Mark Scheme (Results)

 June 2011GCE Statistics S1 (6683) Paper 1

Edexcel is one of the leading examining and awarding bodies in the UK and throughout the world. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers.

Through a network of UK and overseas offices, Edexcel's centres receive the support they need to help them deliver their education and training programmes to learners.

For further information, please call our GCE line on 08445760025 or visit our website at www.edexcel.com.

If you have any subject specific questions about the content of this Mark Scheme that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

Ask The Expert can be accessed online at the following link: http://www.edexcel.com/Aboutus/contact-us/

June 2011
Publications Code UA028837
All the material in this publication is copyright
© Edexcel Ltd 2011

EDEXCEL GCE MATHEMATICS

General Instructions for Marking

1. The total number of marks for the paper is 75 .
2. The Edexcel Mathematics mark schemes use the following types of marks:

- M marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- B marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.

3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes and can be used if you are using the annotation facility on ePEN.

- bod - benefit of doubt
- ft - follow through
- the symbol wifl be used for correct ft
- cao - correct answer only
- cso - correct solution only. There must be no errors in this part of the question to obtain this mark
- isw - ignore subsequent working
- awrt - answers which round to
- SC: special case
- oe - or equivalent (and appropriate)
- dep - dependent
- indep - independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper
- \quad The second mark is dependent on gaining the first mark

J une 2011 Statistics S1 6683 Mark Scheme

\begin{tabular}{|c|c|}
\hline \begin{tabular}{l}
Question \\
Number
\end{tabular} \& Scheme Marks \\
\hline \begin{tabular}{l}
(d) \\
(e)
\end{tabular} \& \begin{tabular}{ll}
B1 \& accept awrt 3.54 and condone 3.53 (i.e truncation) \\
B1ft \& \begin{tabular}{l}
for awrt -0.871 \\
or ft their final answer to part (b) to the same accuracy (or 3 sf\()\) provided \(-1<r\) \\
\(<1\)
\end{tabular} \\
\hline
\end{tabular} \\
\hline \begin{tabular}{l}
\[
2 .
\] \\
(a)
\end{tabular} \& \[
\begin{array}{lrr|l}
\frac{23-\mu}{5}=" 1.40 " \& \text { (o.e) } \& \text { awrt } \pm 1.40 \& \mathrm{~B} 1 \\
\& \frac{\mu=16}{16.0} \& \text { (or awrt } \& \mathrm{A} 1 \\
\hline
\end{array}
\] \\
\hline (b) \& \begin{tabular}{l|lr}
0.4192 \\
\& B1 \& (1) \\
\\
\hline
\end{tabular} \\
\hline (a)

(b) \&

\hline
\end{tabular}

Question Number	Scheme	Marks
5. (a)	10.5	B1
(b)	$\begin{aligned} \left(Q_{2}=\right)(15.5+) \frac{\frac{1}{2} \times 30-14}{8} \times 3 \text { or } \frac{\frac{1}{2} \times 31-14}{8} \times 3 & \\ & =\underline{15.875 \text { or } 16.0625} \end{aligned}$	M1 A1
(c)	$\begin{aligned} & \bar{x}=\frac{477.5}{30}=\underline{15.9} \quad\left(15.91 \delta^{8}\right) \quad\left[\text { Accept } \frac{191}{12} \text { or } 15 \frac{11}{12}\right] \\ & \left.\sigma=\sqrt{\frac{8603.75}{30}-\bar{x}^{2}},=\underline{5.78} \quad \text { (accept } s=5.88\right) \end{aligned}$	M1, A1 M1A1ft, A1
(d)	Since mean and median are similar (or equal or very close) a normal distribution may be suitable. [Allow mean or median close to mode/modal class]	(5) B1
(e)	$Q_{3}-Q_{2}(=8)>(4.5=) Q_{2}-Q_{1}$ Therefore positive skew	(1) M1 A1
		(2) (11 marks)
	Notes	
(a)	In parts (a) to (c) a correct answer with no working scores full marks for B1 for 10.5 which may be in the table	that value.
(b)	M1 for a correct ratio and times 3, ignore the lower boundary for this m A1 for awrt 15.9 (if $n=30$ used) or awrt 16.1 (if $n+1=31$ is used)	
(c)	$1^{\text {st }}$ M1 for attempt at $\sum \mathrm{f} x$ (this may be seen in the table as $\mathrm{f} x: 10,73.5,70,136,82,106$ [condone 1 slip] or awrt 500) and use of $\frac{\sum \mathrm{f} x}{\sum \mathrm{f}}$ or a correct expression for mean.	
	$2^{\text {nd }}$ M1 for an attempt at σ or σ^{2}, can ft their mean, condone mis-labelling $\sigma^{2}=\sqrt{\ldots}$ etc Allow use of their $\sum \mathrm{f} x^{2}$ (awrt 9000)	
	$2^{\text {nd }}$ A1ft for a correct expression including square root, ft their mean but not their $\sum \mathrm{f} x^{2}$. No label or correct label is OK but wrong label (e.g. $\sigma^{2}=\sqrt{\ldots . .}$) is A0 $3^{\text {rd }}$ A1 for awrt 5.78, allow $s=$ awrt 5.88. SC Allow M1A1A0 for awrt 5.79 if \bar{x} correct	
(d)	B1 for a reason implying or stating symmetry. "Time is continuous" or "evenly distributed" is B0	

Question Number	Scheme	Marks
(e)	M1 for a clear reason or comparison, values not essential but comparison implying they have been found is required. A1 for stating "positive skew". Condone just "positive" but "positive correlation" is A0 Do not allow arguments based on mean and median since this part relates to a different set of data.	
6. (a)	$\mathrm{P}(J \cup K)=1-0.7$ or $0.1+0.15+0.05=\underline{0.3}$	B1 (1)
(b)	$\mathrm{P}(\mathrm{K})=0.05+0.15$ or " 0.3 " $-0.25+0.15$ or " 0.3 " $=0.25+\mathrm{P}(\mathrm{K})-0.15$	M1
	May be seen on Venn diagram $=\underline{0.2}$	A1
(c)	$\begin{aligned} {[\mathrm{P}(K \mid J)]=\frac{\mathrm{P}(K \cap J)}{\mathrm{P}(J)} } & \\ & =\frac{0.15}{0.25} \end{aligned}$$=\frac{3}{5} \text { or } 0 .$	M1
		A1
		A1
(d)		(3)
	$\mathrm{P}(K \mid J)=0.6, \mathrm{P}(K)=0.2$ or may see $\mathrm{P}(J \mid K)=0.75$ and $\mathrm{P}(J)=0.25$ not equal therefore not independent	M1 A1ft
	Not independent so confirms the teacher's suspicion or they are linked	(2)
(e)	(This requires a statement about independence in (d) or in (e))	(1) (9 marks)

Question Number	Scheme Marks
	Notes
(b)	M1 for a complete method, follow through their 0.3, leading to a linear equation for $\mathrm{P}(\mathrm{K})$
	NB You may see this Venn diagram. A correct diagram (Venn or table) implies M1 in (b) Need not include box or 0.7 Correct answer only is $\mathbf{2 / 2}$
	In parts (c) and (d) they must have defined A and B for a correct expression (including ratio) in symbols.
(c)	M1 for a correct expression (including ratio) in symbols. $1^{\text {st }} \mathrm{A} 1$ for a correct ratio of probabilities (if this is seen the M1 is awarded by implication) Must be in (c). Condone no LHS but wrong LHS (e.g. $\mathrm{P}(K)$ or $\mathrm{P}(J \mid K)$) is M0A0 $2^{\text {nd }}$ A1 for correct answer as printed only. Correct answer only 3/3
(d)	Mark (d) and (e) together M1 for a correct comparison of known probabilities for an independence test - ft their values. E.g. $\mathrm{P}(J) \times \mathrm{P}(K)$ with $\mathrm{P}(J \cap K)$ or $\mathrm{P}(K \mid J)$ with $\mathrm{P}(K)$ [Must have expressions]
	The values of these probabilities should be given unless they are in the question or stated elsewhere. A1ft for correct calculations and correct comment for their probabilities
(e)	B1ft ft their conclusion on independence so not independent confirms teacher...independent contradicts teacher. Methods leading to negative probabilities should score M0

Question Number	Scheme	Marks
7.8	$\left(\mathrm{S}_{f h}=\right) 25291-\frac{186 \times 1085}{8}$	M1
(b)	$\begin{array}{lll} b=\frac{" 64.75 "}{39.5}, & =\underline{1.6392 \ldots} & \text { (awrt 1.6) } \tag{awrt1.6}\\ a=\frac{1085}{8}-b \times \frac{186}{8}, & =\underline{97.512 \ldots} & \text { (awrt 97.5) } \\ & \underline{h=97.5+1.64 f} & \end{array}$	M1, A1 M1, A1 A1ft (dep on M1M1)
(c)	$h=97.5+1.64 \times 25, \quad=\underline{138 \sim 139}$ (final answer in [138, 139]	M1, A1 (5)
(d)	Should be reliable, since 25 cm (or f or footlength) is within the range of the data	B1, B1 (2)
(e)	Line is for children - a different equation would apply to adults or Children are still growing, height will increase more than foot length	B1
	Notes	
(a)	[NB $r=0.871$ so do not confuse this with question 1] M1 for attempting a correct expression [allow a copying slip e.g. 25921] $1^{\text {st }} \mathrm{M} 1$ for a correct expression for b, ft their part (a) but not $\mathrm{S}_{f \mathrm{~h}}=25291$ $1^{\text {st }}$ A1 for awrt 1.6 $2^{\text {nd }}$ M1 for use of $a=\bar{h}-b \times \bar{f}$, ft their value for b. Must use \bar{h} and \bar{f} not values from table. $2^{\text {nd }} \mathrm{A} 1$ for awrt 97.5 [NB $a=135-1.63 \times 23=97.51$ but M0A0 since not using \bar{h} and \bar{f}] $3^{\text {rd }}$ A1ft for an equation for h and f with their coefficients to 3sf. Dependent on both Ms Must be 3sf not awrt. Give this mark if seen in (c). Equation must be in h and f not y and x. M1 for using their equation and $f=25$ to find h A1 for their final answer in [138, 139]. Can give if they have 137.7... but round to 138 $1^{\text {st }} \mathrm{B} 1$ for suggesting it is reliable $2^{\text {nd }} \mathrm{B} 1$ for mentioning that 25 cm is within range of data. "interpolation"or"not extrapol'B1 Use of "it" or a comment that height is in range is B0 but apply ISW B1 for some comment that states a difference between children and teachers(adults) Must mention teacher/adults and children e.g. ".teacher is not in same age group as the children", "equation is for children not adults" "children and adults are different populations" "teacher will be taller" is B 0 since no mention of children. "equation is only valid for children" is OK since "only" implies not suitable for adults Or Reference to different growth rates	
(b)		
(c)		
(d)		
(e)		

Question Number	Scheme	Marks
8. (a)	$1=p+(0.25+0.25+0.2+0.2), \Rightarrow p=\frac{1}{10}$ or 0.1	M1, A1
(b)	$E(S)=\frac{1}{4}+2 \times \frac{1}{4}+4 \times \frac{1}{5}+5 \times \frac{1}{5}$, (or equiv. in decimals) $\quad \underline{2.55}$	(2) M1, A1
(c)	$\mathrm{E}\left(S^{2}\right)=\frac{1}{4}+\frac{2^{2}}{4}+\frac{4^{2}}{5}+\frac{5^{2}}{5} \text { or } 0.25+1+3.2+5=\underline{9.45}\left({ }^{*}\right)$	(2) M1, A1cso
(d)		(2) M1, A1
(e)	$\mathrm{P}(5 \text { and } 5)=\left(\frac{1}{5}\right)^{2}, \quad=\frac{1}{25} \text { or } 0.04$	M1, A1
(f)	$P(4,4,2)=\left(\frac{1}{5}\right)^{2} \times \frac{1}{4} \times 3 \quad\left(=0.03 \text { or } \frac{3}{100}\right)$	M1, M1
	$P(4,4,4)=\left(\frac{1}{5}\right)^{3} \quad\left(=0.008 \text { or } \frac{1}{125}\right)$	B1
	$\mathrm{P}(\text { Tom wins in } 3 \text { spins })=\underline{0.038}$	A1 (4)
(g)	$\mathrm{P}(\overline{5} \cap 5 \cap 5)+\mathrm{P}(5 \cap \overline{5} \cap 5)=\frac{4}{5} \times\left(\frac{1}{5}\right)^{2} \times 2=\underline{0.064 \text { or } \frac{8}{125}}$	M1, M1, A1
		(3) 17
	Notes	
(a)	M1 for clear attempt to use sum of probabilities = 1 (fractions or decim	Ans only 2/2
(b)	M1 for at least 2 correct terms $(\neq 0)$ of the expression. 2.55 with no workin Any division by k (usually 5) in (b) or (c) or (d) scores	ng scores M1A1
(c)	M1 for at least 3 correct, non-zero terms of the expression seen, allow de A1cso for the full expression (with 9.45) seen. Must be cso but can ignore w	cimals. rong p.
(d)	M1 for a correct expression (9.45 seen), can ft their $E(S)$. May see $\sum(x-$ " 2.55 A1 accept awrt 2.95 Answer only can score M1 for correct ft and A1 for Answer only in (e) and (\mathbf{f}) is full marks, in (g) is no marks	$\left.\overline{5}^{\prime \prime}\right)^{2} \times \mathrm{P}(X=x)$ awrt 2.95
(e)	M1 for $\left(\frac{1}{5}\right)^{2}$ Condone $\mathrm{P}(5) \times \mathrm{P}(5)=0.25 \times 0.25$. [Beware 0.4 is A 0]	
(f)	$1^{\text {st }}$ M1 for $\left(\frac{1}{5}\right)^{2} \times \frac{1}{4}$ or 0.01 seen $2^{\text {nd }}$ M1 for multiplying a $p^{2} q$ probability by $3\left(p, q \in(0,1)\right.$). B1 for $(0.2)^{3}$	better seen
(g)	$1^{\text {st }}$ M1 for $\frac{4}{5} \times\left(\frac{1}{5}\right)^{2}$ or all cases considered and correct attempt at probabilitie $2^{\text {nd }} \mathrm{M} 1$ for multiplying a $p^{2}(1-p)$ probability by 2 . Beware $(\mathbf{0 . 4})^{3}=\mathbf{0 . 0 6 4}$	s M0M0A0

