EDEXCEL STATISTICS S1 (6683)- JUNE 2002
PROVISIONAL MARK SCHEME

Question Number	Scheme	Marks
1.	$\begin{aligned} \mathrm{P}(\text { Not } 6)=1-\frac{1}{6} & =\frac{5}{6} \\ \mathrm{P}(6 \text { on third throw }) & =\frac{5}{6} \times \frac{5}{6} \times \frac{1}{6}=0.116 \quad 3 \text { probabilities multiplied } \\ & =\frac{25}{216}=0.1157 \ldots \quad(\text { accept } 0.116) \end{aligned}$	B1 (1) M1 A1ft A1 (3) (4 marks)
2.	Observe real world problem Devise a statistical model and collect data Compare observed against expected outcomes and test the model Refine model if necessary	B1 B1 B1 B1 $(\mathbf{4)}$ (4 marks)
3. (a) (b) (e)	$\mathrm{P}(B \mid A)=$ Probability of B, given A has occurred ε $\begin{align*} \mathrm{P}(\text { Amber is late }) & =0.5 \times 0.02 \tag{2}\\ & =0.01 \end{align*}$ complete diagram $\begin{array}{r} 0.49 ; 0.01 \\ 0.198 ; 0.002 \\ 0.27 ; 0.03 \end{array}$ intersections, three of them added	M1 A1 cao (2) M1 B1 B1 B1 (4) M1 A1 cao (2) (12 marks)

$\mathrm{ft}=$ follow-through mark; cao $=$ correct answer only

EDEXCEL STATISTICS S1 (6683) - JUNE 2002
PROVISIONAL MARK SCHEME

Question Number	Scheme	Marks
4. $\begin{array}{r}\text { (a) } \\ \\ (b) \\ \\ \\ (c)\end{array}$	x 1 2 3 4 5 6 7 8 $\mathrm{P}(X=x)$ 0.1 0.1 0.05 0.15 0.1 0.1 0.15 0.25$\begin{aligned} \mathrm{E}(X) & =(1 \times 0.1)+(2 \times 0.1)+\ldots+(8 \times 0.25) \\ & =5.2 \\ \mathrm{E}\left(X^{2}\right) & =\left(1^{2} \times 0.1\right)+\left(2^{2} \times 0.1\right)+\ldots+\left(8^{2} \times 0.25\right) \\ & =32.8 \end{aligned}$$\operatorname{Var}(X)=\mathrm{E}\left(X^{2}\right)-\{\mathrm{E}(X)\}^{2}$$=32.8-(5.2)^{2}=5.76(*)$$\begin{aligned} & \mathrm{E}(Y)=2 \mathrm{E}(X)+3=13.4 \\ & \operatorname{Var}(Y) \end{aligned}=2^{2} \operatorname{Var}(X), ~=4 \times 5.76=23.04 .$	
5. (a) (b) (c)	Bell shaped curve; symmetrical about the mean; 95% of data lies within 2sd of mean; asymptotic etc (any 2). $\mathrm{P}(X<3500)=0.01 \Rightarrow \mu-3500=2.3263 \sigma$ $\mathrm{P}(X<5500)=0.025 \Rightarrow 5500-\mu=1.96 \sigma$ solving for μ and σ $\sigma=466.6028 \ldots$ accept 466.6/467 $\mu=4585.4583 \ldots$ accept 4585.5/4590 $\begin{aligned} \mathrm{P}(X<4000) & =\mathrm{P}\left(Z<\frac{4000-4585.4583 \ldots}{466.6028 \ldots}\right) \\ & =\mathrm{P}(Z<-1.25) \\ & =0.1056 \end{aligned}$	B1; B1 (2) M1 A1 A1 M1 A1 A1 M1 A1ft A1 A1 (12 marks)

(*) indicates final answer is given on question paper; $\mathrm{ft}=$ follow-through mark

EDEXCEL STATISTICS S1 (6683)- JUNE 2002
PROVISIONAL MARK SCHEME

awrt $=$ anything which rounds to

EDEXCEL STATISTICS S1 (6683)- JUNE 2002
PROVISIONAL MARK SCHEME

Question Number	Scheme	Marks
7. (a)	$\Sigma t=169 ; \Sigma c=357$	
	$S_{c c}=14245-\frac{357^{2}}{10}$	M1 A1
	$S_{c c}=14245-\frac{357^{2}}{10}=1500.1$	
	$S_{t t}=168.9, S_{c t}=492.7$	A1, A1
	$r=\frac{492.7}{\sqrt{15001 \times 168 .}}$	
	$r=\frac{}{\sqrt{1500.1 \times 168.9}}$	
	$=0.97883 \ldots \quad$ accept 0.979	A1 (7)
(b)	Since r close to 1, value supports use of regression line	B1 B1 (2)
(c)	$b=\frac{S_{c t}}{S_{t t}}=\frac{492.7}{168.9}=2.91711 \ldots$	B1
	$a=\bar{c}-b \bar{t}=\frac{357}{10}-\frac{492.7}{168.9} \times \frac{169}{10}=-13.59917 \ldots$	B1
	$c=-13.6+2.92 t$	B1 (3)
(d)	3 extra ice-creams are sold for every $1^{\circ} \mathrm{C}$ increase in temperature	B1 (1)
(e)	$c=-13.6+2.92 \times 16=33.12$	M1 A1
	i.e. 33 ice-creams	A1 (3)
(f)	Temperature likely to be outside range of validity	B1 (1)
		(17 marks)

