Unit 2: Waves and Electricity - Mark scheme

Question number	Answer	Mark
1	C	C
2	B	1
3	D	1
4	A	1
5	C	1
6	C	1
7	B	1
$\mathbf{8}$	10	1

\begin{tabular}{|c|c|c|c|}
\hline Question number \& \multicolumn{2}{|l|}{Answer} \& Mark \\
\hline 11(a) \& Wavelength is the distance between two adjacent points that are in phase \& (1) \& 1 \\
\hline 11(b) \& \begin{tabular}{l}
- Use of \(v=s / t\) \\
- Calculate distance to aircraft when the return time is \(0.75 \mu \mathrm{~s}(225 \mathrm{~m})\) Or Calculate time for pulse to return when distance to aircraft is 60 km \(\left(2.3 \times 10^{-4} \mathrm{~s}\right)\) \\
Or Calculate total distance travelled by pulse when the return time is 1.5 \(\mu \mathrm{s}(225 \mathrm{~m})\) and compare to 60 km \\
Or Calculate time for pulse to return when distance travelled is 60 km \(\left(2.0 \times 10^{-4} \mathrm{~s}\right)\) and compare to \(0.75 \mu \mathrm{~s}\) \\
- Appropriate comment on suitability, e.g. detectable distance less than distance required, so suitable \\
Or pulse shorter than time required to travel the distance, so suitable (Third mark is awarded only if second mark is awarded) \\
Example of calculation
\[
\begin{aligned}
\& \mathrm{s}=3 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1} \times 1.5 \times 10^{-6} \mathrm{~s} \\
\& \mathrm{~s}=450 \mathrm{~m}
\end{aligned}
\] \\
One way \(=225 \mathrm{~m}\) \\
Or \(\mathrm{t}=60000 \mathrm{~m} / 3 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1} \mathrm{t}=2.0 \times 10^{-4} \mathrm{~s}\)
\end{tabular} \& (1)

(1)

(1) \& 3 \\
\hline
\end{tabular}

$\left.\begin{array}{|l|lr|c|}\hline \begin{array}{l}\text { Question } \\ \text { number }\end{array} & \text { Answer } & \text { Mark } \\ \hline \mathbf{1 1 (c)} & \bullet \quad \text { Use of } I=\frac{P}{A} & (1) & \mathbf{2} \\ & \bullet \quad P=2.1 \mathrm{~kW} & (1) & \\ & \underline{\text { Example of calculation }} \\ & P=0.16 \mathrm{kWm}^{-2} \times 13.2 \mathrm{~m}^{2}\end{array}\right)$

Question number	Answer	Mark
12	This question assesses a student's ability to show a coherent and logically structured answer with linkages and fully-sustained reasoning. Marks are awarded for indicative content and for how the answer is structured and shows lines of reasoning. The following table shows how the marks should be awarded for indicative content. The following table shows how the marks should be awarded for structure and lines of reasoning. Total marks awarded is the sum of marks for indicative content and the marks for structure and lines of reasoning Indicative content - (the atoms) of gases in the atmosphere contain electrons - electrons absorb photons from the sunlight - electron moves to higher energy level - the energy levels (of electrons) are discrete Or only certain energy levels are possible - The energy of the photon must be equal to the difference in energy levels Or hf = E2 - E1 - There are only a limited number of energy differences and only a corresponding number of black lines	6
	Total for Question 12	6

Question number	Answer		Mark
13(a)	- A wave on which there are points that always have maximum displacement and others that always have zero displacement Or A wave on which there are points that are nodes and antinodes	(1)	1
13(b)(i)	- Quarter of a wavelength in length of air/pipe - Use of $v=f \lambda$ - Comparison with $y=m x$ Example of calculation $\begin{aligned} & v=f \times 4 l \\ & f=\frac{v}{4} \times \frac{1}{l} \end{aligned}$	$\begin{aligned} & \text { (1) } \\ & \text { (1) } \\ & \text { (1) } \end{aligned}$	3
13(b)(ii)	- Determines gradient of graph - $\quad v=330\left(\mathrm{~m} \mathrm{~s}^{-1}\right)$ Example of calculation $\begin{aligned} & \text { Gradient }=\frac{500 s^{-1}}{6 m^{-1}}=83.3 \mathrm{~m} \mathrm{~s}^{-1} \\ & v=4 \times 83.3=330 \mathrm{~m} \mathrm{~s}^{-1} \end{aligned}$	$\begin{aligned} & \text { (1) } \\ & \text { (1) } \end{aligned}$	2
13(b)(iii)	- Use of $v=f \lambda$ to determine λ - Second standing wave: length $=3 / 4$ wavelength - Corresponds to $1 / l=1.7\left(\mathrm{~m}^{-1}\right)$ as given on the graph so yes produced audible sound Example of calculation $330=415 \lambda$ $\lambda=0.795 \mathrm{~m}$ $l=\frac{3}{4} \times 0.795$ $l=0.6 \mathrm{~m}$ $\frac{1}{l}=1.7 \mathrm{~m}^{-1}$	(1) (1) (1)	3
	Total for Question 13		9

Question number	Answer		Mark
14(a)	- Light (photons) transfers energy to electrons - Greater number of conduction electrons so less resistance	(1) (1)	2
14(b)(i)	- Amount of energy supplied (by the cell) per unit charge	(1)	1
14(b)(ii)	- Use of $V=I R$ to calculate current - Subtraction of p.d. from e.m.f. - $r=6500 \Omega$ Example of calculation $\begin{aligned} I & =\frac{0.47}{6100}=7.7 \times 10^{-5} \mathrm{~A} \\ r & =\frac{0.97-0.47}{7.7 \times 10^{-5}}=6500 \Omega \end{aligned}$	(1) (1) (1)	3
14(b)(iii)	- Use of $P=V I$ Or $P=V^{2} / R$ - $\quad P=3.6 \times 10^{-5} \mathrm{~W}$ Example of calculation $P=7.7 \times 10^{-5} \mathrm{~A} \times 0.47 \mathrm{~V}=3.6 \times 10^{-5} \mathrm{~W}$	(1) (1)	2
	Total for Question 14		8

Question number	Answer	Mark		
$\mathbf{1 5 (a) (i)}$	\bullet A minimum is produced Waves arrive 180° out of phase	$\mathbf{2}$		
$\mathbf{1 5 (a) (i i)}$	\bullet	If this path difference $=$ half a wavelength then a maximum would occur, as the overall path difference $=$ one wavelength	(1)	$\mathbf{2}$
$\mathbf{1 5 (b)}$	So the light from the planet produces a maximum and the light from the star produces a minimum	(1)	$\left(\begin{array}{l}\text { IR radiation has a longer wavelength than visible light } \\ \text { In a laboratory the setup can be made to have a path difference that } \\ \text { matches half the wavelength of IR used } \\ \text { Or the actual path difference with visible light would be extremely small }\end{array}\right.$	(1)

Question number	Answer		Mark
16(a)	- Uses graph to find $\rho=240 \mathrm{Wm}$ - Use of $R=\frac{\rho l}{A}$ - $\quad R=21 \mathrm{k} \Omega$ Example of calculation: $R=\frac{240 \mathrm{Wm} \times 5.0 \times 10^{-2} \mathrm{~m}}{5.8 \times 10^{-4} \mathrm{~m}^{2}}=20.7 \mathrm{k} \Omega$	(1) (1) (1)	3
16(b)(i)	- Use of $I=V / R$ - Output p.d. $=0.70 \mathrm{~V}$ Example of calculation: $V=\frac{21}{21+129} \times 5=0.70 \mathrm{~V}$		2
16(b)(ii)	Either - As soil dries resistivity of soil increases - As soil dries $\mathrm{R}_{\text {probe }}$ increases (above 21 k) - So as soil dries the p.d. becomes greater than 0.7 V - Incorrect information as this system will switch off water as soil gets drier Or - As soil gets wetter resistivity decreases - As soil has moisture more than $0.14 \mathrm{R}_{\text {probe }}$ decreases (below 21 k) - As it gets wetter p.d. decreases below 0.7 V - Incorrect information as this system will switch on water as soil gets wetter	(1) (1)	4
16(c)	- Negative coefficient: resistance decreases as temperature increases - Resistance decreases means output p.d. decreases - So sensor could switch on coolers Or open windows Or turn off heaters when temperature above a certain value	(1) (1) (1)	3
	Total for Question 16		12

Question number	Answer		Mark
17(a)	- Photons of ultraviolet light - Results in electrons being emitted from surface of zinc - So electroscope loses charge and leaf falls	$\begin{aligned} & \hline \text { (1) } \\ & \text { (1) } \\ & \text { (1) } \end{aligned}$	3
17(b)	- Use of $\phi=h f$ - Use of $c=f \lambda$ - $\lambda=2.9 \times 10^{-7} \mathrm{~m}$ Example of calculation $\begin{aligned} & 4.3 \times 1.6 \times 10^{-19} \mathrm{~J}=6.63 \times 10^{-34} \mathrm{~J} \mathrm{~s} \times f \\ & f=1.04 \times 10^{15} \mathrm{~Hz} \\ & 3.00 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}=1.04 \times 10^{15} \mathrm{~Hz} \times \lambda \\ & \lambda=2.9 \times 10^{-7} \mathrm{~m} \end{aligned}$	$\begin{aligned} & \hline(1) \\ & \text { (1) } \\ & (1) \end{aligned}$	3
17(c)	- Wave energy depends on intensity - Energy is spread over the whole wave - The wave model suggests that if exposed for long enough electrons would eventually be released but this does not happen.	(1) (1) (1)	3
	Total for Question 17		9

Question number	Answer	Mark	
$\mathbf{1 8 (c) (i i i) ~}$	\bullet	If refractive index greater then critical angle greater	(1)
	\bullet	So less of beam reflected at second surface	$\mathbf{3}$
	(MP3 dependent on MP2)	(1)	
	Total for Question 18		

