edexcel 쁯

Mark Scheme (Results)

Summer 2012

GCE Statistics S1
(6683) Paper 1

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please visit our website at www.edexcel.com.

Our website subject pages hold useful resources, support material and live feeds from our subject advisors giving you access to a portal of information. If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

www.edexcel.com/contactus

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2012
Publications Code UA033137
All the material in this publication is copyright
© Pearson Education Ltd 2012

Summer 2012

6683 Statistics S1
 Mark Scheme

General Marking Guidance

-All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.

- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
-There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
-Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
-When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
-Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

EDEXCEL GCE MATHEMATICS

General Instructions for Marking

1. The total number of marks for the paper is 75 .
2. The Edexcel Mathematics mark schemes use the following types of marks:

- M marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- B marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.

3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes and can be used if you are using the annotation facility on ePEN.

- bod - benefit of doubt
- ft - follow through
- the symbol will be used for correct ft
- cao - correct answer only
- cso - correct solution only. There must be no errors in this part of the question to obtain this mark
- isw - ignore subsequent working
- awrt - answers which round to
- SC: special case
- oe - or equivalent (and appropriate)
- dep - dependent
- indep - independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper
- \square The second mark is dependent on gaining the first mark

4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.

General Principles for Mathematics Marking

(But note that specific mark schemes may sometimes override these general principles).

Method mark for solving 3 term quadratic:

1. Factorisation

$$
\begin{aligned}
& \left(x^{2}+b x+c\right)=(x+p)(x+q) \text {, where }|p q|=|c|, \text { leading to } x=\ldots \\
& \left(a x^{2}+b x+c\right)=(m x+p)(n x+q) \text {, where }|p q|=|c| \text { and }|m n|=|a| \text {, leading to } x=\ldots
\end{aligned}
$$

2. Formula

Attempt to use correct formula (with values for a, b and c), leading to $x=\ldots$
3. Completing the square

Solving $x^{2}+b x+c=0: \quad\left(x \pm \frac{b}{2}\right)^{2} \pm q \pm c, q \neq 0, \quad$ leading to $x=\ldots$

Method marks for differentiation and integration:

1. Differentiation

Power of at least one term decreased by 1. ($x^{\left.n \rightarrow x^{n-1}\right)}$
2. Integration

Power of at least one term increased by 1. ($x^{n} \rightarrow x^{n+1}$)

Use of a formula

Where a method involves using a formula that has been learnt, the advice given in recent examiners' reports is that the formula should be quoted first.
Normal marking procedure is as follows:
Method mark for quoting a correct formula and attempting to use it, even if there are mistakes in the substitution of values.
Where the formula is not quoted, the method mark can be gained by implication from correct working with values, but may be lost if there is any mistake in the working.

Summer 2012

6683 Statistics S1

Mark Scheme

Question	Scheme	Marks
3. (a)		Use overlay B1 B1
(b)	Points (appear to) lie close to a (straight) line or "strong /high correlation"	B1 (1)
(c)	$\begin{gathered} \sum p=93 \text { and } \sum t=34 \\ S_{p t}=694-\frac{" 93 " \times " 34 "}{6}=[167] \quad \text { or } S_{p p}=1967-\frac{-93 " 2}{6}=[525.5] \\ S_{p t}=167 ; S_{p p}=\text { awrt } 526 \end{gathered}$	M1 M1 A1; A1 (4)
(d)	$\begin{aligned} & b=\left[\frac{S_{p t}}{S_{p p}}=\right] \frac{" 167 "}{" 525.5 "}=[0.31779 \ldots] \quad \text { (check their answer if expression not seen) } \\ & a=\frac{" 34 "}{6}-" 0.31779 \ldots " . \times \frac{" 93 "}{6}=5.666 \ldots-0.31779 \ldots \times 15.5=, 0.74088 \ldots \text { awrt } 0.74 \\ & \boldsymbol{t}=\mathbf{0 . 7 4 1}+\mathbf{0 . 3 1 8 p} \quad \text { (Accept } \quad a=\frac{2336}{3153} \text { and } b=\frac{334}{1051} \text { in their equation) } \end{aligned}$	B1ft M1, A1 A1 (4)
(e)	$(\bar{p}, \bar{t})=(15.5,5.7)$ plotted on the graph (not wholly outside the circle) Correct line plotted as per overlay. For $p=5 ; 2<t<3$ and for $p=30 ; 10<t<11$ Their line must stretch roughly as far as the points and go through the (\bar{p}, \bar{t}) circle	B1 B1
(f)		$\begin{array}{ll} \text { M1 } & \\ \text { A1 } & (2) \\ & {[15]} \end{array}$
Notes		
(a)	B2 for all 6 data points plotted correctly. B1 for any 5 correct. Points not wholly outside the circles.	
(c)	$1^{\text {st }} \mathrm{M} 1$ for attempting $\sum p$ and $\sum t$. Allow $80<\sum p<100$ and $30<\sum t<40$ $2^{\text {nd }} \mathrm{M} 1$ for one correct expression for $\mathrm{S}_{p t}$ or $\mathrm{S}_{p p}$, f.t. their $\sum p$ and $\sum t$. $1^{\text {st }}$ A1 for $\mathrm{S}_{p t} 2^{\text {nd }}$ for $\mathrm{S}_{p p}$	
(d)	B1ft for correct expression for the gradient, f.t. their 167 and 525.5 from (c) M1 for correct use of $a=\bar{t}-b \bar{p}$ f.t. their values. Condone 5.6 for \bar{t} $1^{\text {st }} \mathrm{A} 1$ for awrt 0.74 NB use of 526 gives $0.745566 \ldots$ and gets A0 $2^{\text {nd }} \mathrm{A} 1$ for a correct equation for t in terms of p with a and b awrt 3 sf An equn in y or x is A0	
(f)	M1 for clear use of their line (equation or on graph) and $p=16$ to estimate t. This may be an expression or lines marked on the diagram A1 for awrt 5.8 , even if their line is not fully correct. Accept " $t>5.8$ "(oe). Answer only $2 / 2$	

Question	Scheme	Marks
5. (a)	One large square $=\frac{450}{" 22.5 "}$ or one small square $=\frac{450}{" 562.5 "}$ (o.e. e.g. $\frac{\text { "562.5" }}{450}$) One large square $=20$ cars or one small square $=0.8$ cars or $1 \mathrm{car}=1.25$ squares No. > 35 mph is: 4.5×20 " of $112.5 \times " 0.8 "$ (or equivalent e.g. using fd) $=\underline{90} \text { (cars) }$	M1 A1 dM1 A1 (4)
		M1 M1 A1
	$\left[Q_{2}=\right] 20+\frac{195}{240} \times 10 \quad$ (o.e.) \quad [Allow use of $(n+1)$ giving 195.5 instead of 195] $=28.125$ [Use of $(n+1)$ gives 28.145 \ldots] 28.1	M1 A1 (2)
	$Q_{2}<\bar{x}$ [Condone $\left.Q_{2} \approx \bar{x}\right]$ So positive skew $[$ so (almost) symmetric]	B1ft dB1ft (2)
	$\left[\right.$ If chose $\begin{array}{l}\text { skew in (d) }] \\ \text { median }\left(Q_{2}\right)\end{array}$ $[$ If chose symmetric in (d)] mean (\bar{x}) Since the data is skewed or Since it uses all the data	B1 $\begin{equation*} \mathrm{dB} 1 \tag{2} \end{equation*}$
	Notes	
(a)	$\begin{array}{ll} 1^{\text {st }} \mathrm{M} 1 & \begin{array}{l} \text { for attempt to count squares (accept " } 22.5 " \text { in }[22,23] \text { and " } 562.5 " \text { in }[55 \\ \\ \text { use } 450 \text { to obtain a measure of scale. [If using fd must use } 450 \text { to obtain s } \end{array} \\ 1^{\text {st }} \mathrm{A} 1 \quad \begin{array}{l} \text { for a correct calc. for } 20 \text { or } 0.8 \text { or } 1.25 \text { etc } \end{array} \\ & \text { [May be fd } 4 \text { to } 1 \text { large sq. or } 0.8 \text { to } 1 \text { small sq. May be on the diagram. } \\ 2^{\text {nd }} \mathrm{dM} 1 \begin{array}{c} \text { dep on } 1^{\text {st }} \mathrm{M} 1 \text { for correctly counting squares for }>35 \mathrm{mph} \text { and forming su } \\ 2^{\text {nd }} \mathrm{A} 1 \\ \text { for } 90 \text { with no incorrect working seen. } \end{array} \\ & \text { e.g. } \frac{4.5}{22.5} \times 450 \text { scores M1A1M1 and A1 when }=90 \text { is seen. Answer only } \end{array}$	(575]) and cale factor] itable expr' is $4 / 4$
(b)	$1^{\text {st }}$ M1 for clear, sensible use of mid-points at least 3 of (12.5, 25, 32.5, 37.5, 42. $2^{\text {nd }}$ M1 for an expression for \bar{x} (at least 3 correct terms on num' and a compatible denominator) Follow through their frequencies. You may see these fractions: $\frac{16218.75}{562.5}$ (small squares), $\frac{12975}{450}$ (frequencies), $\frac{648.75}{22.5}$ (large A1 for awrt 28.8 (answer only is $3 / 3$)	seen quares)
(c)	M1 for a full expression for median (using their frequencies). May see e.g. Do nor accept boundaries of 19.5 or 20.5, these are M0A0 A1 for awrt 28.1 (answer only is $2 / 2$) [For use of $(n+1)$ accept 28.15 but no	$\frac{5}{20} \times 5$ etc
(d)	$1^{\text {st }} \mathrm{B} 1 \mathrm{ft}$ for a correct statement about their Q_{2} and \bar{x} [Condone $Q_{2} \approx \bar{x}$ only Do not accept an argument based on the shape of the graph alone. $2^{\text {nd }} \mathrm{dB} 1 \mathrm{ft}$ dependent on $1^{\text {st }} \mathrm{B} 1$ for a compatible description of skewness. F.t. ther	$-\bar{x} \mid<1]$ ues
Quartiles	If $Q_{1}=23.4$ and $Q_{3}=33.7 \sim 33.8$ are seen allow comparison of quartiles for $1^{\text {st }} \mathrm{B}$	
(e)	$1^{\text {st }} \mathrm{B} 1$ for a correct choice based on their skewness comment in (d). If no choice made $2^{\text {nd }} \mathrm{dB} 1$ for a suitable compatible comment	d) only Q_{2}

Question	Scheme	Marks
6. (a)	$\begin{aligned} & {[z=] \pm\left(\frac{150-162}{7.5}\right)} \\ & {[\quad[z=]-1.6} \\ & {[\mathrm{P}(F>150)=\mathrm{P}(Z>-1.6)=]=0.9452(0071 \ldots)} \end{aligned}$ awrt 0.945	M1 A1 A1
(b)	$z= \pm 0.2533$ (or better seen)	B1
	$(\pm) \frac{s-162}{7.5}=0.2533(47 \ldots)$	M1
	$s=163.9$ awrt $\underline{\mathbf{1 6 4}}$	A1 (3)
(c)	$z= \pm 1.2816$ (or better seen)	B1
	$\frac{162-\mu}{9}=-1.2815515 \ldots$	$\begin{array}{\|l} \text { M1 } \\ \text { A1 } \end{array}$
	$\mu=173.533 \ldots$ awrt 174	A1 (4)
		[10]
	Notes	
(a)	M1 for attempting to standardise with 150,162 and 7.5. Accept \pm Allow use of symmetry and therefore 174 instead of 150 $1^{\text {st }} \mathrm{A} 1$ for -1.6 seen. Allow 1.6 seen if 174 used or awrt 0.945 is seen. Sight of $0.945(2)$ is A1. $2^{\text {nd }}$ A1 for awrt 0.945 Do not apply ISW, if 0.9452 is followed by $1-0.9452$ then award A0 Correct answer only $3 / 3$	
(b)	B1 for $(z=) \pm 0.2533$ (or better) seen. Giving $z= \pm 0.25$ or ± 0.253 scores B0 here but may get M1A1 M1 for standardising with s (o.e.), 162 and 7.5 , allow \pm, and setting equal to a z Only allow $0.24 \leq z \leq 0.26$ Condone e.g. 160 for 162 etc A1 for awrt 164 (Correct answer only scores B0M1A1)	value
(c)	B1 for $(z=) \pm 1.2816$ (or better) seen. Allow awrt ± 1.28 if B0 scored in (b) for $z=\operatorname{awrt} \pm 0.25$ M1 for attempting to standardise with 162,9 and μ, and setting equal to a z value where $1.26<\|z\|<1.31$. Allow \pm here so signs don't have to be compatible. $1^{\text {st }} \mathrm{A} 1$ for a correct equation with compatible signs and $1.26<\|z\|<1.31$ $2^{\text {nd }} \mathrm{A} 1$ for awrt 174 (Correct answer only scores B0M1A1A1). Dependent on $\mathbf{1}^{\text {st }}$ A1	
	An equation $\frac{162-\mu}{9}=1.2816$ leading to an answer of $\mu=174$ is A0A 0 unless there is clear correct working such as: $\frac{162-x}{9}=1.2816 \Rightarrow x=\ldots \therefore \mu=162+(162-x)=174$ then award A1A1 A common error is: $\frac{162-\mu}{9}=1.2816$ followed by $\mu=162+9 \times 1.2816=$ awrt 174 It gets A0A0	

Question	Scheme	Marks
7. (a)		B1 B1 B1 (3)
(b)	$\begin{aligned} \mathrm{P}(\text { Exactly one defect }) & =0.03 \times 0.3+0.97 \times 0.02 \text { or } \begin{array}{l} \mathrm{P}(P S \cup S p l i t)-2 \mathrm{P}(P S \cap \text { Split }) \\ \\ \\ \\ =[0.009+0.0194=] \end{array} \underline{\mathbf{0 . 0 2 8 4}} \end{aligned}$	M1A1ft A1 cao (3)
(c)	$\begin{array}{rlr} \mathrm{P}(\text { No defects }) & =(1-0.03) \times(1-0.02) \times(1-0.05) \quad \text { (or better) } \\ & =0.90307 \quad \text { awrt } \underline{\mathbf{0 . 9 0 3}} \end{array}$	M1 A1 cao (2)
(d)	$\begin{aligned} \mathrm{P}(\text { Exactly one defect }) & =(\mathrm{b}) \times(1-0.05)+(1-0.03) \times(1-0.02) \times 0.05 \\ & =" 0.0284 " \times 0.95+0.97 \times 0.98 \times 0.05 \\ & =[0.02698+0.04753]=0.07451 \quad \text { awrt } \underline{\mathbf{0 . 0 7 4 5}} \end{aligned}$	M1 M1 A1ft A1 cao (4) [12]
	Notes	
(a)	Allow MR of $\mathbf{0 . 2}$ for $\mathbf{0 . 0 2}$ or 0.3 for $\mathbf{0 . 0 3}$ on tree diagram to score all M and A1ft marks only $1^{\text {st }} \mathrm{B} 1$ for 2 branch then 4 branch shape $2^{\text {nd }} \mathrm{dB} 1$ dep. on $1^{\text {st }} \mathrm{B} 1$ for labels showing stitching (accept letters) and 0.03 value correctly placed $3^{\text {rd }} \mathrm{dB} 1$ dep. on $1^{\text {st }} \mathrm{B} 1$ for labels showing splitting and 0.7 and 0.02 correctly placed [probabilities shown in brackets are not required and any such values given can be ignored in (a)]	
(b)	$1^{\text {st }} \mathrm{A} 1 \mathrm{ft}$ for a fully correct expression. Accept $1-0.7$ for 0.3 and $1-0.03$ for 0.97	
MR	0.2 for $0.02 \rightarrow 0.203$ or 0.3 for $0.03 \rightarrow 0.104$ or both $\rightarrow 0.23$ should score M1A1A0	
(c)	Do not allow 0.5 as MR of $\mathbf{0 . 0 5}$ so no \mathbf{M} or A marks in (c) or (d) $\begin{array}{ll}\text { M1 } & \text { for (their } 0.97) \times(\text { their } 0.98) \times(1-0.05) \text { (or better) f.t. values from their tree diagram } \\ \text { A1 cao } & \text { for awrt } 0.903\end{array}$	
(d)	$1^{\text {st }} \mathrm{M} 1 \quad$ for one correct triple (or correct ft from their tree) of:$[0.03 \times 0.3 \times(1-0.05)]+[0.97 \times 0.02 \times(1-0.05)]+[0.97 \times 0.98 \times 0.05]$	
MR	$2^{\text {nd }} \mathrm{M} 1$ for two correct triples or correct ft from their tree and adding or their (b) \times (1 $1^{\text {st }}$ A1ft for a fully correct expression or f.t. their (b) and 0.2 or 0.3 MR only 0.2 for $0.02 \rightarrow 0.23165$ or 0.3 for $0.03 \rightarrow 0.1331$ or both $\rightarrow 0.2465$ (or awrt 3 sf) score $2^{\text {nd }}$ A1 cao for awrt 0.0745	$\times(1-0.05)$ M1M1A1A0

Fax 01623450481
Email publication.orders@edexcel.com
Order Code UA033137 Summer 2012

For more information on Edexcel qualifications, please visit our website www.edexcel.com

