Mark Scheme (Results) J anuary 2011

GCE

GCE Statistics S1 (6683) Paper 1

Edexcel is one of the leading examining and awarding bodies in the UK and throughout the world. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers.
Through a network of UK and overseas offices, Edexcel's centres receive the support they need to help them deliver their education and training programmes to learners.
For further information, please call our GCE line on 08445760025 , our GCSE team on 0844576 0027, or visit our website at www.edexcel.com.

If you have any subject specific questions about the content of this Mark Scheme that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

Ask The Expert can be accessed online at the following link:
http:// www.edexcel.com/ Aboutus/ contact-us/

J anuary 2011
Publications Code UA026664
All the material in this publication is copyright
© Edexcel Ltd 2011

General Instructions for Marking

1. The total number of marks for the paper is 75 .
2. The Edexcel Mathematics mark schemes use the following types of marks:

- Mmarks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- B marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.

3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod - benefit of doubt
- ft - follow through
- the symbol $\sqrt{ }$ will be used for correct ft
- cao - correct answer only
- cso - correct solution only. There must be no errors in this part of the question to obtain this mark
- isw - ignore subsequent working
- awrt - answers which round to
- SC: special case
- oe - or equivalent (and appropriate)
- dep - dependent
- indep - independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper
- \square The second mark is dependent on gaining the first mark

J anuary 2011
 Statistics S1 6683
 Mark Scheme

Question Number	Scheme	Marks	
1.	$\begin{aligned} & S_{l l}=327754.5-\frac{4027^{2}}{50}=3419.92 \\ & S_{l w}=29330.5-\frac{357.1 \times 4027}{50}=569.666 \end{aligned}$	M1 A1 A1 (3)	
(b)	$r=\frac{569.666}{\sqrt{3419.92 \times 289.6}}=0.572 \quad$ awrt 0.572 or 0.573	M1 A1	
(c)	As the length of the salmon increases the weight increases	$\begin{array}{ll}\text { B1ft } & \\ & \begin{array}{c}\text { (1) } \\ {[6]}\end{array}\end{array}$	
	Notes		
(a)	$\begin{aligned} & \text { M1 for at least one correct expression } \\ & 1^{\text {st }} \text { A1 for } S_{l l}=\text { awrt } 3420 \quad \text { (Condone } S_{x x}=\ldots \text { or even } S_{y y}=\ldots \text {) } \\ & 2^{\text {nd }} \text { A1 for } S_{l w}=\text { awrt } 570 \quad \text { (Condone } S_{x y}=\ldots \text {) } \end{aligned}$		
(b)	M1 for attempt at correct formula. Must have their $S_{l l}, S_{l w}$ and given $S_{w w}$ in the correct places If $S_{\\| l}, S_{l w}$ are correct and an answer of awrt 0.57 is seen then award M1A0 M0 for $\frac{29330.5}{\sqrt{327754.5 \times 289.6}}$		
(c)	B1ft for a comment mentioning "length" and "weight", not just l and w, and the idea of longer salmon weighing more. e.g. "positive correlation between weight and length" is B0 since the idea of positive correlation is not explained. Allow "larger" instead of "heavier" or "longer" Ignore any spurious values mentioned such as 0.572 If their r is negative (but must be $r>-1$) ft an appropriate comment. Condone $r>1$ if comment is correct. If $\|r\|<0.4$ allow a comment of no or little relationship between weight and length but for $0<r<0.4$ the printed answer is still acceptable too. Treat mention of "skewness" as ISW if a correct interpretation is given		

\begin{tabular}{|c|c|c|}
\hline Question Number \& Scheme \& Marks \\
\hline 5. (a) \& \begin{tabular}{l}
\[
\begin{aligned}
\& \text { Median }=32 / 2=16^{\text {th }} \text { term }(16.5) \\
\& \frac{x-39.5}{49.5-39.5}=\frac{16-14}{25-14} \text { or } x=39.5+\left(\frac{2}{11} \times 10\right) \\
\& \text { Median }=41.3 \text { (use of } n+1 \text { gives } 41.8)
\end{aligned}
\] \\
(awrt 41.3)
\end{tabular} \& M1
A1 \\
\hline (b) \& \begin{tabular}{l}
\[
\text { Mean }=\frac{1414}{32}=44.1875
\] \\
(awrt 44.2)
\[
\begin{aligned}
\text { Standard deviation } \& =\sqrt{\frac{69378}{32}-\left(\frac{1414}{32}\right)^{2}} \& \\
\& =14.7 \& (\text { or } s=14.9)
\end{aligned}
\]
\end{tabular} \& B1
M1
A1 \\
\hline (c) \& mean > median therefore positive skew \& B1ft B1ft \\
\hline \& \multicolumn{2}{|l|}{Notes} \\
\hline (a) \& \multicolumn{2}{|l|}{\begin{tabular}{l}
M1 for an attempt to use interpolation to find the median. Condone use of 39 or 40 for 39.5 e.g. allow \(39+\frac{2}{11} \times 10\) (o.e.) or \(40+\frac{2}{11} \times 10\) (o.e.) to score M1A0 but must have the 10 \\
A1 for awrt 41.3 (or awrt 41.8 if using \((n+1)\))
\end{tabular}} \\
\hline (b) \& \multicolumn{2}{|l|}{\begin{tabular}{l}
B1 for awrt 44.2 \\
M1 for a correct expression including square root. (Allow ft of their mean) \\
A1 for awrt 14.7 (If using \(s\) for awrt 14.9) \\
You may see \(\sum t=1339 \rightarrow \bar{t}=41.8\) and \(\sum t^{2}=62928 \rightarrow \sigma 14.7\) or \(s=14.9\) \\
this scores B0 for the mean but can score M1 for a correct st.dev expression and A1 for ans. \\
Correct answer only in (a) and (b) can score full marks but check (\(n+1\)) case in (a)
\end{tabular}} \\
\hline (c)

Quartiles \& \multicolumn{2}{|l|}{| $1^{\text {st }} \mathrm{B} 1 \mathrm{ft}$ for a correct comparison of their mean and their median (may be in a formula) Calculating median - mean as negative is OK for this B1 but must say + ve skew for $2^{\text {nd }} \mathrm{B} 1$ |
| :--- |
| Only allow comparison to be ≈ 0 if \mid mean - median $\mid \leq 0.5$ |
| $2^{\text {nd }}$ B1ft for a correct description of skewness based on their values of mean and median. ft their values for mean and median not their previous calculation/comparison Must be compatible with their previous comparison (if they have one) "Positive skew" with no reason is B0B1 provided you can see their values that imply that. |
| Description should be "positive" or "negative" or "no" skew or "symmetric" "Positive correlation" is B0 |
| $1^{\text {st }}$ B1ft if $Q_{1}=$ awrt 32 and $Q_{3}=$ awrt 49 seen and a correct comparison made. ft Q_{2} |
| $2^{\text {nd }}$ B1ft if $Q_{1}=$ awrt 32 or $Q_{3}=$ awrt 49 seen and a correct description based on their quartiles and their comparison is made. (Should get "negative skew") |}

\hline
\end{tabular}

Question Number	Scheme Marks
	Notes
(a)	B1 for a clear attempt to use sum of probabilities $=1$. Must see previous line as well as $k=0.1$ A correct expression for $\mathrm{E}(X)$ or $\mathrm{E}\left(X^{2}\right)$ that is later divided by $\mathbf{4}$ scores M0
(b)	M1 for a completely correct expression. May be implied by correct answer of 3 or $30 k$ A1 for 3 only.
(c)	M1 for a completely correct expression. May be implied by correct answer of 10 or 100 k A1 for 10 only. [For $\mathrm{E}\left(X^{2}\right)=0.1+0.8+2.7+6.4-9=1$ scores M0A0 but accept this as $\operatorname{Var}(X)$ in (d)]
(d)	$1^{\text {st }} \mathrm{M} 1$ for using $\operatorname{Var}(X)=\mathrm{E}\left(X^{2}\right)-\mathrm{E}(X)^{2}$, f.t their values from (b) and (c) Allow this mark for $\operatorname{Var}(X)=10-9$ or better. May be implied if this is seen in (c). $2^{\text {nd }} \mathrm{M} 1$ for $5^{2} \operatorname{Var}(X)$ or $25 \operatorname{Var}(X)$ can f.t. their $\operatorname{Var}(X)$. Allow -5^{2} if it later becomes +25 A1 for 25 only. Dependent upon both Ms Forming distribution for $Y=2-5 X$ gets M1 for $\mathrm{E}\left(Y^{2}\right)=194$ then M1A1 for 194-169=25
(e)	M1 for correctly identifying $(1,3)$ or $(3,1)$ and $(2,2)$ as required cases ($3 k^{2}+4 k^{2}$ or better) A1 cso for 0.1 only but must see evidence for M1
(f)	$1^{\text {st }} \mathrm{B} 1$ for 0.2 correctly assigned. May be in table. $2^{\text {nd }} \mathrm{B} 1$ for 0.16 correctly assigned. May be in table
(g)	M1 for $\mathrm{P}(2)+\mathrm{P}(3)$. May be implied by correct answer of 0.05 A1 for 0.05 only. Correct answer only can score full marks in parts (b), (c), (f) and (g)

Question Number	Scheme	Marks
$7 .$ (a)		B1 B1 B1 B1 (4)
(b)	$\mathrm{P}(A)=\mathrm{P}(R R)+\mathrm{P}(Y Y)=\frac{1}{2} \times \frac{2}{5}+\frac{1}{2} \times " \frac{2}{5}=\frac{2}{5} \quad \begin{aligned} & \text { B1 for } \frac{1}{2} \times \frac{2}{5}(\text { oe }) \text { seen at least } \\ & \text { once }\end{aligned}$	B1 M1 A1 (3)
(c)	$\left.\begin{array}{ll} \mathrm{P}(B)=\mathrm{P}(R R R)+\mathrm{P}(R Y R)+\mathrm{P}(Y R R)+\mathrm{P}(Y Y R) & \begin{array}{l} \text { M1 for at least } 1 \text { case of 3 balls } \\ \text { identified. (Implied by 2 } \end{array} \\ \left(\frac{1}{2} \times \frac{2}{5} \times " \frac{2}{3}\right. \text { M1) } \tag{*} \end{array}\right)+\left(\frac{1}{2} \times \frac{3}{5} \times \frac{5}{9}\right)+\left(\frac{1}{2} \times " \frac{3}{5} " \times \frac{5}{9}\right)+\left(\frac{1}{2} \times " \frac{2}{5} " \times \frac{4}{9}\right)=\frac{5}{9}\left(^{*}\right)$	M1 M1,A1cso
(d)	$\mathrm{P}(A \cap B)$ $=\mathrm{P}(R R R)+\mathrm{P}(Y Y R)$ M1 for identifying both cases and + probs. may be implied by correct expressions $=\left(\frac{1}{2} \times \frac{2}{5} \times \frac{2}{3}\right)+\left(\frac{1}{2} \times \frac{2}{5} \times \frac{4}{9}\right)$ $=\frac{2}{9}\left(^{*}\right)$	M1 Alcso (2)
(e)	$\begin{aligned} \mathrm{P}(A \cup B) & =\mathrm{P}(\mathrm{~A})+\mathrm{P}(\mathrm{~B})-\mathrm{P}(A \cap B) \quad \text { Must have some attempt to use } \\ & =" \frac{2}{5} "+\frac{5}{9}-\frac{2}{9}=\frac{11}{15} \end{aligned}$	M1 Alcao (2)

Question Number	Scheme		Marks
(f)	$\frac{\mathrm{P}(R R R)}{\mathrm{P}(R R R)+\mathrm{P}(Y Y Y)}=\frac{\frac{1}{2} \times \frac{2}{5} \times \frac{2}{3}}{\left(\frac{1}{2} \times \frac{2}{5} \times \frac{2}{3}\right)+\left(\frac{1}{2} \times \frac{2}{5} \times \frac{5}{9}\right)}=\frac{6}{11}$	Probabilities must come from the product of 3 probs. from their tree diagram.	M1 Alft Al cao
	Notes		
(b)	M1 for both cases, and +, attempted, ft their values from tree diagram. May be 4 cases of 3 balls.		
(c)	$2^{\text {nd }} \mathrm{M} 1$ for all 4 correct expressions, ft their values from tree diagram. A1 is cso		
(e)	M1 for clear attempt to use the correct formula, must have some correct substitution. ft their (b)		
(f)	M1 for identifying the correct probabilities and forming appropriate fraction of probs. $1^{\text {st }}$ A1ft for a correct expression using probabilities from their tree Accept exact decimal equivalents. Correct answer only is full marks except in (c) and (d)		

Question Number	Scheme ${ }^{\text {a }}$
8. (a)	$\begin{aligned} \mathrm{P}(X>168) & =\mathrm{P}\left(Z>\frac{168-160}{5}\right) \\ & =\mathrm{P}(Z>1.6) \\ & =0.0548 \end{aligned}$awrt $0.0548 \quad$M1 $A 1$ $A 1$
(b)	$\begin{gathered} \mathrm{P}(X<w)=\mathrm{P}\left(\mathrm{Z}<\frac{w-160}{5}\right) \\ \frac{w-160}{5}=-2.3263 \\ w=148.37 \end{gathered}$awrt 148 M1 B1 A1
(c)	$\frac{160-\mu}{\sigma}=2.3263$ M1 $\frac{152-\mu}{\sigma}=-1.2816$ $160-\mu=2.3263 \sigma$ $152-\mu=-1.2816 \sigma$ awrt 2.22 A1 $8=3.6079 \sigma$ awrt 155 A1 $\sigma=2.21 \ldots$. $\mu=154.84 \ldots$ [12]
	Notes
(a)	M1 for an attempt to standardize 168 with 160 and 5 i.e. $\pm\left(\frac{168-160}{5}\right)$ or implied by 1.6 $1^{\text {st }} \mathrm{A} 1$ for $\mathrm{P}(Z>1.6)$ or $\mathrm{P}(Z<-1.6)$ ie $z=1.6$ and a correct inequality or 1.6 on a shaded diagram Correct answer to (a) implies all 3 marks
(b)	M1 for attempting $\pm\left(\frac{w-160}{5}\right)=$ recognizable z value $(\|z\|>1)$ B1 for $z= \pm 2.3263$ or better. Should be $z=\ldots$ or implied so: $1-2.3263=\frac{w-160}{5}$ is M0B0 A1 for awrt 148. This may be scored for other z values so M1B0A1 is possible For awrt 148 only with no working seen award M1B0A1 M1 for attempting to standardize 160 or 152 with μ and σ (allow \pm) and equate to z value ($\|z\|>1$) $1^{\text {st }} \mathrm{B} 1$ for awrt ± 2.33 or ± 2.32 seen $2^{\text {nd }}$ B1 for awrt ± 1.28 seen $2^{\text {nd }}$ M1 for attempt to solve their two linear equations in μ and σ leading to equation in just one variable $1^{\text {st }} \mathrm{A} 1$ for $\sigma=$ awrt 2.22. Award when $1^{\text {st }}$ seen $2^{\text {nd }}$ A1 for $\mu=$ awrt 155 . Correct answer only for part (c) can score all 6 marks. NB $\sigma=2.21$ commonly comes from $z=2.34$ and usually scores M1B0B1M1A0A1 The A marks in (c) require both M marks to have been earned

Further copies of this publication are available from
Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN
Telephone 01623467467
Fax 01623450481
Email publications@linneydirect.com
Order Code UA026664 J anuary 2011

For more information on Edexcel qualifications, please visit www.edexcel.com/ quals

Edexcel Limited. Registered in England and Wales no. 4496750
Registered Office: One90 High Holborn, London, WC1V 7BH

