Mark Scheme (Results) January 2009

GCE

GCE Mathematics (6683/01)

January 2009
 6683 Statistics S1
 Mark Scheme

Question Number	Scheme ${ }^{\text {a }}$ Marks
$1 \begin{array}{ll} \\ & \text { (a) } \\ & \text { (b) } \\ \\ & \text { (c) } \\ & \text { (d) } \\ & \text { (e) }\end{array}$	
(a) (b) (c) (d) (e)	```M1 for a correct expression \(1^{\text {st }}\) A1 for AWRT 11.4 for \(\mathrm{S}_{x x}\) \(2^{\text {nd }}\) A1 for AWRT 108 for \(\mathrm{S}_{x y}\) Correct answers only: One value correct scores M1 and appropriate A1, both correct M1A1A1 \(1^{\text {st }}\) M1 for using their values in correct formula \(1^{\text {st }} \mathrm{A} 1\) for AWRT 9.5 \(2^{\text {nd }}\) M1 for correct method for \(a\) (minus sign required) \(2^{\text {nd }} \mathrm{A} 1\) for equation with \(a\) and \(b\) AWRT 3 sf (e.g. \(y=-10.68+9.48 x\) is fine) Must have a full equation with \(a\) and \(b\) correct to awrt 3 sf B1ft for comment conveying the idea of \(b\) marks per hour. Must mention value of \(b\) but can ft their value of \(b\). No need to mention "extra" but must mention "marks" and "hour(s)" e.g. " ...9.5 times per hour ..." scores B0 M1 for sub \(x=3.3\) into their regression equation from the end of part (b) A1 for awrt 21 B1 for a statement that says or implies that it may not be valid because outside the range. They do not have to mention the values concerned here namely 8 h or 0.5-4```

\begin{tabular}{|c|c|}
\hline Question Number \& Scheme ${ }^{\text {a }}$ Marks

\hline 2 (a) \&

\hline (a)
(b)

(c) \& \multirow[t]{2}{*}{| M1 for $\frac{9}{25} \times \frac{2}{3}$ or $\mathrm{P}(E \mid B) \times \mathrm{P}(B)$ and at least one correct value seen. A1 for 0.24 or exact equiv. |
| :--- |
| NB $\frac{2}{5} \times \frac{2}{3}$ alone or $\frac{2}{5} \times \frac{9}{25}$ alone scores M0A0. Correct answer scores full marks. |
| $1^{\text {st }} \mathrm{M} 1$ for use of the addition rule. Must have 3 terms and some values, can ft their (a) |
| Or a full method for $\mathrm{P}\left(E^{\prime} \mid B^{\prime}\right)$ requires $1-\mathrm{P}\left(E \mid B^{\prime}\right)$ and equation for $\mathrm{P}\left(E \mid B^{\prime}\right):(\mathrm{a})+\frac{x}{3}=\frac{2}{5}$ |
| Or a full method for $\mathrm{P}\left(B^{\prime} \cap E\right)$ or $\mathrm{P}\left(B \cap E^{\prime}\right)$ [or other valid method] |
| $2^{\text {nd }} \mathrm{M} 1$ for a method leading to answer e.g. $1-\mathrm{P}(E \cup B)$ $\text { or } \mathrm{P}\left(B^{\prime}\right) \times \mathrm{P}\left(E^{\prime} \mid B^{\prime}\right) \text { or } \mathrm{P}\left(B^{\prime}\right)-\mathrm{P}\left(B^{\prime} \cap E\right) \text { or } \mathrm{P}\left(E^{\prime}\right)-\mathrm{P}\left(B \cap E^{\prime}\right)$ |
| Venn Diagram $1^{\text {st }} \mathrm{M} 1$ for diagram with attempt at $\frac{2}{5}-\mathrm{P}(B \cap E)$ or $\frac{2}{3}-\mathrm{P}(B \cap E)$. Can ft their (a) $1^{\text {st }} \mathrm{A} 1$ for a correct first probability as listed or 32,18 and 12 on Venn Diagram $2^{\text {nd }}$ M1 for attempting 75 - their $(18+32+12)$ |
| M1 for identifying suitable values to test for independence e.g. $\mathrm{P}(E)=0.40$ and $\mathrm{P}(E \mid B)=0.36$ Or $\mathrm{P}(E) \times \mathrm{P}(B)=\ldots$ and $\mathrm{P}(E \cap B)=$ their (a) [but their (a) $\neq \frac{2}{5} \times \frac{2}{3}$]. Values seen somewhere |
| A1 for correct values and a correct comment |
| Diagrams You may see these or find these useful for identifying probabilities. |
| Common Errors |
| (a) $\frac{9}{25}$ is M0A0 |
| (b) $\mathrm{P}(E \cup B)=\frac{53}{75}$ scores M1A0 |
| $1-\mathrm{P}(E \cup B)=\frac{22}{75}$ scores M1A0 |
| (b) $\mathrm{P}\left(B^{\prime}\right) \times \mathrm{P}\left(E^{\prime}\right)=\frac{1}{3} \times \frac{3}{5}$ |
| scores $0 / 4$ |}

\hline \&

\hline
\end{tabular}

Question Number	Scheme	Marks
6 (a)	$\begin{aligned} \mathrm{P}(X<39) & =\mathrm{P}\left(Z<\frac{39-30}{5}\right) \\ & =\mathrm{P}(Z<1.8)=\underline{0.9641} \end{aligned}$ (allow awrt 0.964)	M1 A1
(b)	$\begin{array}{ll} \mathrm{P}(X<d)=\mathrm{P}\left(Z<\frac{d-30}{5}\right)=0.1151 & \\ 1-0.1151=0.8849 & \\ \Rightarrow \quad z=-1.2 & \quad \text { (allow } \pm 1.2) \\ \therefore \frac{d-30}{5}=-1.2 & \underline{d=24} \end{array}$	M1 B1 M1A1 (4)
(c)	$\mathrm{P}(X>e)=0.1151$ so $e=\mu+(\mu$ - their $d)$ or $\frac{e-30}{5}=1.2$ or $-\operatorname{their} z$ $\underline{e=36}$	M1 A1 (2)
(d)	$\begin{aligned} \mathrm{P}(d<X<e) & =1-2 \times 0.1151 \\ & =0.7698 \end{aligned}$ AWRT 0.770	$\begin{array}{\|lr} \mathrm{M} 1 & \\ \text { A1 } & (2) \\ & {[10]} \\ \hline \end{array}$
	Answer only scores all marks in each section BUT check (b) and (c) are in correct order	
(a)	M1 for standardising with $\sigma, z= \pm \frac{39-30}{5}$ is OK	
(b)	$\begin{array}{ll} \begin{array}{ll} 1^{\text {st }} \mathrm{M} 1 & \text { for attempting 1-0.1151. Must be seen in (b) in connection with finding } d \\ \text { B1 } & \text { for } z= \pm 1.2 \text {. They must state } z= \pm 1.2 \text { or imply it is a } z \text { value by its use. } \end{array} \\ & \text { This mark is only available in part (b). } \end{array}$	
(c)	M1 for a full method to find e. If they used $z=1.2$ in (b) they can get M1 for $z= \pm 1.2$ here If they use symmetry about the mean $\mu+(\mu$ - their $d)$ then ft their d for M1 Must explicitly see the method used unless the answer is correct.	
(d)	M1 for a complete method or use of a correct expression e.g. "their 0.8849 " - 0.115 or If their $\boldsymbol{d}<$ their \boldsymbol{e} using their values with $\mathrm{P}(X<e)-\mathrm{P}(X<d)$ If their $d \geq$ their e then they can only score from an argument like $1-2 \times 0.1151$ A negative probability or probability >1 for part (d) scores M0A0	

