

Mark Scheme (Results)

Summer 2018

Pearson Edexcel GCE Mathematics Statistics S1 Paper 6683_01

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <u>www.edexcel.com</u> or <u>www.btec.co.uk</u>. Alternatively, you can get in touch with us using the details on our contact us page at <u>www.edexcel.com/contactus</u>.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2018 Publications Code 6683_01_1806_MS All the material in this publication is copyright © Pearson Education Ltd 2018

General Marking Guidance

• All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.

• Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.

• Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.

• There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.

• All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.

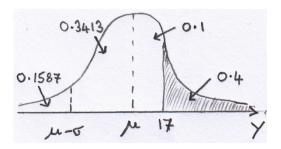
• Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.

• Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

EDEXCEL GCE MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 75.
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- **M** marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- **B** marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.
- 3. Abbreviations


These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol $\sqrt{}$ will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- dep dependent
- indep independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper
- The second mark is dependent on gaining the first mark
- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- 6. If a candidate makes more than one attempt at any question:
 - If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
 - If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.
- 7. Ignore wrong working or incorrect statements following a correct answer

Question Number	Scheme	Marks
1. (a)	F(3) = P(X = 2) so $a = 0.2$	B1
	F(6) = P(X = 2) + P(X = 4) so $a + b = 0.8$ so $b = 0.6$	B1
	Sum of probs = 1 implies $\underline{c = 0.1}$	B1ft
		(3)
(b)	F(7) = F(6) + 0.1 or a + b + 0.1 or 1 - c = 0.9	B1 (1)
		[Total 4]
	Notes	
(a)	$1^{\text{st}} B1 \text{for } a = 0.2$	
	$2^{nd} B1$ for $b = 0.6$	
	3^{rd} B1 ft for $c = 0.1$	
	<u>or</u> a value of c so that their $a + b + c = 0.9$ provided a, b and c are	probabilities
	The labels may not be explicit but it must be clear which is which	L
(b)	B1 for 0.9 only (no ft)	
	If their answer is based on their values of a, b or c, these values must	be
	probabilities and have $a + b = 0.8$ or $c = 0.1$	
	Just stating 0.9 with no justification is B1	

(3 - 6) mi or freque (11 - 15) (b) $Q_2 = (6.5)$ (c) $\sum fx =$ (d) $\sigma = \sqrt{\frac{809}{1}}$ (e) Skewness (f) Skewness Suggests [look for d (a) B1 for w M1 for 2 A1 for h (b) M1 for a A1 for a (c) M1 for a $\sum fx$ (d) M1 for a (c) M1 for a (c) M1 for a $\sum fx$ (d) M1 for a	ins has width 4 and is 2cm, $(11 - 15)$ mins has width 5 so is <u>2.5</u> (cm)	
(h) $Q_2 = (6.5)$ (c) $\sum fx =$ (d) $\sigma = \sqrt{\frac{809}{1}}$ (e) Skewness (f) <u>Skewness</u> Suggests [look for d (a) B1 for y M1 for 2 A1 for h (b) M1 for a A1 for a (c) M1 for a $\sum fx$ A1 for 8	ans has frequency of 38 and area of 19 cm ² so <u>2 people(per cm²)(o.e.)</u> ency density $=\frac{38}{4} = 9.5 = \text{height}$	B1 M1
(c) $\sum fx =$ (d) $\sigma = \sqrt{\frac{809}{1}}$ (e) Skewness (f) <u>Skewness</u> Suggests [look for 4] (a) B1 for y M1 for 2 A1 for h (b) M1 for a A1 for a (c) M1 for a $\sum fx$ A1 for 8 (d) M1 for a	mins has area of $2.5 \times h \text{ cm}^2$ so $h = \frac{12}{2 \times 2.5} = 2.4$ (cm) allow $\frac{12}{5}$	A1
(d) $\sigma = \sqrt{\frac{809}{1}}$ (e) Skewness (f) <u>Skewness</u> Suggests [look for d (a) B1 for v M1 for 2 A1 for h (b) M1 for a A1 for a (c) M1 for a Σfx A1 for 8 (d) M1 for a	$+\frac{12}{25} \times 2 \text{ or } (8.5) -\frac{13}{25} \times 2$	(3) M1
(d) $\sigma = \sqrt{\frac{809}{1}}$ (e) Skewness (f) <u>Skewness</u> Suggests [look for d (a) B1 for v M1 for 2 A1 for h (b) M1 for a A1 for a (c) M1 for a Σfx A1 for 8 (d) M1 for a	= awrt <u>7.46</u> 811.5	A1 (2)
 (e) Skewness (f) Skewness Suggests [look for 4] (a) B1 for 4 M1 for 2 A1 for h (b) M1 for a A1 for a (c) M1 for a Σ fx A1 for 8 (d) M1 for a 	$38 \times 4.5 + \dots + 7 \times 18 = 811.5$ and $\overline{x} = \frac{811.5}{100}$, = awrt 8.12	M1, A1 (2)
 (f) <u>Skewness</u> Suggests [look for 4 (a) B1 for v M1 for 2 A1 for h (b) M1 for a A1 for a (c) M1 for a Σ fx A1 for 8 (d) M1 for a 	$\frac{\overline{06.25}}{00} - \overline{x}^2 = \sqrt{80.9625 - "65.85"} = \sqrt{15.1(0)}, = \text{awrt } \underline{3.89}$	M1, A1
Suggests [look for (a) B1 for v M1 for 2 A1 for h (b) M1 for a A1 for a (c) M1 for a A1 for 8 (d) M1 for a	$a = \frac{3("8.12" - "7.46")}{"3.89"} = 0.5055 = $ awrt <u>0.47 ~ 0.51</u>	(2) B1
 M1 for 2 A1 for h (b) M1 for a A1 for a (c) M1 for a Σ fx A1 for 8 (d) M1 for a 	for Monday and Friday are <u>different</u> (o.e.) more longer delays on Friday (o.e.) diagrams to support this.]	(1) B1 B1 (2)
 M1 for 2 A1 for h (b) M1 for a A1 for a (c) M1 for a Σ fx A1 for 8 (d) M1 for a 		[Tot 12]
 M1 for 2 A1 for h (b) M1 for a A1 for a (c) M1 for a Σ fx A1 for 8 (d) M1 for a 	Notes	
 A1 for a (c) M1 for a Σ fx A1 for 8 (d) M1 for a 	B1 for width of 2.5 (cm) allow $\frac{5}{2}$ M1 for 2 people per cm ² or a correct numerical equ'n for <i>h</i> or their width×height = 6 A1 for height of 2.4 (cm) [If just see 2.4 and 2.5 it must be clear which is <i>h</i> and which <i>w</i>]	
$\begin{array}{c} \Sigma fx \\ A1 & \text{for 8} \end{array}$ $(\mathbf{d}) M1 \text{for a} \end{array}$	M1 for a correct expr'n with sign (ignoring end point). Condone 12.5 for use of $(n + 1)$ A1 for awrt 7.46 (or 7.5 if using $(n + 1)$ but must see evidence of $(n + 1)$ approach)	
1.11 101 0	 M1 for an attempt at Σ fx (i.e. <u>full</u> expression or 650 < Σ fx < 950) <u>and</u> division by 100 Σ fx may be in the table. A1 for 8.115 or awrt 8.12 (allow 8.11) [May be in (d) but must be labelled e.g. x̄ =] 	
	M1 for a correct expression (ft their mean) including $$. Allow <i>s</i> leading to $\sqrt{15.26}$ A1 for awrt 3.89 Allow use of <i>s</i> = awrt 3.91 [Correct ans. only to (c) or (d) full marks]	
(e) B1 for a	B1 for a correct expression seen using their values (σ must be > 0) or awrt 0.47 ~ 0.51	
If a	 1st B1 for a comment that skewness is different (<u>only</u> commenting on"correlation" is B0) If ans. to (e) > 0 allow B1 for e.g. "skewness on Fri is < 0"["on Fri" may be implied] 2nd B1 for a comment about <u>length</u> of delay e.g. "<u>more long</u> ones (on Fri.) or "<u>longer</u> delays on Fri." 	

(b) $P(Y > \mu - \sigma) = P(Z > -1)$ = 0.841(3) $P(\mu - \sigma < Y < 17) = 0.8413 - 0.4$ = 0.441(3) ALT $P(Y > \mu - \sigma) = P(Z > -1)$ $P(Y > 17) = 0.4 \Rightarrow Z = \left[\frac{17 - \mu}{\sigma}\right] = 0.25(33471) \text{ so need } P(-1 < Z < 0.25)$ $I^{\text{st}} A1$ $I^{\text{st}} A1$ $I^{\text{st}} A1$ $I^{\text{st}} A1$	Question Number	Scheme	Marks
(b) $P(Y > \mu - \sigma) = P(Z > -1)$ $= 0.841(3)$ $P(\mu - \sigma < Y < 17) = 0.8413 - 0.4$ $dM1$ $A1$ $P(Y > \mu - \sigma) = P(Z > -1)$ $P(Y > 17) = 0.4 \Rightarrow Z = \left[\frac{17 - \mu}{\sigma}\right] = 0.25(33471) \text{ so need } P(-1 < Z < 0.25)$ $dM1$ $I^{st} A1$ $P(Y > 17) = 0.4 \Rightarrow Z = \left[\frac{17 - \mu}{\sigma}\right] = 0.25(33471) \text{ so need } P(-1 < Z < 0.25)$ $dM1$ $I^{st} A1$ $P(Y > 17) = 0.4 \Rightarrow Z = \left[\frac{17 - \mu}{\sigma}\right] = 0.25(33471) \text{ so need } P(-1 < Z < 0.25)$ $dM1$ $I^{st} A1$ $P(Y > 17) = 0.4 \Rightarrow Z = \left[\frac{127 - \mu}{\sigma}\right] = 0.25(33471) \text{ so need } P(-1 < Z < 0.25)$ $I^{st} A1$ $P(Y > 17) = 0.1^{st}$ $I^{st} A1$	3. (a)	$[P(\mu < Y < 17) =] 0.5 - 0.4 = \underline{0.1}$	B1
$P(\mu - \sigma < Y < 17) = 0.8413 - 0.4 \qquad dM1 \\ = 0.441(3) \qquad dM1 \\ A1 \qquad $	(b)	$P(Y > \mu - \sigma) = P(Z > -1)$	(1) M1
$= 0.441(3) A1$ $= 0.441(3) A1$ $P(Y > \mu - \sigma) = P(Z > -1) \qquad M1$ $P(Y > 17) = 0.4 \Rightarrow Z = \left[\frac{17 - \mu}{\sigma}\right] = 0.25(33471) \text{ so need } P(-1 < Z < 0.25) \qquad M1$ $I^{st} A1 \qquad I^{st} A1$ $I^{st} A1 \qquad I^{st} A1 \qquad I^{st} A1$ $I^{st} A1 \qquad I^{st} A1 \qquad I^{st} A1 \qquad I^{st} A1$ $I^{st} A1 \qquad I^{st} A1 \qquad I^{st} A1 \qquad I^{st} A1 \qquad I^{st} A1$ $I^{st} A1 \qquad I^{st} A1 \qquad$		= 0.841(3)	A1
ALT $P(Y > \mu - \sigma) = P(Z > -1)$ $P(Y > 17) = 0.4 \Rightarrow Z = \left[\frac{17 - \mu}{\sigma}\right] = 0.25(33471) \text{ so need } P(-1 < Z < 0.25)$ $I^{14} A1$ $I^{14} A1$ $I^{14} A1$ $I^{16} A1$ $I^{17} A1$ $I^{16} A1$ I^{1			
ALT $\begin{array}{ c c c c c } P(Y > \mu - \sigma) = P(Z > -1) \\ P(Y > 17) = 0.4 \Rightarrow Z = \begin{bmatrix} \frac{17 - \mu}{\sigma} \\ \end{bmatrix} = 0.25(33471) \text{ so need P}(-1 < Z < 0.25) \\ \text{Sight of P}(-1 < Z < 0.253) \\ = \underline{0.441}(3) \\ \hline \\ I^{\text{st}} \text{ A1} \\ \underline{2^{nd}} \text{ A1} \\ \hline \\ I^{\text{st}} \text{ A1} \\ \underline{2^{nd}} \text{ A1} \\ \hline \\ I^{\text{st}} \text{ A1} \\ \text{ for 0.1 as clearly their final answer or clear statement "P}(\mu < Y < 17) = 0.1" \\ \hline \\ I^{\text{st}} \text{ M1} \\ \text{ for an attempt to standardise } \mu - \sigma \\ \text{ allow for } \pm \frac{(\mu - \sigma) - \mu}{\sigma} \\ \text{ can be un-simplified} \\ I^{\text{st}} \text{ A1} \\ \text{ for 0.841 or better (calc 0.84134473) } \\ OI = 1 - 0.8413 = 0.1587 \\ \text{ (accept 0.159)} \\ \text{ Sight of 0.841(3) or 0.1587 or 0.159 (or better) scores M1 A1 \\ May be statement e.g. P(Y > \mu - \sigma) = 0.841(3) \text{ or on clearly labelled diagram.} \\ 2^{nd} \text{ dM1} \\ \text{ (dep on 1^{st} M1) for a correct use of their 0.8413 \\ and the given 0.4 \\ \\ \\ \underline{0^{r}} 0.341(3) + \text{their (a)} \\ \\ \underline{0^{r}} 0.6 - \text{their 0.1587} \\ 2^{nd} \text{ A1 for 0.441 or better (correct answer only 4/4)} \\ \\ \text{ALT} \\ \\ \text{Standardise } \mu - \sigma \\ \text{ (and may get } z = -1 \\ \text{ scores 1^{st} M1 as in scheme} \\ \\ \text{ Use inv' normal to get } \frac{17 - \mu}{\sigma} = 0.25(33471) \\ \underline{and} \text{ write/ attempt P}(-1 < Z < 0.25) 2^{nd} M \\ \\ \text{ Write or attempt P}(-1 < Z < 0.253) \\ \text{ also scores 1^{st} A1 (need 0.253 \text{ or better}) \\ \text{ NB Just standardising and getting 0.2533 \text{ et is no use unless it is part of a correct} \\ \end{array}$		= <u>0.441</u> (3)	
$P(Y > 17) = 0.4 \Rightarrow Z = \left[\frac{17-\mu}{\sigma}\right] = 0.25(33471) \text{ so need } P(-1 < Z < 0.25) $ dM1 Sight of $P(-1 < Z < 0.253)$ $= 0.441(3)$ $I^{st} A1$ $2^{nd} A1$ $I \text{ Total } S$ (a) B1 for 0.1 as clearly their final answer or clear statement "P($\mu < Y < 17$) = 0.1" Ignore poor or incorrect notation if answers are correct (b) $I^{st} M1$ for an attempt to standardise $\mu - \sigma$ allow for $\pm \frac{(\mu - \sigma) - \mu}{\sigma}$ can be un-simplified $I^{st} A1$ for 0.841 or better (calc 0.84134473) <u>or</u> 1 - 0.8413= 0.1587 (accept 0.159). Sight of 0.841(3) or 0.1587 or 0.159 (or better) scores M1 A1 May be statement e.g. $P(Y > \mu - \sigma) = 0.841(3)$ or on clearly labelled diagram. $2^{nd} dM1$ (dep on $I^{st} M1$) for a correct use of their 0.8413 <u>and</u> the given 0.4 <u>or</u> 0.341(3) + their (a) $2^{nd} A1$ for 0.441 or better (correct answer only 4/4) ALT Standardise $\mu - \sigma$ (and may get $z = -1$) scores $I^{st} M1$ as in scheme Use inv' normal to get $\frac{17-\mu}{\sigma} = 0.25(33471) \underline{and}$ write/ attempt $P(-1 < Z < 0.25) 2^{nd} M$ Write or attempt $P(-1 < Z < 0.253)$ also scores $I^{st} A1$ (need 0.253 or better) NB Just standardising and getting 0.2533 et c is no use unless it is part of a correct	ALT	$P(Y > \mu = \sigma) - P(Z > -1)$	(4) M1
Sight of $P(-1 < Z < 0.253)$ = 0.441(3) 1 st A1 2 nd A1 [Total 5] (a) B1 for 0.1 as clearly their final answer or clear statement " $P(\mu < Y < 17) = 0.1$ " Ignore poor or incorrect notation if answers are correct (b) 1 st M1 for an attempt to standardise $\mu - \sigma$ allow for $\pm \frac{(\mu - \sigma) - \mu}{\sigma}$ can be un-simplified 1 st A1 for 0.841 or better (calc 0.84134473) <u>or</u> 1 - 0.8413= 0.1587 (accept 0.159) Sight of 0.841(3) or 0.1587 or 0.159 (or better) scores M1 A1 May be statement e.g. $P(Y > \mu - \sigma) = 0.841(3)$ or on clearly labelled diagram. 2 nd dM1 (dep on 1 st M1) for a correct use of their 0.8413 <u>and</u> the given 0.4 <u>or</u> 0.341(3) + their (a) <u>or</u> 0.6 - their 0.1587 2 nd A1 for 0.441 or better (correct answer only 4/4) ALT Standardise $\mu - \sigma$ (and may get $z = -1$) scores 1 st M1 as in scheme Use inv' normal to get $\frac{17 - \mu}{\sigma} = 0.25(33471)$ <u>and</u> write/ attempt P(-1 < Z < 0.25) 2 nd M Write or attempt P(-1 < Z < 0.253) also scores 1 st A1 (need 0.253 or better) NB Just standardising and getting 0.2533 etc is no use unless it is part of a correct		$P(Y > 17) = 0.4 \implies Z = \left[\frac{17 - \mu}{\sigma}\right] = 0.25(33471) \text{ so need } P(-1 < Z < 0.25)$	
Notes(a)B1 for 0.1 as clearly their final answer or clear statement "P($\mu < Y < 17$) = 0.1"Ignore poor or incorrect notation if answers are correct(b)1st M1 for an attempt to standardise $\mu - \sigma$ allow for $\pm \frac{(\mu - \sigma) - \mu}{\sigma}$ can be un-simplified1st A1 for 0.841 or better (calc 0.84134473) or 1 - 0.8413= 0.1587 (accept 0.159)Sight of 0.841(3) or 0.1587 or 0.159 (or better) scores M1 A1May be statement e.g. P($Y > \mu - \sigma$) = 0.841(3) or on clearly labelled diagram.2nd dM1 (dep on 1st M1) for a correct use of their 0.8413 and the given 0.4or 0.341(3) + their (a)0r 0.6 - their 0.15872nd A1 for 0.441 or better (correct answer only 4/4)ALTStandardise $\mu - \sigma$ (and may get $z = -1$) scores 1st M1 as in schemeUse inv' normal to get $\frac{17 - \mu}{\sigma} = 0.25(33471)$ and write/ attempt P($-1 < Z < 0.25$) 2nd MWrite or attempt P($-1 < Z < 0.253$) also scores 1st A1 (need 0.253 or better)NB Just standardising and getting 0.2533 etc is no use unless it is part of a correct		Sight of $P(-1 < Z < 0.253)$	
(a) B1 for 0.1 as clearly their final answer or clear statement "P($\mu < Y < 17$) = 0.1" Ignore poor or incorrect notation if answers are correct (b) 1 st M1 for an attempt to standardise $\mu - \sigma$ allow for $\pm \frac{(\mu - \sigma) - \mu}{\sigma}$ can be un-simplified 1 st A1 for 0.841 or better (calc 0.84134473) or 1 - 0.8413= 0.1587 (accept 0.159) Sight of 0.841(3) or 0.1587 or 0.159 (or better) scores M1 A1 May be statement e.g. P($Y > \mu - \sigma$) = 0.841(3) or on clearly labelled diagram. 2 nd dM1 (dep on 1 st M1) for a correct use of their 0.8413 and the given 0.4 or 0.341(3) + their (a) 2 nd A1 for 0.441 or better (correct answer only 4/4) ALT Standardise $\mu - \sigma$ (and may get $z = -1$) scores 1 st M1 as in scheme Use inv' normal to get $\frac{17 - \mu}{\sigma} = 0.25(33471)$ and write/ attempt P($-1 < Z < 0.25$) 2 nd M Write or attempt P($-1 < Z < 0.253$) also scores 1 st A1 (need 0.253 or better) NB Just standardising and getting 0.2533 etc is no use unless it is part of a correct			[Total 5]
Ignore poor or incorrect notation if answers are correct (b) 1^{st} M1 for an attempt to standardise $\mu - \sigma$ allow for $\pm \frac{(\mu - \sigma) - \mu}{\sigma}$ can be un-simplified 1^{st} A1 for 0.841 or better (calc 0.84134473) or $1 - 0.8413= 0.1587$ (accept 0.159). Sight of 0.841(3) or 0.1587 or 0.159 (or better) scores M1 A1 May be statement e.g. P($Y > \mu - \sigma$) = 0.841(3) or on clearly labelled diagram. 2^{nd} dM1 (dep on 1^{st} M1) for a correct use of their 0.8413 and the given 0.4 or $0.341(3) +$ their (a) $\frac{0r}{\sigma}$ 0.6 - their 0.1587 2^{nd} A1 for 0.441 or better (correct answer only 4/4) ALT Standardise $\mu - \sigma$ (and may get $z = -1$) scores 1^{st} M1 as in scheme Use inv' normal to get $\frac{17 - \mu}{\sigma} = 0.25(33471)$ and write/ attempt P($-1 < Z < 0.25$) 2^{nd} M Write or attempt P($-1 < Z < 0.253$) also scores 1^{st} A1 (need 0.253 or better) NB Just standardising and getting 0.2533 etc is no use unless it is part of a correct			
(b) 1^{st} M1 for an attempt to standardise $\mu - \sigma$ allow for $\pm \frac{(\mu - \sigma) - \mu}{\sigma}$ can be un-simplified 1^{st} A1 for 0.841 or better (calc 0.84134473) or $1 - 0.8413 = 0.1587$ (accept 0.159). Sight of 0.841(3) or 0.1587 or 0.159 (or better) scores M1 A1 May be statement e.g. $P(Y > \mu - \sigma) = 0.841(3)$ or on clearly labelled diagram. $2^{\text{nd}} \text{ dM1}$ (dep on 1^{st} M1) for a correct use of their 0.8413 and the given 0.4 or $0.341(3) + \text{their}$ (a) 2^{nd} A1 for 0.441 or better (correct answer only 4/4) ALT Standardise $\mu - \sigma$ (and may get $z = -1$) scores 1^{st} M1 as in scheme Use inv' normal to get $\frac{17 - \mu}{\sigma} = 0.25(33471)$ and write/ attempt P($-1 < Z < 0.25$) 2^{nd} M Write or attempt P($-1 < Z < 0.253$) also scores 1^{st} A1 (need 0.253 or better) NB Just standardising and getting 0.2533 etc is no use unless it is part of a correct	(a)	B1 for 0.1 as clearly their final answer or clear statement "P($\mu < Y < 17$) = 0.1"	,
$\mathbf{ALT} \mathbf{ALT} \mathbf$		Ignore poor or incorrect notation if answers are correct	
Sight of 0.841(3) or 0.1587 or 0.159 (or better) scores M1 A1 May be statement e.g. $P(Y > \mu - \sigma) = 0.841(3)$ or on clearly labelled diagram. $2^{nd} dM1$ (dep on 1 st M1) for a correct use of their 0.8413 and the given 0.4 <u>or</u> 0.341(3) + their (a) <u>or</u> 0.6 - their 0.1587 $2^{nd} A1$ for 0.441 or better (correct answer only 4/4) ALT Standardise $\mu - \sigma$ (and may get $z = -1$) scores 1 st M1 as in scheme Use inv' normal to get $\frac{17 - \mu}{\sigma} = 0.25(33471)$ and write/ attempt P($-1 < Z < 0.25$) 2 nd M Write or attempt P($-1 < Z < 0.253$) also scores 1 st A1 (need 0.253 or better) NB Just standardising and getting 0.2533 etc is no use unless it is part of a correct	(b)	1 st M1 for an attempt to standardise $\mu - \sigma$ allow for $\pm \frac{(\mu - \sigma) - \mu}{\sigma}$ can be un	-simplified
$\begin{array}{c} 2^{\mathrm{nd}} \mathrm{dM1} (\mathrm{dep} \ \mathrm{on} \ 1^{\mathrm{st}} \ \mathrm{M1}) \ \mathrm{for} \ \mathrm{a} \ \mathrm{correct} \ \mathrm{use} \ \mathrm{of} \ \mathrm{their} \ 0.8413 \ \underline{\mathrm{and}} \ \mathrm{the \ given} \ 0.4 \\ \underline{\mathrm{or}} 0.341(3) + \mathrm{their} \ (\mathrm{a}) \\ \underline{\mathrm{or}} 0.6 - \mathrm{their} \ 0.1587 \\ 2^{\mathrm{nd}} \ \mathrm{A1} \mathrm{for} \ 0.441 \ \mathrm{or} \ \mathrm{better} \ (\mathrm{correct} \ \mathrm{answer} \ \mathrm{only} \ 4/4) \\ \end{array}$ $\begin{array}{c} \mathbf{ALT} \\ \mathbf{ALT} \\ \mathbf{Standardise} \ \mu - \sigma \ (\mathrm{and} \ \mathrm{may \ get} \ z = -1 \) \ \mathrm{scores} \ 1^{\mathrm{st}} \ \mathrm{M1} \ \mathrm{as} \ \mathrm{in} \ \mathrm{scheme} \\ \mathrm{Use} \ \mathrm{inv'} \ \mathrm{normal} \ \mathrm{to} \ \mathrm{get} \ \frac{17 - \mu}{\sigma} = 0.25(33471) \ \underline{\mathrm{and}} \ \mathrm{write} / \ \mathrm{attempt} \ \mathrm{P}(-1 < Z < 0.25) \ 2^{\mathrm{nd}} \ \mathrm{M} \\ \mathrm{Write} \ \mathrm{or} \ \mathrm{attempt} \ \mathrm{P}(-1 < Z < 0.253) \ \mathrm{also} \ \mathrm{scores} \ 1^{\mathrm{st}} \ \mathrm{A1} \ (\mathrm{need} \ 0.253 \ \mathrm{or} \ \mathrm{better}) \\ \mathrm{NB} \ \mathrm{Just} \ \mathrm{standardising} \ \mathrm{and} \ \mathrm{getting} \ 0.2533 \ \mathrm{etc} \ \mathrm{is} \ \mathrm{no} \ \mathrm{use} \ \mathrm{unless} \ \mathrm{it} \ \mathrm{is} \ \mathrm{part} \ \mathrm{of} \ \mathrm{a} \ \mathrm{correct} \end{array}$			ccept 0.159)
$\frac{\text{or}}{2^{\text{nd}} \text{ A1}} \text{for } 0.6 - \text{their } 0.1587$ $2^{\text{nd}} \text{ A1} \text{for } 0.441 \text{ or better (correct answer only 4/4)}$ ALT $\text{Standardise } \mu - \sigma \text{ (and may get } z = -1 \text{) scores } 1^{\text{st}} \text{ M1 as in scheme}$ $\text{Use inv' normal to get } \frac{17 - \mu}{\sigma} = 0.25(33471) \text{ and write/ attempt P(-1 < Z < 0.25) } 2^{\text{nd}} \text{ M}$ Write or attempt P(-1 < Z < 0.253) also scores $1^{\text{st}} \text{ A1} \text{ (need } 0.253 \text{ or better)}$ NB Just standardising and getting 0.2533 etc is no use unless it is part of a correct		$2^{nd} dM1$ (dep on $1^{st} M1$) for a correct use of their 0.8413 and the given 0.4	diagram.
ALT Standardise $\mu - \sigma$ (and may get $z = -1$) scores 1 st M1 as in scheme Use inv' normal to get $\frac{17 - \mu}{\sigma} = 0.25(33471)$ and write/ attempt P($-1 < Z < 0.25$) 2 nd M Write or attempt P($-1 < Z < 0.253$) also scores 1 st A1 (need 0.253 or better) NB Just standardising and getting 0.2533 etc is no use unless it is part of a correct		<u>or</u> 0.6 – their 0.1587	
Use inv' normal to get $\frac{17 - \mu}{\sigma} = 0.25(33471)$ and write/ attempt P(-1 < Z < 0.25) 2 nd M Write or attempt P(-1 < Z < 0.253) also scores 1 st A1 (need 0.253 or better) NB Just standardising and getting 0.2533 etc is no use unless it is part of a correct		2^{nd} A1 for 0.441 or better (correct answer only 4/4)	
Write or attempt P($-1 < Z < 0.253$) also scores 1 st A1 (need 0.253 or better) NB Just standardising and getting 0.2533 etc is no use unless it is part of a correct	ALT		
NB Just standardising and getting 0.2533 etc is no use unless it is part of a correct		Use inv' normal to get $\frac{17 - \mu}{\sigma} = 0.25(33471)$ and write/ attempt P($-1 < Z < 0$.25) 2 nd M1
probability statement that would lead to the final answer.			rect
		probability statement that would lead to the final answer.	

Question Number	Scheme	Marks
4. (a)	$P(G_1) + P(R_1 \cap G_2) + P(Y_1 \cap G_2) \underline{\text{or}} P(GY) + P(GR) + P(RG) + P(YG) (\text{o.e.})$	M1
	$= \frac{1}{64} + \frac{r}{64} \times \frac{1}{63} + \frac{y}{64} \times \frac{1}{63} = \frac{1}{64} + \frac{r+y}{64 \times 63} \underline{\text{or}} 2 \times \frac{r+y}{64 \times 63}$	A1
	$= \frac{1}{64} + \frac{63}{64 \times 63} \underline{\text{or}} \frac{2 \times 63}{64 \times 63} \underline{\text{or}} \frac{1}{64} + \frac{1}{64} \underline{\text{or}}$	M1
	$=\frac{1}{32}$ or 0.03125	A1
(b)	$P(R_1 \cap R_2) = \frac{r}{64} \times \frac{r-1}{63} = \frac{5}{84}$	(4) M1A1
	$r(r-1) = 5 \times 64 \times 63 \div 84 = 240$ hence $r^2 - r - 240 = 0$ or $r^2 - r = 240$ (*)	A1cso (3)
(c)	$r^{2} - r - 240 = (r - 16)(r + 15) = 0 \frac{16}{2} \frac{16}{-16} - 240 = 256 - 256$	(3) M1
	so $r = 16$ and rejecting -15 (*)	A1cso (2)
(d)		M1,
	$\underline{\text{or }} P(R_1) + P(R_1' \cap R_2) \underline{\text{or }} \frac{16}{64} + \frac{48}{64} \times \frac{16}{63} \underline{\text{or }} 1 - \frac{48}{64} \times \frac{47}{63}, = \frac{37}{\underline{84}}$	A1
	Require: $\frac{P(R_1 \cap R_2)}{P(\text{at least one red})} = \frac{\frac{5}{84}}{\frac{37}{84}}$, $= \frac{5}{\underline{37}}$ or $0.13\dot{5}$	M1, A1
		(4) [Total 13]
(a)	Notes 1 st M1 for at least 2 correct cases. May be in symbols or probs. May be in tree	diaoram
(u)	Use of $r = 16$ or $y = 47$ can score maximum of 1 st M1 then A0M0A0	ulugiulli
	1 st A1 for all cases and their assosciated probs added	
	2^{nd} M1 for combining probabilities and using $r + y = 63$	
	2^{nd} A1 for $\frac{1}{32}$ or an exact equivalent (correct answer only 4/4)	
(b)	M1 for $\frac{r}{64} \times g(r) =$ where $g(r)$ is any linear function of r	
	1^{st}A1 for any correct equation in r	
	2 nd A1cso for correctly simplifying to the given equation with no incorrect wor There should be at least 1 intermediate step seen	king seen.
(c)	M1 for correct factors <u>or</u> completing square <u>or</u> use of formula <u>or</u> substitution	on
	A1cso for concluding $r = 16$ and rejecting -15 (e.g. crossing out etc)	
(d)	1 5 5 1	
	1 st A1 for $\frac{37}{84}$ (o.e.) as a single fraction <u>or</u> awrt 0.440 [May be implied by corrected by a single fraction of a single fra	
	2^{nd} M1 for a ratio of probabilities (denom may be in symbols) with numerator 2^{nd} A1 for $\frac{5}{37}$ or an exact equivalent	of $\frac{3}{84}$ (o.e.)

Question Number	Scheme	Marks
5. (a)	The <u>distribution</u> is <u>symmetric</u> about the value 2 (o.e.) ["data" is B0]	B1 cso
(b)	Sum of probs = 1 (or use of $E(X) = 2$) leading to $3a + 2b = 1$	B1 (1) (1)
(c)	$E(X^{2}) = (-1)^{2} b + 2^{2} a + 4^{2} a + 5^{2} b [= 20a + 26b \dots \text{condone } 24b]$ 7.1 = 20a + "26"b - 2 ² or 7.1 = 20a + "26"b - (6a + 4b) ² or 7.1 = 8a + 18b 11.1 = 20a + 26b	M1 M1 A1
(d)	e.g. (b)×13 and subtract (c) yielding: $1.9 = 19a$ $\underline{a = 0.1}$ and $\underline{b = 0.35}$	(3) M1 A1, A1 (3)
(e)(i) (ii)	$[E(Y) = 10 - 3E(X) = 10 - 3 \times 2] = \underline{4}$ [Var(Y)] = $(-3)^2 Var(X)$ = <u>63.9</u>	(3) B1 M1 A1
(f)	Y > X gives: $10 - 3X > X$ leading to $10 > 3X + X$ or $X < 2.5X < 2.5$ means $X = -1$, 0 and 2 $P(Y > X) = 2a + b = 0.55$ or $\frac{11}{20}$ (o.e.)	(3) M1 A1 A1ft
		(3) [Total 14]
(a)	NotesB1 for argument using symmetry "distribution is symmetric" B1 "probs are symmetric" B0 "it is symmetric" is B0 or a correct expression $(6a + 4b)$ and use of sum of probs = 1	
(b)	B1 for $3a + 2b = 1$ (o.e.) (any equivalent correct equation, needn't be simplified	ed)
(c)	1 st M1 for a full expression for $E(X^2)$. Condone $-1^2 b \dots$ or $20a + 26b$ or $20a + 24b$ Allow Var(X) called $E(X^2)$. M0 for $\frac{20a+26b}{5}$ unless you see $E(X^2) = 20a + 26b$ (o.e.) first. 2^{nd} M1 for use of the correct formula to form an equation for <i>a</i> and <i>b</i> . ft their $E(X^2)$ A1 for $11.1 = 20a + 26b$ (or equivalent but must be only 3 non-zero terms)	
(d)	M1 for solving their 2 linear equations in <i>a</i> and <i>b</i> and reducing to an equ'n in one variable Condone 1 arithmetic or sign error $1^{st} A1$ for $a = 0.10$ or an exact equivalent $2^{nd} A1$ for $b = 0.35$ or an exact equivalent	
Ans only	One correct value scores M1 and the relevant A1 and both correct score	
(e)(ii)	M1 for correct use of the Var($aX + b$) formula. Condone -3^2 if it later becomes +9 or $[E(Y^2)] = 79.9$ and $[Var(Y)] = 79.9$ – their $(E(Y))^2$ A1 for 63.9	
(f)	M1 for an attempt to solve the linear inequality leading to $10 > 3X + X \text{ or } Y > 2.5$ or $Y \ge 4$ A1 for the correct 3 values of X or prob. dist. for Y and $y = 4$, 10, 13 or $P(X < 2.5) = 2a + b$ A1ft for an answer = their $2a + b$ provided a, b and $2a + b$ are probabilities. Must be a value	
NB(e/f)	x -1 0 2 4 5 Correct answer only 1 y 13 10 4 -2 -5 $and b is 3/3$ BUT $2a + b$ only is 1	

Question Number	Scheme	Marks	
6. (a)	$(\mathbf{S}_{th}) = 31070 - \frac{61 \times 6370}{8} \text{ or } 31070 - 48571.25 ; (\mathbf{S}_{tt}) = 693 - \frac{61^2}{8} \text{ or } 693 - 465.125$	M1; M1	
	$(S_{th}) = -17501.25$ and $(S_{tt}) = 227.875$ (*)	Alcso	
(b)	r close to 1 or r is close to -1 therefore it does support the linear model	(3) B1 (1)	
(c)	$\begin{bmatrix} r = \frac{\mathbf{S}_{yx}}{\sqrt{\mathbf{S}_{yy} \times \mathbf{S}_{xx}}} \end{bmatrix} \text{ so } r = \frac{\mathbf{S}_{th}}{\sqrt{\mathbf{S}_{tt} \times \mathbf{S}_{hh}}} \underline{\text{or}} r^2 = \frac{(\mathbf{S}_{th})^2}{\mathbf{S}_{tt} \times \mathbf{S}_{hh}} \underline{\text{or}} \mathbf{S}_{hh} = \frac{(\mathbf{S}_{th})^2}{r^2 \times \mathbf{S}_{tt}} \begin{vmatrix} \underline{\text{or}} \\ \mathrm{substitute} \\ 1 \text{ value} \end{vmatrix}$	M1	
	e.g. $\pm 0.985 = \frac{\pm 17501.25}{\sqrt{227.875 \times S_{hh}}} \text{ or } S_{hh} = \frac{(\pm 17501.25)^2}{(\pm 0.985)^2 \times 227.875}$ o.e. $(= 1.385380.258)$	A1,	
	= awrt 1 390 000	A1	
	$b = \frac{-17501.25}{1385380.258} = -0.0126328, = awrt - 0.013$	M1, A1	
	[NB $\overline{t} = 7.625$, $\overline{h} = 796.25$] $a = \frac{61}{8} - "-0.0126" \times \frac{6370}{8}$ [= 17.6838]	M1	
	8 So $t = 17.7 - 0.0126h$	A1	
(d)	<i>a</i> is an estimate of the <u>temperature</u> at <u>sea level</u> is (17.7 °C)	(7) B1 (1)	
(e)	(\mp) 150×b (o.e. e.g. [17.7 - 0.0126h] - [17.7 - 0.0126(h + 150)])	(1) M1	
	$= 1.89 \qquad \text{awrt} \underline{2} (^{\mathbf{o}}\mathbf{C})$	A1	
		(2) [Tot 14]	
	Notes		
(a)	-	stent use	
		≠8 M0M1	
	A1cso for both answers correct and both Ms scored.		
(b)	B1 for correct and relevant comment about the value of r and saying it does supported by $r = \frac{1}{2} \frac{1}{$	•	
	Allow "it is"" <u>strong</u> " or " <u>near perfect</u> " correlation BUT B0 for "perfect" or "highly In (c) condone x for h and y for t except in 4 th A1	y negative"	
(c)	1^{st} M1 for the sight of the formula for r and an attempt to do something useful wit	h it	
	1 st A1 for a correct numerical expr'n in S_{hh} or $\sqrt{S_{hh}}$ Accept with 3sf values (igno	re – signs)	
	2 nd A1 for awrt 1 390 000 (3sf gives 1 384 422.948 but scores 1 st A1 and 2 nd A0)		
	2^{nd} M1 for a correct expression for <i>b</i> seen (ft their values to 3sf) Use of $S_{tt} \rightarrow -76$ 3^{rd} A1 for awrt -0.013 (candidates using 3sf for S_{hh} should therefore get this)	0.8 18 MU	
Beware	$\frac{S_{n}}{S_{n}} = \frac{227.875}{-17501.25} = -0.0130 \text{ but is } 2^{\text{nd}} \text{ MO } 3^{\text{rd}} \text{ A0} \text{ Ans only of } -0.0126\text{ is } \text{M1A1A1M1A1}$		
	3^{rd} M1 for a correct use of \overline{t} and \overline{h} to find <i>a</i> ft their <i>b</i> (allow letter <i>b</i> or even $b = -0.985$) 4^{th} A1 for a correct equation with <i>a</i> = awrt 17.7 and <i>b</i> = awrt - 0.0126 [No y and x]		
(d)	B1 for stating or implying that it is the <u>temperature</u> (value not needed) at <u>sea level</u>		
(e)	M1 for a correct expression equivalent to (\mp) 150b. Can use letter b or ft their value(s).		
	A1 for awrt 2 (°C not required) Allow \pm can give if "a" incorrect or "b" from M. Common wrong answer of 11520 can score M1A0 even if no working seen.		

Question Number	Scheme	Marks
7.	$[W \sim N(140, 40^2)]$	
(a)	$P(W < 92) = P\left(Z < \frac{92 - 140}{40}\right) = \left[P(Z < -1.2)\right]$	M1
	= 1 - 0.8849 = awrt <u>11.5</u> (%) or <u>0.115</u>	dM1,A1 (3)
(b)	$[P(W > q_3) = P(W > 92) \times P(W > q_3 W > 92) =] (1 - (a)) \times 0.25 = 0.8849 \times 0.25$ $= 0.221225 = awrt \ \underline{0.221}$	M1 A1 (2)
(c)	$P(W < q_1 W > 92) = 0.25$ or $P(W > q_1 W > 92) = 0.75$	M1
	$P(92 < W < q_1) = 0.25 \times 0.8849 = "0.221"$ or $P(W > q_1) = 0.75 \times 0.8849 = 0.663675$	M1
	$P(W < q_1) = 0.221225 + 0.115 = awrt 0.336 \text{ or } P(W > q_1) = 0.663675 = awrt 0.664$	A1
	$\frac{q_1 - 140}{40} = -0.42 \text{(calculator gives } -0.422513 \sim -0.423404 \text{)}$	M1
	so $q_1 = 123.2 = \text{awrt} \underline{123} (\text{g})$	A1
		(5)
(d)	0.221 $\frac{1}{4} \times \frac{1}{4} \times \frac{1}{2} \times 3!$	M1M1
	$=\frac{3}{16}$ or 0.1875	A1 (3)
	12 123 171 W	[Tot 13]
	Notes	
	Condone poor use of notation etc e.g. " $P > q_1$ " for $P(W > q_1)$ etc	
(a)	1^{st} M1for standardising attempt with 92 or 188, 140 and 40 (o.e.)Accept \pm ignore i 2^{nd} dM1dependent on 1^{st} M1, for attempting $1 - p$ where $0.5 A1for awrt 11.5 (%) or 0.115$	nequality
(b)	M1 for $(1 - \text{their } (a)) \times 0.25$ or $1 - [(1 - (a)) \times 0.75 + (a)] = 1 - [0.8849 \times 0.75 + 0.1]$	151]
	A1 for awrt 0.221	1
(c)	1 st M1 for a correct conditional prob. statement with q_1 , 92 and 0.25 or 0.75	
	2^{nd} M1 for either correct probability statement and 0.25 or 0.75 × (1 – their (a))	
	1 st A1 for $P(W < q_1) = awrt 0.336$ or $P(W > q_1) = awrt 0.664$ NB May be standard	dised
	Award M1M1A1 for either probability clearly stated or marked on a correct ske	
	3 rd M1 for standardising with q_1 , 140 and 40 and setting equal to z where 0.40< $ z $	< 0.45
	2 nd A1 for awrt 123 (condone minor slips in working if correct answer obtained)	
(d)	1 st M1 for $0.25 \times 0.25 \times 0.5$ (o.e.) e.g. $\frac{1}{32}$ may be seen as decimals or fractions	
	2^{nd} M1 for $\times 3!$ or $\times 6$ or adding all 6 cases. Must be multiplying probabilities.	
	A1 for $\frac{3}{16}$ or any exact equivalent	

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London, WC2R ORL, United Kingdom