

Mark Scheme (Results)

Summer 2012

GCE Statistics S1 (6683) Paper 1

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please visit our website at <u>www.edexcel.com</u>.

Our website subject pages hold useful resources, support material and live feeds from our subject advisors giving you access to a portal of information. If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

www.edexcel.com/contactus

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: <u>www.pearson.com/uk</u>

Summer 2012 Publications Code UA033137 All the material in this publication is copyright © Pearson Education Ltd 2012

Summer 2012 6683 Statistics S1 Mark Scheme

General Marking Guidance

- •All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- •Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- •Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- •There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- •All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- •Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- •When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

EDEXCEL GCE MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 75.
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- **M** marks: method marks are awarded for `knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- **B** marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.
- 3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes and can be used if you are using the annotation facility on ePEN.

- bod benefit of doubt
- ft follow through
- the symbol / will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- dep dependent
- indep independent
- dp decimal places
- sf significant figures
- ***** The answer is printed on the paper
- The second mark is dependent on gaining the first mark
- 4. All A marks are `correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.

General Principles for Mathematics Marking

(But note that specific mark schemes may sometimes override these general principles).

Method mark for solving 3 term quadratic:

1. Factorisation

 $(x^{2} + bx + c) = (x + p)(x + q)$, where |pq| = |c|, leading to x = ... $(ax^{2} + bx + c) = (mx + p)(nx + q)$, where |pq| = |c| and |mn| = |a|, leading to x = ...

2. <u>Formula</u>

Attempt to use <u>correct</u> formula (with values for *a*, *b* and *c*), leading to x = ...

3. <u>Completing the square</u>

Solving $x^2 + bx + c = 0$: $(x \pm \frac{b}{2})^2 \pm q \pm c$, $q \neq 0$, leading to x = ...

Method marks for differentiation and integration:

1. Differentiation

Power of at least one term decreased by 1. ($x^* \rightarrow x^{*-1}$)

2. Integration

Power of at least one term increased by 1. ($x^* \rightarrow x^{*+1}$)

Use of a formula

Where a method involves using a formula that has been learnt, the advice given in recent examiners' reports is that the formula should be quoted first.

Normal marking procedure is as follows:

<u>Method mark</u> for quoting a correct formula and attempting to use it, even if there are mistakes in the substitution of values.

Where the formula is <u>not</u> quoted, the method mark can be gained by implication from <u>correct</u> working with values, but may be lost if there is any mistake in the working.

Summer 2012 6683 Statistics S1 Mark Scheme

Question	Scheme	Marks		
1.	x -1 0 1 2	M1		
(a)	$\begin{array}{ c c c c c c } P(X=x) & 4k & k & 0 & k \\ \hline \hline H & H & H & H & H & H \\ \hline \end{array} $			
	4k + k + (0) + k = 1 (Allow verify approach)	AI		
	$6k = 1 \implies k = \frac{1}{6} (*)$	A1cso (3)		
(b)	11 (12) = 41 (12) (12) (12) (12) (12) (12) (12) (12	3.64		
	$[E(X)] = -4k (+0+0) + 2k \underline{\text{or}} -2k \underline{\text{or}} -1 \times -+2 \times -\frac{1}{6} $	MI		
	$= -\frac{1}{2}$ (or -0.5)	A1 (2)		
	$-\frac{-3}{3}$ (01 - 0.3) A1 (
(c)	$[-(x^2)]$ (x) ² (x)			
	$\left[E(X^{2}) \right] = (-1) \times 4k + (0+0) + 2^{2}k \underline{\text{or}} 4k + 4k \underline{\text{or}} (-1) \times -+2^{2} \times -\frac{1}{6} (\text{o.e.})$	M1		
	$=\frac{4}{2}$ (*)	Alcso (2)		
	3	(2)		
(d)	$(1)^2$ $[11]$ $Y = 1 - 3X : 4$ $1 - 2 - 5$			
	$[\operatorname{Var}(X)] = \frac{4}{3} - \left(-\frac{1}{3}\right) \underline{\operatorname{or}} 8k - 4k^2 = \left \frac{11}{9}\right \qquad \text{Prob:} \qquad 4k k 0 k$	M1		
	$\int (f_{y})^{2} = \int (f_{y})^{2$			
	$Var(1-3X) = (-3)^2 Var(X)$ or $9Var(X)$ $E(Y^2) = 90k$ and $Var(Y) = 90k - 144k^2$	M1		
	= 11	A1 cao (3)		
		[10]		
	Notes			
(a)	M1 for attempt at $P(X = x)$ with at least 2 correct. Do not give for 4, 1, etc but $\frac{4}{6}$	$\frac{1}{6}$ are OK		
	1 st A1 for at least $4k + k + k = 1$ seen. Allow $\frac{4}{6} + \frac{1}{6} + \frac{1}{6} = 1$ [Must see = 1]			
	2 nd A1cso provided previous 2 marks are scored and no incorrect working seen			
	It's not essential to see $P(X = -1) = 4k$ etc but if wrongly assigned probabilities such as P(X = 2) = 4k and $P(X = -1) = k$ are seen than the final A1 is last			
Verify	$r(A - 2) = 4\kappa$ and $r(A = -1) = \kappa$ are seen then the final A1 is lost. To score final A1 cso there must be a comment such as "therefore $k = \frac{1}{2}$ "			
	0			
	Division by 4 (or any other n) in (b), (c) or (d) is M0. Do not apply ISV	V		
(b)	M1 for a full correct expression for $E(X)$, ft their <u>probabilities</u> . Allow in terms of k.			
	A1 for $-\frac{1}{3}$ or exact equivalent only. Just $-\frac{1}{3}$ scores M1A1			
(c)	M1 for evidence of both non-zero terms seen. May be simplified but 2 terms	needed.		
	A1cso for M1 seen leading to $\frac{4}{3}$ or any exact equivalent. Condone $-1^2 \times 4k$ but not $-4k$			
(d)	1 st M1 for correct attempt at $Var(X)$ - follow through their $E(X)$ and allow in terms of k Award if a correct formula is seen and some correct substitution mode			
	2^{nd} M1 for correct use of Var($aX+b$). Condone -3^2 Var(X) if it eventually yields 9 Var(X)			
	Alcao for 11 only			

Question	Scheme	Mai	r ks
2. (a)	$\left[S_{xy} = \right] 23070 - \frac{477 \times 480}{12} [= 3990]$	B1	
	$r = \frac{"3990"}{\sqrt{5606.25 \times 4244}}$	M1	
	= 0.81799 awrt 0.818	A1	(3)
(b)	0.818	B1ft	(1)
(c)	Positive correlation <u>or</u> value of r is close to 1 <u>or</u> value of $r > 0$ (NOT "high/ strong correlation")	B1	
	So there <u>is support</u> for the bank's claim <u>or</u> "increase in unemployment is accompanied by increase in house repossessions"	B1	(2)
			[6]
	Notes		
(a)	Marks for part (a) must be seen in (a), do not award if only seen in (b)	
	B1 for a correct expression for S_{xy}		
	M1 for correct attempt at r f.t. their 3990 but $\frac{23070}{\sqrt{5606.25 \times 4244}}$ is M0		
	A1 for awrt 0.818 If an answer of 0.82 only is seen then B1M1A0 can be give	n	
(b)	B1ft for awrt 0.818 or f.t. their answer to part (a) for $ r < 1$. Allow 2sf or 1sf follow through Answer in (b) must be correct or match one of their answers in (a). Must be a number.		
(c)	1 st B1 for a reason of positive correlation (allow even if $r > 1$) "positive skew" or "positive gradient" is B0 but 2 nd B1 is still possible 2 nd B1 for a comment that suggest this supports the claim. Marks in (c) are independent but first B1 requires some idea of <u>positive</u> correlation		
(c) SC	If $ r < 0.2$ allow this alternative to the mark scheme: 1 st B1 for saying there is no or little correlation 2 nd B1 for a comment that says this does <u>not</u> support the bank's claim		

Que	stion	Scheme	Mar	ks
4.	(a)	B, W or T, W [accept $B \cup T, W$ or $B \cap T, W$] [Condone P(B), P(W) etc]	B1	
		Since there is no <u>overlap</u> between the events <u>or</u> cannot happen together (o.e.) (Accept comment in context e.g. "no one walks and takes the train")	B 1	(2)
	(b)	e.g. $P(B) = \frac{9}{25}$, $P(T) = \frac{8}{25}$, $P(B \cap T) = \frac{5}{25}$	M1	
		$P(B \cap T) \neq P(B) \times P(T)$ [0.2 \neq 0.36 \times 0.32 = 0.1152 o.e.]	M1	
		So B and T are <u>not</u> independent	A1cso	(3)
	(c)	$[P(W) =] \frac{7}{25} \text{ or } 0.28$	B1	(1)
	(d)	$[P(B \cap T) =] \frac{5}{25} \underline{\text{or}} \frac{1}{5} \underline{\text{or}} 0.2$	B 1	(1)
	(e)	$[P(T B) =] \frac{P(T \cap B)}{P(B)} = \frac{"(d)"}{(5+4)/25}$	M1	
		$=\frac{5}{9}$ or 0.5°	A1	(2)
				[9]
		Notes		
	(a)	2^{nd} B1 for a suitable pair. Do not accept universally exclusive pairs such as B and I 2^{nd} B1 for any <u>correct</u> statement. Accept use of symbols e.g.: $B \cap W = \emptyset$ or $P(T \otimes U = 0)$ But $T \cap W = 0$ is B0 (since it is not a correct statement)	B etc $(\cap W) = 0$	0 etc
	(b)	1 st M1 for an attempt at all required probabilities with labels for a suitable test (allow one error) Accept use of A and B as long as they can be identified as B and T by correct probabilities Must be probabilities not integers such as 5, 9, 8 etc for both these M marks 2 nd M1 for $P(B) \times P(T)$ evaluated (correct for <u>their</u> probabilities) <u>or</u> $P(B \cap T) \neq P(B) \times P(T)$ stated or implied in symbols or using their probabilities. <u>or</u> $P(B T) \neq P(B) \propto P(T)$ stated or implied in symbols or using their probabilities A1 for a conclusion of <u>not</u> independent. Requires all probabilities used to be correct and seen This A mark is dependent on both Ms		
		NB $P(B T) = \frac{5}{8} \& P(B) = \frac{9}{25}$ or $P(T B) = \frac{5}{9} \& P(T) = \frac{8}{25}$ seen, followed by conclusion scores $3/3$	y a corre	ct
	(e)	M1 for a correct ratio of probabilities e.g. $\frac{5/25}{(5+4)/25}$ or $\frac{5}{5+4}$ or A correct ratio expression and at least one correct (or correct f.t.) probability su A1 for $\frac{5}{9}$ with no incorrect working seen but $\frac{5}{9}$ following from P(B T) is 0/2. $\frac{5}{9}$	ubstituted alone is	1. s 2/2

	www.igexams.com			
Question	Scheme			
5. (a)	One large square = $\frac{450}{"22.5"}$ or one small square = $\frac{450}{"562.5"}$ (o.e. e.g. $\frac{"562.5"}{450}$) One large square = 20 cars or one small square = 0.8 cars or 1 car = 1.25 squares No. > 35 mph is: $4.5 \times "20"$ or $112.5 \times "0.8"$ (or equivalent e.g. using fd) = <u>90</u> (cars)	M1 A1 dM1 A1 (4)		
(b)	$[\overline{x}] = \frac{30 \times 12.5 + 240 \times 25 + 90 \times 32.5 + 30 \times 37.5 + 60 \times 42.5}{450} \left[= \frac{12975}{450} \right]$ $= 28.83 \text{ or } \frac{173}{6} \text{ awrt } \underline{28.8}$	M1 M1 A1 (3)		
(c)	$[Q_2 =] 20 + \frac{195}{240} \times 10$ (o.e.) [Allow use of $(n + 1)$ giving 195.5 instead of 195] = 28.125 [Use of $(n + 1)$ gives 28.145] awrt 28.1	M1 A1 (2)		
(d)	$Q_2 < \overline{x}$ [Condone $Q_2 \approx \overline{x}$]So positive skew[so (almost) symmetric]	B1ft dB1ft (2)		
(e)	[If chose skew in (d)]median (Q_2) [If chose symmetric in (d)]mean (\bar{x}) Since the data is skewedor median not affected by extreme valuesSince it uses all the data	B1 dB1 (2)		
	Notes	[13]		
(a)	1^{st} M1for attempt to count squares (accept "22.5" in [22, 23] and "562.5" in [550, 575]) and use 450 to obtain a measure of scale. [If using fd must use 450 to obtain scale factor] 1^{st} A1for a correct calc. for 20 or 0.8 or 1.25 etc [May be fd = 4 to 1 large sq. or 0.8 to 1 small sq. May be on the diagram.] 2^{nd} dM1dep on 1^{st} M1 for correctly counting squares for > 35 mph and forming suitable expr' 2^{nd} A1for 90 with no incorrect working seen. e.g. $\frac{4.5}{22.5} \times 450$ scores M1A1M1 and A1 when = 90 is seen. Answer only is 4/4			
(b)	1^{st} M1for clear, sensible use of mid-points at least 3 of (12.5, 25, 32.5, 37.5, 42.5) seen 2^{nd} M1for an expression for \overline{x} (at least 3 correct terms on num' and a compatibledenominator)Follow through their frequencies.You may see these fractions: $\frac{16218.75}{562.5}$ (small squares), $\frac{12975}{450}$ (frequencies), $\frac{648.75}{22.5}$ (large squares)A1for awrt 28.8 (answer only is 3/3)			
(c)	M1 for a full expression for median (using their frequencies). May see e.g. $25 + \frac{75}{120} \times 5$ etc Do nor accept boundaries of 19.5 or 20.5, these are MOAO			
(d)	1 st B1ft for a correct statement about their Q_2 and \overline{x} [Condone $Q_2 \approx \overline{x}$ only if $ Q_2 - \overline{x} < 1$] Do not accept an argument based on the shape of the graph alone. 2 nd dB1ft dependent on 1 st B1 for a <u>compatible</u> description of skewness. F.t. their values			
Quartiles (e)	If $Q_1 = 23.4$ and $Q_3 = 33.7 \sim 33.8$ are seen allow comparison of quartiles for 1 st B1 in (d) 1 st B1 for a correct choice based on their skewness comment in (d). If no choice made in (d) only Q_2 2 nd dB1 for a suitable compatible comment			

Ques	stion	Scheme	Mai	⁻ ks
6.	(a)	$\left[z=\right]\pm\left(\frac{150-162}{7.5}\right)$	M1	
		[z=]-1.6	A1	
		[P(F > 150) = P(Z > -1.6) =] = 0.9452(0071) awrt <u>0.945</u>	A1	(3)
	(b)	$z = \pm 0.2533$ (or better seen)	B1	
		$(\pm)\frac{s-162}{7.5} = 0.2533(47)$	M1	
		s = 163.9 awrt <u>164</u>	A1	(3)
	(c)	$z = \pm 1.2816$ (or better seen)	B1	
		$\frac{162 - \mu}{100} = -1.2815515$	M1	
		9 $\mu = 173.533$ awrt 174	AI A1	(4)
		<i>μ 1/0.000 <u></u></i>		[10]
		Notes		[10]
	(a)	M1 for attempting to standardise with 150, 162 and 7.5. Accept \pm		
		Allow use of symmetry and therefore 174 instead of 150 1 st A1 for -1.6 seen. Allow 1.6 seen if 174 used or awrt 0.945 is seen. Sight of 0.945(2) is A1. 2 nd A1 for awrt 0.945 Do not apply ISW, if 0.9452 is followed by 1 – 0.9452 then award A0 Correct answer only 3/3		
	(b)	B1 for $(z =) \pm 0.2533$ (or better) seen.		
		Giving $z = \pm 0.25$ or ± 0.253 scores B0 here but may get M1A1 M1 for standardising with s (o.e.), 162 and 7.5, allow +, and setting equal to a z^{13}	value	
		Only allow $0.24 \le z \le 0.26$ Condone e.g. 160 for 162 etc		
		A1 for awrt 164 (Correct answer only scores BOM1A1)		
	(c)	B1 for $(z =) \pm 1.2816$ (or better) seen. Allow awrt ± 1.28 if B0 scored in (b) for $z =$	$= awrt + \frac{1}{2}$	0.25
		1.26 < $ z $ < 1.31. Allow \pm here so signs don't have to be compatible.	e where	
		1^{st} A1 for a correct equation with compatible signs and $1.26 < z < 1.31$ 2^{nd} A1 for awrt 174 (Correct answer only scores B0M1A1A1). Dependent on 1st A1		
		An equation $\frac{162 - \mu}{9} = 1.2816$ leading to an answer of $\mu = 174$ is A0A0 <u>unless</u> then	re is clea	r
		correct working such as: $\frac{162 - x}{9} = 1.2816 \Rightarrow x = \dots \therefore \mu = 162 + (162 - x) = 174$ then	award A	A1A1
	NB	NB A common error is: $\frac{162 - \mu}{9} = 1.2816$ followed by $\mu = 162 + 9 \times 1.2816 = a \text{ wrt } 174$		
		AUAU		

	www.igexams.c	om
Question	Scheme	Marks
7. (a)	0.7 Split (0.021) Shape	B1
	Poor Stitching Labels & 0.03	B1
	0.03 (0.3) No split (0.009) Labels & 0.7,0.02	B1
	(0.97) Split (0.0194)	(3)
	No Poor Stitching	
	(0.98) No split(0.9506)	
(b)	P(Exactly one defect) = $0.03 \times 0.3 + 0.97 \times 0.02$ <u>or</u> P(PS \cup Split) - 2P(PS \cap Split) = $[0.009 + 0.0194 =]$ <u>0.0284</u>	M1A1ft A1 cao (3)
(c)	P(No defects) = $(1-0.03) \times (1-0.02) \times (1-0.05)$ (or better)	M1
	= 0.90307 awrt <u>0.903</u>	A1 cao (2)
(d)	P(Exactly one defect) = $(b) \times (1 - 0.05) + (1 - 0.03) \times (1 - 0.02) \times 0.05$	M1 M1
	$= ``0.0284'' \times 0.95 + 0.97 \times 0.98 \times 0.05$ = [0.02698 + 0.04753] = 0.07451 awrt <u>0.0745</u>	Alft Al cao (4)
	Notes	[]
(a)	Allow MR of 0.2 for 0.02 or 0.3 for 0.03 on tree diagram to score all M and A1f 1^{st} B1 for 2 branch then 4 branch shape 2^{nd} dB1 dep. on 1^{st} B1 for labels showing stitching (accept letters) and 0.03 value co 3^{rd} dB1 dep. on 1^{st} B1 for labels showing splitting and 0.7 and 0.02 correctly placed [probabilities shown in brackets are <u>not</u> required and any such values given can be in	t marks only prrectly placed d gnored in (a)]
(b)	M1 for $0.03 \times p + 0.02 \times q$ where <i>p</i> and <i>q</i> follow from their tree diagram. Extr 1 st A1ft for a fully correct expression. Accept 1–0.7 for 0.3 and 1–0.03 for 0.97	a terms is M0
MR	Follow through 0.2 and 0.3 MR only 0.2 for 0.02 \rightarrow 0.203 or 0.3 for 0.03 \rightarrow 0.104 or both \rightarrow 0.23 should score M1A1 2 nd A1 cao for 0.0284 only (or exact equivalent such as $\frac{71}{2500}$)	A0
(c)	Do not allow 0.5 as MR of 0.05 so no M or A marks in (c) or (d)M1for (their 0.97)×(their 0.98)×(1-0.05)(or better) f.t. values from their theA1 caofor awrt 0.903	ree diagram
(d)	1 st M1 for one correct triple (or correct ft from their tree) of: $[0.03 \times 0.3 \times (1-0.05)] + [0.97 \times 0.02 \times (1-0.05)] + [0.97 \times 0.98 \times 0.05]$	
	2^{nd} M1 for two correct triples or correct ft from their tree and adding <u>or</u> their (b) \approx	$\times (1 - 0.05)$
MR	1 st A1ft for a fully correct expression or f.t. their (b) and 0.2 or 0.3 MR only 0.2 for 0.02 → 0.23165 or 0.3 for 0.03 → 0.1331 or both → 0.2465 (or awrt 3sf) score 2^{nd} A1 cao for awrt 0.0745	es M1M1A1A0

Further copies of this publication are available from Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623 467467 Fax 01623 450481 Email <u>publication.orders@edexcel.com</u> Order Code UA033137 Summer 2012

For more information on Edexcel qualifications, please visit our website <u>www.edexcel.com</u>

Pearson Education Limited. Registered company number 872828 with its registered office at Edinburgh Gate, Harlow, Essex CM20 2JE $\,$

