

Ques Num			Scheme			Mark	ΚS
3	(a)	$E(X) = 0 \times 0.4 + 1 \times 0.3 +$	$.+3 \times 0.1, = 1$			M1, A1	(2)
	(b)	$F(1.5) = [P(X \le 1.5) =] P(A \le 1.5) = P(A \le$	$X \le 1), = 0.4 + 0.3 = 0$.7		M1, A1	(2)
	(c)	$E(X^2) = 0^2 \times 0.4 + 1^2 \times 0.3$	$3 + + 3^2 \times 0.1$, = 2			M1, A1	
		$Var(X) = 2 - 1^2$, = 1	(*)			M1, A10	(4)
	(d)	$Var(5-3X) = (-3)^2 Var(-3)^2 Var(-$	(X), = 9			M1, A1	(2)
	(e)	Total	Cases	Probability			
			$(X=3)\cap(X=1)$	$0.1 \times 0.3 = 0.03$			
		4	$(X=1)\cap(X=3)$	$0.3 \times 0.1 = 0.03$			
			$(X=2)\cap (X=2)$	$0.2 \times 0.2 = 0.04$		D4D4D4	
		5	$(X=3)\cap(X=2)$	$0.1 \times 0.2 = 0.02$		B1B1B1	
		3	$(X=2)\cap (X=3)$	$0.2 \times 0.1 = 0.02$		M1	
		6	$(X=3)\cap(X=3)$	$0.1 \times 0.1 = 0.01$		A1	
		Total probability = $0.03 + 0.$	03+0.04 +0.02 + 0.02 + 0	0.01 = 0.15		A1	(6) [16]
	(a)	M1 for at least 3 terms se	en. Correct answer only	scores M1A1. Dividing	by $k(\neq 1)$ is	is M0.	
	(b)	M1 for $F(1.5) = P(X \le 1)$.[Beware: $2 \times 0.2 + 3 \times 0.$.1 = 0.7 but scores M0A	v 0]		
ALT	(c)	1 st M1 for at least 2 non-zero terms seen. $E(X^2) = 2$ alone is M0. Condone calling $E(X^2) = Var(X)$. 1 st A1 is for an answer of 2 or a fully correct expression. 2 nd M1 for $-\mu^2$, condone $2-1$, unless clearly 2 Allow $2-\mu^2$, with $= 1$ even if $E(X) \neq 1$ 2 nd A1 for a fully correct solution with no incorrect working seen, both Ms required. $\sum (x-\mu)^2 \times P(X=x)$				<i>(</i>).	
		1st M1 for an attempt at a fu	Ill list of $(x-\mu)^2$ values	and probabilities. 1st A	1 if all corre	ect	
		2^{nd} M1 for at least 2 non-zero terms of $(x - \mu)^2 \times P(X = x)$ seen. 2^{nd} A1 for $0.4 + 0.2 + 0.4 = 1$					
	(d) (e)	M1 for use of the correct formula. $-3^2 \text{Var}(X)$ is M0 unless the final answer is >0. Can follow through their $\text{Var}(X)$ for M1					
ALT				} table r more ≥1			

Question Number	Scheme	Marks
4 (a)	$Q_2 = 53$, $Q_1 = 35$, $Q_3 = 60$	B1, B1,B1
(b)	$Q_3 - Q_1 = 25 \Rightarrow Q_1 - 1.5 \times 25 = -2.5$ (no outlier)	M1 (3)
	$Q_3 + 1.5 \times 25 = 97.5$ (so 110 is an outlier)	A1 (2)
(c)		M1
	A 10 20 30 40 50 50 70 VO 90 100 130	A1ft
	y minutes	A1ft (3)
(d)	$\sum y = 461, \sum y^2 = 24\ 219 : S_{yy} = 24219 - \frac{461^2}{10}, = 2966.9$ (*)	B1, B1, B1cso
(e)		(3)
(f)	$r = \frac{-18.3}{\sqrt{3463.6 \times 2966.9}}$ or $\frac{-18.3}{3205.64} = -0.0057$ AWRT - 0.006 or -6×10 ⁻³	M1 A1 (2)
	r suggests correlation is close to zero so parent's claim is not justified	B1 (1) [14]
(a)	1 st B1 for median 2 nd B1 for lower quartile 3 rd B1 for upper quartile	1
(b)	M1 for attempt to find one limit A1 for both limits found and correct. No explicit comment about outliers needed	
(c)	M1 for a box and two whiskers 1 st A1ft for correct position of box, median and quartiles. Follow through their values 2 nd A1ft for 17 and 77 or "their" 97.5 and *. If 110 is not an outlier then score A0 here Penalise no gap between end of whisker and outlier. Must label outlier, needn't be with the correct square so 97 or 98 will do for 97.5	2.
(d)	1 st B1 for $\sum y$ N.B. $(\sum y)^2 = 212521$ and can imply this mark	
	2^{nd} B1 for $\sum y^2$ or at least three correct terms of $\sum (y - \overline{y})^2$ seen.	
	3^{rd} B1 for complete correct expression seen leading to 2966.9. So all 10 terms of \sum ($(y-\overline{y})^2$
(e)	M1 for attempt at correct expression for r . Can ft their S_{yy} for M1.	
(f)	B1 for comment <u>rejecting</u> parent's claim on basis of <u>weak or zero</u> correlation Typical error is "negative correlation so comment is true" which scores B0 Weak negative or weak positive correlation is OK as the basis for their rejection	1.

Question Number	Scheme	Mar	ks
5 (a)	8-10 hours: width = 10.5 - 7.5 = 3 represented by 1.5cm 16-25 hours: width = 25.5 - 15.5 = 10 so represented by 5 cm 8- 10 hours: height = fd = 18/3 = 6 represented by 3 cm 16-25 hours: height = fd = 15/10 = 1.5 represented by 0.75 cm	B1 M1 A1	(3)
(b)	$Q_2 = 7.5 + \frac{(52 - 36)}{18} \times 3 = 10.2$	M1 A1	
	$Q_1 = 5.5 + \frac{(26-20)}{16} \times 2[=6.25 \text{ or } 6.3] \text{ or } 5.5 + \frac{(26.25-20)}{16} \times 2[=6.3]$	A1	
	$Q_3 = 10.5 + \frac{(78 - 54)}{25} \times 5 = 15.3$ or $10.5 + \frac{(78.75 - 54)}{25} \times 5 = 15.45 \setminus 15.5$ $IQR = (15.3 - 6.3) = 9$	A1 A1ft	(5)
(c)	$\sum fx = 1333.5 \Rightarrow \overline{x} = \frac{1333.5}{104} =$ AWRT <u>12.8</u>	M1 A1	
(d)	$\sum fx^2 = 27254 \Rightarrow \sigma_x = \sqrt{\frac{27254}{104} - \bar{x}^2} = \sqrt{262.05 - \bar{x}^2} $ AWRT <u>9.88</u>	M1 A1	(4)
(e)	$Q_3 - Q_2 = 5.1 > Q_2 - Q_1 = 3.9$ or $Q_2 < \overline{x}$ So data is positively skew	B1ft dB1	(2)
	Use median and IQR, since data is skewed <u>or</u> not affected by extreme values or outliers	B1 B1	(2) [16]
(a)	M1 For attempting both frequency densities $\frac{18}{3}$ (= 6) and $\frac{15}{10}$, and $\frac{15}{10} \times SF$, where $SF \neq$	1	
(b)	NB Wrong class widths (2 and 9) gives $\frac{h}{1.66} = \frac{3}{9} \rightarrow h = \frac{5}{9}$ or 0.55 and scores N	11A0	
, ,	M1 for identifying correct interval and a correct fraction e.g. $\frac{\frac{1}{2}(104)-36}{18}$. Condone 52.5 or 53 1 st A1 for 10.2 for median. Using $(n + 1)$ allow awrt 10.3		
	2^{nd} A1 for a correct expression for either Q_1 or Q_3 (allow 26.25 and 78.75) Mu	NB:	
	3^{rd} A1 for correct expressions for both Q_1 and Q_3		
(c)		some method	
	$1^{\text{st}} M1$ for attempting $\sum fx$ and \overline{x}		
(d)	2 nd M1 for attempting $\sum fx^2$ and σ_x , $\sqrt{\ }$ is needed for M1. Allow $s = \text{awrt } 9.93$		
	1 st B1ft for suitable test, values need not be seen but statement must be compatible wi values used. Follow through their values	th	
(e)	2 nd dB1 Dependent upon their test showing positive and for stating positive skew If their test shows negative skew they can score 1 st B1 but lose the second		
. /	1 st B1 for choosing median and IQR. Must mention <u>both</u> . } Award independence of the property of the propert	dently	
	e.g. "use median because data is skewed" scores B0B1 since IQR is not mentioned		

Question Number	Scheme		Marks	
6 (a)	$P(X<39) = P\left(Z < \frac{39-30}{5}\right)$ $= P(Z<1.8) = 0.9641 $ (allow awrt 0.964)	M1 A1	(2)	
(b)	$P(X < d) = P\left(Z < \frac{d - 30}{5}\right) = 0.1151$	M1		
	$1-0.1151 = 0.8849$ $\Rightarrow z = -1.2$ $\therefore \frac{d-30}{5} = -1.2$ (allow ± 1.2) $\frac{d=24}{5}$	B1 M1A1	(4)	
(c)	5 $P(X>e) = 0.1151 \text{ so } e = \mu + (\mu - \text{their } d) \text{ or } \frac{e-30}{5} = 1.2 \text{ or } - \text{their } z$	M1		
(d)	$e = 36$ $P(d < X < e) = 1 - 2 \times 0.1151$	A1	(2)	
	= 0.7698 AWRT <u>0.770</u> Answer only scores all marks in each section BUT check (b) and (c) are in correct of	M1 A1	(2) [10]	
(a)	M1 for standardising with σ , $z = \pm \frac{39-30}{5}$ is OK	ruci		
(b)	for 0.9641 or awrt 0.964 but if they go on to calculate $1 - 0.9641$ they get M1A0 1 st M1 for attempting 1- 0.1151. Must be seen in (b) in connection with finding <i>d</i> B1 for $z = \pm 1.2$. They must state $z = \pm 1.2$ or imply it is a <i>z</i> value by its use. This mark is only available in part (b).			
(c)	2^{nd} M1 for $\left(\frac{d-30}{5}\right)$ = their negative z value (or equivalent) M1 for a full method to find e . If they used $z = 1.2$ in (b) they can get M1 for $z = \pm 1.2$ If they use symmetry about the mean $\mu + (\mu$ - their d) then ft their d for M1 Must explicitly see the method used unless the answer is correct.	here		
(d)	for a complete method or use of a correct expression e.g. "their 0.8849 " - 0.1151 or If their $d <$ their e using their values with $P(X < e) - P(X < d)$ If their $d \ge$ their e then they can only score from an argument like $1 - 2x0.1151$ A negative probability or probability > 1 for part (d) scores M0A0			