

Mark Scheme (Results)

October 2018

Pearson Edexcel International Advanced Level in Statistics S1 (WST01/01)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.edexcel.com. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

October 2018
Publications Code WST01_01_1810_MS
All the material in this publication is copyright
© Pearson Education Ltd 2018

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

EDEXCEL IAL MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 75.
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- **M** marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- **B** marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.
- 3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol $\sqrt{}$ will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- dep dependent
- indep independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper
- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- 6. If a candidate makes more than one attempt at any question:
 - If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
 - If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.
- 7. Ignore wrong working or incorrect statements following a correct answer.

Question Number	Scheme	Marks				
1.(a)	$S_{tt} = 1828 - \frac{(136)^2}{12} = 286.6$ o.e. awrt <u>287</u>	M1A1				
(b)	$r = \frac{S_{ht}}{\sqrt{S_{tt}S_{hh}}} = \frac{-236}{\sqrt{"286.6" \times 297}} \text{ or } \frac{-236}{\sqrt{85140}}; = -0.8088 \text{ awrt } \underline{-0.809}$	(2) M1A1 (2)				
(c)	Temperature decreases as height increases.					
(d)	$b = \frac{S_{ht}}{S_{hh}} = \frac{-236}{297} (= -0.7946)$ $a = \overline{t} - b\overline{h} = 11.3 + 0.7946 \times 9.33 = 18.7497$					
	$a = t - bh = 11.3 + 0.7946 \times 9.33 = 18.7497$ $t = 18.7 - 0.795h$	M1 A1				
(e)	$t = 18.7 - 0.795 \times 5 = 14.7$	(3) M1 A1 (2)				
(f)	Unreliable as the data is from France not South Africa	B1 (1)				
	Notes	Total 11				
_	Notes Correct numerical answers in (a), (b), (d) or (e) score all the marks for that part.					
(a)	M1 Correct expression for S_{tt}	Pur				
	A1 awrt 287 allow exact fractions e.g. $\frac{860}{3}$ or $286\frac{2}{3}$					
(b)	M1 for attempt at correct formula, values must be substituted. Allow $\frac{-236}{\sqrt{287 \times 297}}$					
	A1 awrt -0.809 (allow -0.808 from a correct expression with 287 used)					
(c)	B1ft for a comment in context. Must see "height" (or h) and "temperature" (or t) n					
NB	Allow "as the temperature increases the height above sea level decreases" (o. If $ r > 1$ score B0 in (c) Saying "sea level increases" (o.e.) is B0	.e.)				
(d)	M1 Correct expression for b . M1 Allow 11.3"their $b \times 9.33$ " [$a = \frac{16706}{891}$ scores M1 but A0] A1 $t = (18.75 \text{ or awrt } 18.7) - (\text{awrt } 0.795)h$ [No fractions and no x, y]					
(e)	M1 substitute $h = 5$ or 500 into <u>their</u> regression line answer in range [14.7, 14.8] (condone coming from y , x equation)					
(f)	B1 unreliable with a reason. [Use of 500 in (e) <u>and</u> stating "out of range" is B0] Must mention France or (S) Africa and at least imply the other					

Question Number	Scheme	Marks
2.(a)	$Q_2 = 54$	B1
	$Q_1 = 45$ $Q_3 = 59$	B1 B1
(b)	Upper limit = $59 + 1.5 \times 14 = 80$	(3) M1
(0)	Lower limit = $45-1.5 \times 14 = 24$	A1
	Outlier 84	A1ft
		(3)
	Males	
		B1
		B1
(c)	Females	
		B1
	20 30 40 50 60 70 80 90	
	Weight (kg)	
(1)		(3)
(d)	Any two from: The females are heavier than the males (on average).	B1
	The males have lower median than females.	B1
	The males have a smaller IQR than the females. The females have a greater range than males.	
	[Comments just about skewness are B0]	(2)
(a)	Notes $1^{\text{st}} \text{ B1 for } Q_2 = 54$	Total 11
	$2^{\text{nd}} \text{ B1 for } Q_1 = 45$	
	$3^{\text{rd}} \text{ B1 for } \widetilde{Q}_3 = 59$	
(b)	3^{rd} B1 for $Q_3 = 59$ M1 correct expression for either limit ft their values in (a)	
(b)	3^{rd} B1 for $Q_3 = 59$ M1 correct expression for either limit ft their values in (a) 1^{st} A1 80 and 24	
(b)	3^{rd} B1 for $Q_3 = 59$ M1 correct expression for either limit ft their values in (a)	
(b) (c)	3^{rd} B1 for $Q_3 = 59$ M1 correct expression for either limit ft their values in (a) 1^{st} A1 80 and 24 2^{nd} A1ft all outliers identified using their limits (must be stated in (b)) 1^{st} B1 Box with whiskers drawn and Q_2 and quartiles ft from(a), condone 2 whisk	ers on RHS
(b) (c)	3^{rd} B1 for $Q_3 = 59$ M1 correct expression for either limit ft their values in (a) 1^{st} A1 80 and 24 2^{nd} A1ft all outliers identified using their limits (must be stated in (b)) 1^{st} B1 Box with whiskers drawn and Q_2 and quartiles ft from(a), condone 2 whisk 2^{nd} B1 For only one lower whisker to 32 and no outliers	ers on RHS
(b) (c)	3^{rd} B1 for $Q_3 = 59$ M1 correct expression for either limit ft their values in (a) 1^{st} A1 80 and 24 2^{nd} A1ft all outliers identified using their limits (must be stated in (b)) 1^{st} B1 Box with whiskers drawn and Q_2 and quartiles ft from(a), condone 2 whisk	ers on RHS
(b) (c)	3^{rd} B1 for $Q_3 = 59$ M1 correct expression for either limit ft their values in (a) 1^{st} A1 80 and 24 2^{nd} A1ft all outliers identified using their limits (must be stated in (b)) 1^{st} B1 Box with whiskers drawn and Q_2 and quartiles ft from(a), condone 2 whisk 2^{nd} B1 For only one lower whisker to 32 and no outliers 3^{rd} B1 For upper whisker to 80 or 77 and an outlier at 84	

Question Number	Scheme	Marl	KS		
3(a)	Width = 3 cm	B1			
	1cm^2 represents 2 cars or 0.5cm^2 represents 1 car or their $h \times w = 6$ or area = 6	M1			
	Height = $\frac{6}{3}$ = 2 cm	A1			
	3		(3)		
(b)	Median = $(2) + \frac{30 - 28}{15} \times 2$ or $(2) + \frac{30.5 - 28}{15} \times 2$ (o.e.)	M1	` '		
	= 2.266 (or 2.33)	A1			
		7 1 1	(2)		
(c)	$\begin{bmatrix} \bar{t} = \end{bmatrix} \frac{182}{60} = 3.03$ $[\sigma_t =] \sqrt{\frac{883}{60} - \bar{t}^2} = \sqrt{5.5155}$	B1			
	[002]				
	$\left[\sigma_{t}=\right]\sqrt{\frac{883}{60}-\dot{t}^{2}}=\sqrt{5.5155}$	M1			
	= 2.3485 (s = 2.3683)	A1			
(d)	Mean > median	B1ft	(3)		
(u)	Positive skew	dB1			
(e)	[75 mins - 1 25 hours]		(2)		
(6)	[75 mins = 1.25 hours] $(7.75 i) 5 + 12 + 15 + \frac{3}{2} + 18 45.5 (4.75) 10^{-1} 10^{-2} 3^{-1} 10^{-1} 10^{-2} 3^{-1} 10^{-1} 10^{-2} 3^{-1} 10^{-2} $	3.61			
	$(>75 \text{ mins}) = 5 + 12 + 15 + \frac{3}{4} \times 18 = 45.5 \text{ or } (<75) = 10 + \frac{1}{4} \times 18 \text{ or } 28 - \frac{3}{4} \times 18$	M1			
	$P(T > 1.25) = \frac{45.5}{60}$ or e.g. $1 - \frac{14.5}{60}$	M1			
	60 60 0.7583 awrt 0.758	A1			
			(3)		
(a)	Notes B1 3 only	Tota	1 13		
(4)	M1 may be implied by correct height				
	A1 correct height of 2(cm) and correct width of 3 (cm)				
(b)					
	Ignore incorrect end point and watch out for "working down" A1 awrt 2.27 allow exact fraction e.g. $\frac{34}{15}$ (allow awrt 2.33 [or $\frac{7}{3}$] if $n + 1$ used)				
(c)					
	M1 A correct expression A1 awrt 2.35 or 2.37				
(I)	18t D1	2)			
(d)	1 st B1 ft their mean and median (Allow "larger frequencies at the start of table") Do not allow comparison of quartiles unless correct values are seen (2sf comparisons)				
	$Q_1 = 1.28$ or $\frac{23}{18} [(n+1) = 1.29]$ $Q_3 = 4.33$ or $\frac{13}{3} [(n+1) = 4.42]$ e.g. $2.1 > 0.99$ or $2.1 > 1.0$				
	2 nd dB1 dependent on previous B1 being awarded.				
(e)	1 st M1 for a correct expression for no. of cars longer than 75 mins or shorter than	75 mins			
	$2^{\text{nd}} \text{ M1} \frac{k}{60} \text{ where } 44 \leqslant k < 46$				
NB	A1 awrt 0.758 allow $\frac{91}{120}$ (o.e.) Any use of the normal distribution is M0M0A0				
ND	Any use of the normal distribution is iviolated				

	www.igexame.com		
Question Number	Scheme	Marks	
4.(a)	0.13	B1	
(b)	$P(A) \times P(C) = P(A \cap C)$	(1)	
` ,	$0.2 \times (0.08 + p) = 0.05 \underline{\mathbf{or}} P(C) = \frac{0.05}{0.10 + 0.05 + 0.01 + 0.04} \underline{\mathbf{or}} \frac{0.05}{0.2} \underline{\mathbf{or}} 0.25$	M1	
	p = 0.17	A1	
	P(no faults) = $1 - (0.1 + 0.05 + 0.01 + 0.04 + 0.08 + 0.03 + "0.17")$	M1	
	$\frac{\text{or}}{q} = \frac{1 - [\text{"P(C)"} + 0.10 + 0.05 + 0.08]}{q}$	A1	
Ans only	They can get q without finding p so a correct answer to q scores $4/4$		
	0.05	(4)	
(c)	P(Fault B but not fault C Has fault A) = $\frac{0.05}{0.2}$	M1	
	0.2 = 0.25	A 1	
	= 0.23	A1 (2)	
(d)	P(exactly 2 defects) = 0.12 or $\frac{3}{25}$	B1	
(4)	P(both have 2 defects) = 0.12^2	M1	
	$= \underbrace{0.0144}_{00} \underline{\mathbf{or}} \frac{9}{625}$	A1	
		(3)	
		Total 10	
	Notes		
(a)	B1 0.13 only		
(b)	1 st M1 using $P(A) \times P(C) = P(A \cap C)$ allow one addition error in $P(A)$ e.g. $P(A) = 0$	0.11	
	1 st A1 0.17 only	0.15	
	2^{nd} M1 $1 - (0.10 + 0.05 + 0.01 + 0.04 + 0.08 + 0.03 + "their 0.17")$ allow letter p for $p = 0.001 + 0.05 + 0.001 + 0.001$		
	or $1 - ["P(C)" + 0.10 + 0.05 + 0.08]$ but need a value for $P(C)$ [M0A0M1A0] 2^{nd} A1 0.52 only (correct answer of 0.52 with no incorrect working is 4/4)	possible	
(c)	M1 for attempt at $P(B \cap C' A)$ allow for $\frac{0.06}{0.2}$ or $\frac{0.05}{0.2}$ allow ft of their $P(A)$ use	ed in part(b)	
(6)		ou in puri(o)	
	A1 0.25		
(d)	B1 sight of 0.12 or $(0.05 + 0.03 + 0.04)$ only NB e.g. 0.12×2 is B1M0A0		
(u)	M1 ("0.12") ² where $0.1 < "0.12" < 0.2$		
	May see attempt at $(0.05 + 0.03 + 0.04)^2$ multiplied out but must have ≥ 4 corre	ect products	
	A1 0.0144 (o.e.) (correct answer only scores 3/3)	•	

	www.igexams.com						
Question Number		Sc	heme			Marks	5
5. (a)	$k = \frac{2}{35}$					B1	
	$\begin{array}{ c c c c c }\hline x & 1 \\ \hline P(X=x) & \frac{3}{25} \\ \hline \end{array}$	$ \begin{array}{c c} 2 \\ \hline \frac{5}{35} \text{ or } \frac{1}{7} \\ 0.14285 \end{array} $	$\frac{3}{\frac{7}{35}}$ or $\frac{1}{5}$	4 9 35 0.25714	5 11 35 0.31428	M1 A1	(3)
(b)	$ \begin{array}{c cccc} \hline P(X=x) & 0.08571\\ \hline \frac{5}{35} + \frac{7}{35} = \frac{12}{35} \end{array} $					M1 A1	
(c)	$E(X) = 1 \times \frac{3}{35} + 2 \times \frac{5}{35}$					M1	(2)
	$E(X^{2}) = 1 \times \frac{3}{35} + 4 \times \frac{5}{35} + 9 \times \frac{7}{35} + 16 \times \frac{9}{35} + 25 \times \frac{11}{35} = \left[\frac{101}{7}\right]$						
	Var $(X) = \frac{101}{7} - \left(\frac{25}{7}\right)^2$; $= \frac{82}{49}$ (allow 1.67~1.674)						1
	$Var(12-7X) = 7^2 \times \frac{82}{49}$; = 82						1
(d)	$4X \le Y \text{ when } X = 1, 4 \text{ or } 5,$ so probability = " $\frac{3}{35}$ "+" $\frac{9}{35}$ "+" $\frac{11}{35}$ "				M1;A1	(6) ft	
	$=\frac{23}{35}$				A1 ((3)	
		N	lotes			Total 1	4
	B1 may be implied by a correct probability M1 need x values each with a prob and at least one correct prob.(Allow probs in terms of k) A1 all values correct – accept decimals 3sf or better						
` /	M1 "their $P(X=2)$ " + "their $P(X=3)$ " A1ft ft providing <1 Allow answer in [0.3428, 0.343] or $6k$						
	1st M1 using $\sum xP(X=x)$ or $\frac{25}{7}$ or $\frac{125}{2}k$ or $\sum yP(Y=y)$ or -13 ($\geqslant 4$ correct terms or ft) 2nd M1 using $\sum x^2P(X=x)$ or $\frac{101}{7}$ or $\frac{505}{2}k$ or $\sum y^2P(Y=y)$ ($\geqslant 4$ correct terms or ft) 3rd M1 using $Var(X) = E(X^2) - [E(X)]^2$ or $Var(Y) = E(Y^2) - [E(Y)]^2$						

or for $E(Y^2) = 251$

using $Var(X) = E(X^2) - [E(X)]^2$ 1st A1 for a correct answer (allow 3sf) 4th M1 49×Var(X)

or correct distribution for *Y* (ft probs from *X*)

- 2nd A1 for 82 only
- (d) M1 for X = 1, 4 or 5 [or Y = 5, -16, -23] and at least one correct ft probability. their " $\frac{3}{35}$ "; + their " $\frac{9}{35}$ "+ their " $\frac{11}{35}$ " providing sum is <1 (allow in terms of k) A1ft

A1 cao (allow $\frac{23}{2}k$)

Dist of Y

`	2 ,				
y^2	25	4	81	256	529
у	5	-2	-9	- 16	-23
P(X=x)	$\frac{3}{35}$	$\frac{5}{35}$ or $\frac{1}{7}$	$\frac{7}{35}$ or $\frac{1}{5}$	$\frac{9}{35}$	11 35

 $\mathbf{F}(x) = \mathbf{f}(x)$ Get $k = \frac{2}{85}$ Can award: (a) 0/3 (b) M1A1ft (c) M4A0 (d) M1A1ftA0

All in k | Can award: (a) B0M1A0 (b) 2/2 in (c) M4A0 (d) M1A1ftA1

Reverse Y May see Y = 12 - 7(6 - X) used: in (c) can score M3 A0 probably zero in (d)

Question Number	Scheme	Marks	
6. (a)	$P(L > 4.3) = P\left(Z > \frac{4.3 - 4.1}{0.125}\right)$	M1	
(b)	$= P(Z > 1.6) \underline{\text{or}} 1 - P(Z < 1.6) \underline{\text{or}} 1 - 0.9452$ $= 0.0548$	M1 A1 (3)	
	= 0.8904 = 0.8904	B1cso (1)	
(c)	Value of bolts = "445"×9+"55"×1 $E(\text{profit per bolt})=0.89\times9+0.11\times1-5$	Mloe Mloe	
		M1oe A1 (4)	
(d)	$\frac{4.198 - \mu}{\sigma} = 1.96$ or $4.198 - \mu = 1.96\sigma$ oe	M1A1	
	$\frac{4.065 - \mu}{\sigma} = -0.7$ or $4.065 - \mu = -0.7\sigma$ oe	A1	
(e)	$0.133 = 2.66\sigma$ $\sigma = 0.05$ (or awrt 0.0500) $\mu = 4.1$ (or awrt 4.10) The mean the same but the st. dev. decreased or P(3.9 < L < 4.3) increased. So the profit will increase	M1 A1 A1 (6) B1ft dB1ft	
	NB Use of + 0.7 in (c) $\rightarrow \mu = 3.99, \sigma = 0.106$, prob $\approx 0.80 \rightarrow$ profit down	(2) Total 16	
	Notes 1 st M1 standardising. Allow use of 0.125 ²		
	$2^{\text{nd}} \text{ M1} 1-p \qquad p > 0.8$ A1 awrt 0.0548		
(b)	B1cso sight of 0.8904 or better (calc: 0.8904014212) or a correct subtraction	1	
	$1^{\text{st}} \text{M1} (1 - \text{"0.89"}) \times 500 \text{or} 0.89 \times 9 + 0.11 \times 1$ $2^{\text{nd}} \text{M1} \text{"445"} \times 9 + \text{"55"} \text{or} 0.89 \times 9 + 0.11 \times 1 - 5$ $3^{\text{rd}} \text{M1} \text{method for the profit} \text{or} \text{their} \text{"3.12"} \times 500$ A1 for awrt £15.60 or 1560 pence(p) [need units] SC think 55 scrap $1^{\text{st}} \text{M1} \text{for sight of 55}$ B1 for answer of awrt Score as: M1M0M0A1	-	
	1 st M1 Forming either equation – must have z value but allow $\pm z$ where $ z > 0.6$ 1 st A1 correct equation $4.198 - \mu = 1.96\sigma$ - any form (or allow $z = \text{awrt } 1.96\sigma$) and A1 correct equation $4.065 - \mu = -0.7\sigma$ - any form (or allow $z = \text{awrt } -0.000$) and M1 eliminating μ or σ (method seen leading to equation in 1 variable)	50) .700)	
(e)	$3^{\rm rd}$ A1 0.05 (or awrt 0.0500) $4^{\rm th}$ A1 4.1 (or awrt 4.10 dep on NB Candidate who assumes $\mu=4.1$ can get M1 A0 A0M1A0A1 $1^{\rm st}$ B1ft if $\mu=4.1$ then ft σ ; if $\mu<3.9$ (allow any σ) otherwise need to see P(3. If they have $\mu=4.1$ in part (d) then don't need to state "mean the same" in p $2^{\rm nd}$ dB1ft therefore profit will increase (o.e.)	9 < L < 4.3) calc	

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London, WC2R 0RL, United Kin	ngdom	