

Mark Scheme (Results)

January 2015

Pearson Edexcel International Advanced Level in Physics (WPH05) Paper 01

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <u>www.edexcel.com</u> or <u>www.btec.co.uk</u>. Alternatively, you can get in touch with us using the details on our contact us page at <u>www.edexcel.com/contactus</u>.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: <u>www.pearson.com/uk</u>

January 2015 Publications Code IA040652 All the material in this publication is copyright © Pearson Education Ltd 2015

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Quality of Written Communication

Questions which involve the writing of continuous prose will expect candidates to:

- write legibly, with accurate use of spelling, grammar and punctuation in order to make the meaning clear
- select and use a form and style of writing appropriate to purpose and to complex subject matter
- Organise information clearly and coherently, using specialist vocabulary when appropriate.

Full marks will be awarded if the candidate has demonstrated the above abilities. Questions where QWC is likely to be particularly important are indicated (QWC) in the mark scheme, but this does not preclude others.

1

Mark scheme notes

Underlying principle

The mark scheme will clearly indicate the concept that is being rewarded, backed up by examples. It is not a set of model answers.

For example:

(iii) Horizontal force of hinge on table top

66.3 (N) or 66 (N) **and** correct indication of direction [no ue] [Some examples of direction: acting from right (to left) / to the left / West / opposite direction to horizontal. May show direction by arrow. Do not accept a minus sign in front of number as direction.]

This has a clear statement of the principle for awarding the mark, supported by some examples illustrating acceptable boundaries.

1. Mark scheme format

- 1.1 You will not see 'wtte' (words to that effect). Alternative correct wording should be credited in every answer unless the ms has specified specific words that must be present. Such words will be indicated by underlining e.g. 'resonance'
- 1.2 Bold lower case will be used for emphasis.
- 1.3 Round brackets () indicate words that are not essential e.g. "(hence) distance is increased".
- 1.4 Square brackets [] indicate advice to examiners or examples e.g. [Do not accept gravity] [ecf].

2. Unit error penalties

- 2.1 A separate mark is not usually given for a unit but a missing or incorrect unit will normally mean that the final calculation mark will not be awarded.
- 2.2 Incorrect use of case e.g. 'Watt' or 'w' will not be penalised.
- 2.3 There will be no unit penalty applied in 'show that' questions or in any other question where the units to be used have been given, for example in a spreadsheet.
- 2.4 The same missing or incorrect unit will not be penalised more than once within one question (one clip in epen).
- 2.5 Occasionally, it may be decided not to penalise a missing or incorrect unit e.g. the candidate may be calculating the gradient of a graph, resulting in a unit that is not one that should be known and is complex.
- 2.6 The mark scheme will indicate if no unit error penalty is to be applied by means of [no ue].

3. Significant figures

- 3.1 Use of an inappropriate number of significant figures in the theory papers will normally only be penalised in 'show that' questions where use of too few significant figures has resulted in the candidate not demonstrating the validity of the given answer.
- 3.2 The use of $g = 10 \text{ m s}^{-2}$ or 10 N kg⁻¹ instead of 9.81 m s⁻² or 9.81 N kg⁻¹ will be penalised by one mark (but not more than once per clip). Accept 9.8 m s⁻² or 9.8 N kg⁻¹

✓

✓

3

4. Calculations

- 4.1 Bald (i.e. no working shown) correct answers score full marks unless in a 'show that' question.
- 4.2 If a 'show that' question is worth 2 marks then both marks will be available for a reverse working; if it is worth 3 marks then only 2 will be available.
- 4.3 **use** of the formula means that the candidate demonstrates substitution of physically correct values, although there may be conversion errors e.g. power of 10 error.
- 4.4 **recall** of the correct formula will be awarded when the formula is seen or implied by substitution.
- 4.5 The mark scheme will show a correctly worked answer for illustration only.
- 4.6 Example of mark scheme for a calculation:

'Show that' calculation of weight

Use of L \times W \times H

Substitution into density equation with a volume and density

Correct answer [49.4 (N)] to at least 3 sig fig. [No ue] [If 5040 g rounded to 5000 g or 5 kg, do not give 3rd mark; if conversion to kg is omitted and then answer fudged, do not give 3rd mark] [Bald answer scores 0, reverse calculation 2/3]

[Baid answer scores U, reverse calculation .

Example of answer:

 $80 \text{ cm} \times 50 \text{ cm} \times 1.8 \text{ cm} = 7200 \text{ cm}^3$

 $7200 \text{ cm}^3 \times 0.70 \text{ g cm}^{-3} = 5040 \text{ g}$

 5040×10^{-3} kg × 9.81 N/kg

= 49.4 N

5. Quality of Written Communication

- 5.1 Indicated by QoWC in mark scheme. QWC Work must be clear and organised in a logical manner using technical wording where appropriate.
- 5.2 Usually it is part of a max mark, the final mark not being awarded unless the QoWC condition has been satisfied.

6. Graphs

- 6.1 A mark given for axes requires both axes to be labelled with quantities and units, and drawn the correct way round.
- 6.2 Sometimes a separate mark will be given for units or for each axis if the units are complex. This will be indicated on the mark scheme.
- 6.3 A mark given for choosing a scale requires that the chosen scale allows all points to be plotted, spreads plotted points over more than half of each axis and is not an awkward scale e.g. multiples of 3, 7 etc.
- 6.4 Points should be plotted to within 1 mm.
 - Check the two points furthest from the best line. If both OK award mark.
 - If either is 2 mm out do not award mark.
 - If both are 1 mm out do not award mark.
 - If either is 1 mm out then check another two and award mark if both of these OK, otherwise no mark.

For a line mark there must be a thin continuous line which is the best-fit line for the candidate's results.

Question Number	Answer	Mark
Number		
1	С	1
2	В	1
3	D	1
4	D	1
5	В	1
6	A	1
7	С	1
8	С	1
9	В	1
10	А	1

Question Number	Answer	Mark
11	Use of $\frac{\Delta\lambda}{\lambda} = \frac{v}{c}$ (1)	
	Use of $\omega = \frac{v}{r}$ (1)	
	$\omega = 3.0 \times 10^{-6} \text{ rad s}^{-1}$ (1)	3
	Example of calculation	
	$v = c \times \frac{\Delta \lambda}{\lambda} = 3 \times 10^8 \text{ m s}^{-1} \times \frac{3.4 \times 10^{-3}}{490} = 2.08 \times 10^3 \text{ m s}^{-1}$	
	$\omega = \frac{v}{r} = \frac{2.08 \times 10^3 \mathrm{m s^{-1}}}{0.7 \times 10^9 \mathrm{m}} = 2.97 \times 10^{-6} \mathrm{rad s^{-1}}$	
	Total for Question 11	3

Question Number	Answer		Mark
12(a)	Use of $pV = NkT$	(1)	
			•
	$N = 2.3 \times 10^{26}$	(1)	2
	Example of calculation:		
	T = (18 + 273) = 291 K		
	$N = \frac{pV}{kT} = \frac{0.11 \times 10^6 \text{ Pa} \times 8.5 \text{ m}^3}{1.38 \times 10^{-23} \text{ J K}^{-1} \times 291 \text{ K}} = 2.33 \times 10^{26}$		
	$N = \frac{1}{kT} = \frac{1}{1.38 \times 10^{-23} \mathrm{J K^{-1}} \times 291 \mathrm{K}} = 2.33 \times 10^{-23} \mathrm{J K^{-1}} \times 10^{-2} \mathrm{J K^{-1}} \times 10^$		
*12(b)	(QWC – Work must be clear and organised in a logical manner using		
	technical wording where appropriate)		
	Mean kinetic energy of molecules (in balloon) increases	(1)	
	Collision rate of molecules with balloon increases		
	Or molecules collide with balloon more frequently	(1)	
	Greater change of momentum per collision (so greater force)		
	Or rate of change of momentum increases (so greater force)	(1)	3
	Total for Question 12		5

Question Number	Answer		Mark
13(a)	(kinetic) energy transferred (from ball to bat) so temperature increases	(1)	1
13(b)	Use of $\lambda_{\rm max}T = 2.898 \times 10^{-3}$	(1)	
	Conversion of temperature to K	(1)	
	$\Delta\lambda_{max} = 5 \times 10^{-10} \text{ m}$	(1)	3
	Example of calculation		
	$\Delta \lambda_{\max} = \frac{2.898 \times 10^{-3} \mathrm{mK}}{(273 + 20) \mathrm{K}} - \frac{2.898 \times 10^{-3} \mathrm{mK}}{(273 + 20.015) \mathrm{K}} = 5.06 \times 10^{-10} \mathrm{m}$		
13(c)	Use of $\Delta E = mc\Delta\theta$	(1)	
	$\Delta E = 13 \text{ J}$	(1)	2
	Example of calculation:		
	$\Delta E = mc\Delta\theta = 15 \times 10^{-3} \text{ kg} \times 1700 \text{ J kg}^{-1} \text{ K}^{-1} \times 0.5 \text{ K} = 12.8 \text{ J}$		
13(d)	Smaller temperature increase (at the point of impact) Any sensible reason	(1) (1)	2
	e.g. (compared to wood) the silicone tape may		
	 be a better (thermal) conductor bays a bigher (specific) best conscitut 		
	have a higher (specific) heat capacitycushion the impact, reducing the impact force		
	Total for Question 13		8

Question	Answer		Mark
Number 14(a)	GMm GM	(1)	
_ (())	Use of $F = \frac{GMm}{r^2}$ Or $g = \frac{GM}{r^2}$ and $W = mg$		_
	F = 267 N	(1)	2
	Example of calculation		
	$F = \frac{GMm}{r^2} = \frac{6.67 \times 10^{-11} \mathrm{N} \mathrm{m}^2 \mathrm{kg}^{-2} \times 6.42 \times 10^{23} \mathrm{kg} \times 72 \mathrm{kg}}{\left(0.5 \times 6.79 \times 10^6 \mathrm{m}\right)^2} = 267 \mathrm{N}$		
14(b)(i)	See gravitational force expression equated to centripetal force expression	(1)	
	Use of $\omega = \frac{2\pi}{T}$ Or $v = \frac{2\pi r}{T}$	(1)	
	$r = 2.3 \times 10^{11} (m)$	(1)	3
	$\frac{\text{Example of calculation}}{\omega = \frac{2\pi}{T} = \frac{2\pi \text{ rad}}{5.94 \times 10^7 \text{ s}} = 1.06 \times 10^{-7} \text{ rad s}^{-1}$ $\frac{GMm}{r^2} = m\omega^2 r$ $r = \sqrt[3]{\frac{6.67 \times 10^{-11} \text{ N m}^2 \text{ kg}^{-2} \times 1.99 \times 10^{30} \text{ kg}}{(1.06 \times 10^{-7} \text{ m})^2}} = 2.28 \times 10^{11} \text{ m}$		
14(b)(ii)	10% of average radius calculated Or 0.9r and 1.1r used Use of $F = \frac{L}{4\pi d^2}$ Or $F \propto \frac{1}{d^2}$ $\frac{F_1}{F_2} = 1.5$	(1) (1) (1)	3
	Example of calculation $F = \frac{L}{4\pi r^2}$ $\therefore \frac{F_1}{F_2} = \frac{r_2^2}{r_1^2} = \frac{(2.28 \times 10^{11} \text{ m} + 0.228 \times 10^{11} \text{ m})^2}{(2.28 \times 10^{11} \text{ m} - 0.228 \times 10^{11} \text{ m})^2} = 1.49$ Total for Question 14		8

BLANK PAGE

to line correct tom line correct $A + \frac{4}{2}\alpha \rightarrow P + \frac{1}{0}X$ is a neutron tempt at calculation of mass difference to $\Delta E = c^2 \Delta m$ there is a new or conversion of kinetic energy of alpha to J = 1.6 MeV Or 2.6 × 10 ⁻¹³ J	(1) (1) (1) (1) (1) (1) (1) (1)	3
tom line correct $A + \frac{4}{2}\alpha \rightarrow P + \frac{1}{0}X$ is a neutron empt at calculation of mass difference is of $\Delta E = c^2 \Delta m$ eversion of ΔE to MeV Or conversion of kinetic energy of alpha to J = 1.6 MeV Or 2.6 × 10 ⁻¹³ J	(1) (1) (1) (1) (1)	
$A l + \frac{4}{2} \alpha \rightarrow P + \frac{1}{0} X$ s a neutron empt at calculation of mass difference to $\Delta E = c^2 \Delta m$ eversion of ΔE to MeV Or conversion of kinetic energy of alpha to J = 1.6 MeV Or 2.6 × 10 ⁻¹³ J	(1) (1) (1) (1)	
s a neutron empt at calculation of mass difference e of $\Delta E = c^2 \Delta m$ eversion of ΔE to MeV Or conversion of kinetic energy of alpha to J = 1.6 MeV Or 2.6 × 10 ⁻¹³ J	(1) (1) (1)	
The empt at calculation of mass difference $e \text{ of } \Delta E = c^2 \Delta m$ Every every set of ΔE to MeV Or conversion of kinetic energy of alpha to J $= 1.6 \text{ MeV } \mathbf{Or} \ 2.6 \times 10^{-13} \text{ J}$	(1) (1) (1)	
e of $\Delta E = c^2 \Delta m$ eversion of ΔE to MeV Or conversion of kinetic energy of alpha to J = 1.6 MeV Or 2.6 × 10 ⁻¹³ J	(1) (1)	4
wersion of Δ <i>E</i> to MeV Or conversion of kinetic energy of alpha to J = $1.6 \text{ MeV Or } 2.6 \times 10^{-13} \text{ J}$	(1)	4
= $1.6 \text{ MeV } \mathbf{Or} \ 2.6 \times 10^{-13} \text{ J}$. ,	4
= $1.6 \text{ MeV } \mathbf{Or} \ 2.6 \times 10^{-13} \text{ J}$	(1)	4
1 0 1 1 1		
imple of calculation		
a = (26.98154 + 4.001506 - 29.97831 - 1.008665)u		
am = -0.003929u		
$a = -0.003929 \mathrm{u} \times 1.66 \times 10^{-27} \mathrm{kg} = -6.52 \times 10^{-30} \mathrm{kg}$		
$C = c^2 \Delta m = (3 \times 10^8 \text{ m s}^{-1})^2 \times (-6.52 \times 10^{-30} \text{ kg}) = -5.87 \times 10^{-13} \text{ J}$		
$C = \frac{-5.87 \times 10^{-13} \text{ J}}{1.6 \times 10^{-13} \text{ J} \text{ MeV}^{-1}} = -3.67 \text{ MeV}$		
etic energy of particle $X = (5.3 \text{ MeV} - 3.7 \text{ MeV}) = 1.6 \text{ MeV}$		
ositron is the antiparticle to the electron		
a positron is an anti-electron		
a positron has the same mass as an electron but the opposite charge	(1)	
a that positron emission increases the number of neutrons in the	(1)	2
	$= \frac{-5.87 \times 10^{-13} \text{ J}}{1.6 \times 10^{-13} \text{ J} \text{ MeV}^{-1}} = -3.67 \text{ MeV}$ etic energy of particle X = (5.3 MeV-3.7 MeV) = 1.6 MeV positron is the antiparticle to the electron a positron is an anti-electron	$= \frac{-5.87 \times 10^{-13} \text{ J}}{1.6 \times 10^{-13} \text{ J} \text{ MeV}^{-1}} = -3.67 \text{ MeV}$ etic energy of particle X = (5.3 MeV-3.7 MeV) = 1.6 MeV ositron is the antiparticle to the electron a positron is an anti-electron a positron has the same mass as an electron but the opposite charge (1) a that positron emission increases the number of neutrons in the

15(c)(i)	Use of $\lambda = \frac{\ln 2}{t_{1/2}}$	(1)	
	Use of $A = -\lambda N$	(1)	
	$A = 1.0 \times 10^{14} Bq$	(1)	3
	Example of calculation		
	$\lambda = \frac{\ln 2}{t_{1/2}} = \frac{0.693}{150 \mathrm{s}} = 4.62 \times 10^{-3} \mathrm{s}^{-1}$		
	$A = -\lambda N = 4.62 \times 10^{-3} \mathrm{s}^{-1} \times 2.2 \times 10^{16} = 1.02 \times 10^{14} \mathrm{Bq}$		
15(c)(ii)	Conversion of time into s	(1)	
	Use of $A = A_0 e^{-\lambda t}$	(1)	
	$A = 1.6 \times 10^{12} Bq$	(1)	
	Or		
	6 half lives elapsed	(1)	
	use of $A/2^n$	(1)	
	$\mathbf{A} = 1.6 \times 10^{12} \mathrm{Bq}$	(1)	3
	(ecf answer from (c)(i))		
	Example of calculation		
	$15 \text{ min} = 15 \times 60 \text{ s} = 900 \text{ s}$		
	$A = A_0 e^{-\lambda t} = 1.0 \times 10^{14} \text{ Bq} \times e^{-4.62 \times 10^{-3} \text{ s}^{-1} \times 900 \text{ s}} = 1.56 \times 10^{12} \text{ Bq}$		
	Total for Question 15		15

	resultant force (of magnitude) kx acts on car, where x is displacement from equilibrium position (Appling Newton's 2 nd Law) $ma = -k x$	(1) (1)	
	from equilibrium position (Appling Newton's 2^{nd} Law) $ma = -k x$		
		(1)	
	k = k		
	Identifies $\omega^2 = \frac{k}{m}$ (from $a = -\omega^2 x$)	(1)	
	Use of $\omega = 2\pi f$ leading to $f = \frac{1}{2\pi} \sqrt{\frac{k}{m}}$	(1)	4
16(a)(ii)	$U_{co} \circ fmq = () kAx$	(1)	
	Use of mg = $(-)k\Delta x$ k = 30.3 (kN m ⁻¹)	(1)	2
	K = 50.5 (KIN III)	(-)	-
	Example of calculation		
	-		
	$k = \frac{mg}{\Delta x} = \frac{85.0 \text{kg} \times 9.81 \text{N} \text{kg}^{-1}}{27.5 \times 10^{-3} \text{m}} = 3.03 \times 10^{4} \text{Nm}^{-1}$		
16(a)(iii)	$1 \sqrt{k}$	(1)	
	Use of $f = \frac{1}{2\pi} \sqrt{\frac{k}{m}}$		
	f = 0.79 Hz		
	1 = 0.79 Hz	(1)	2
	Example of calculation		
	$f = \frac{1}{2\pi} \sqrt{\frac{k}{m}} = \frac{1}{2\pi} \times \sqrt{\frac{3.03 \times 10^4 \mathrm{Nm}^{-1}}{(1130 + 85) \mathrm{kg}}} = 0.7948 \mathrm{Hz}$		
*16(b)(i)	(QWC – Work must be clear and organised in a logical manner using		
	technical wording where appropriate)		
	Idea that damping is the transfer of energy (from the oscillating system)	(1)	
	(Damping is desirable because) it reduces <u>amplitude</u> of vibration	(1)	
	So that oscillations die away quickly		
	Or so that it prevents transfer of energy to oscillation of car body	(1)	2
		(-)	3
	Cosine variation (constant time period; frequency of 2 graphs should be approximately equal)	(1)	
	Amplitude decreasing with time (dependent upon mp1)	(1)	2
	Total for Question 16		13

BLANK PAGE

Question Number	Answer		Mar
17(a)(i)	(Extremely dense) to maintain a sufficiently high collision rate	(1)	
	(At a very high temperature) to give the nuclei/protons enough energy to overcome the (electrostatic) repulsion Or		
	(At a very high temperature) to bring the nuclei/protons close enough to		
	experience the strong (nuclear) force		2
		(1)	2
17(a)(ii)	Gravitational potential energy decreases (as cloud collapses)	(1)	
	Decrease in (gravitational) potential energy equals increase in internal energy	(1)	2
17(a)(iii)	Mass is converted to energy	(1)	
	according to $\Delta E = c^2 \Delta m$, where Δm is the mass deficit/lost	(1)	
	Although energy released per fusion is small, fusion rate is very large	(1)	3
17(b)(i)	Reverse scale	(1)	
	Logarithmic with realistic values [max $T = 50,000 \text{ K}, \min T = 2500 \text{ K}]$	(1)	2
	e.g. 20 000 10 000 2500		
17(b)(ii)	A white dwarf	(1)	
	B		
	C D main sequence [accept blue giant]	(1)	2
17(b)(iii)	10 ⁴		
	$\begin{bmatrix} \mathbf{u}_{\mathbf{g}}^{u_{\mathbf{g}}} & \mathbf{D} \\ \mathbf{J}_{\mathbf{g}}^{u_{\mathbf{g}}} & 1 \\ \mathbf{J}_{\mathbf{g}}^{u_{\mathbf{g}}} & \mathbf{I} \\ \mathbf{J}_{\mathbf{g}}^{u_{\mathbf{g}}} & \mathbf{I} \\ \mathbf{I}_{\mathbf{g}}^{u_{\mathbf{g}}} & \mathbf{I} \\ \mathbf{I}_{\mathbf{I}}^{u_{\mathbf{g}}} & \mathbf{I} \\ \mathbf{I} \\ \mathbf{I}_{\mathbf{I}}^{u_{\mathbf{g}}} & \mathbf{I} \\ \mathbf{I} \\ \mathbf{I}_{\mathbf{I}}^{u_{\mathbf{g}}} & \mathbf{I} $		
	5000 Temperature / K		
	4 correct labels 2 marks		
	3 correct labels 1 mark		
	2 correct labels 1 mark 1 correct label 0 marks		-
17(-)(*)		(2)	2
17(c)(i)	A standard candle is a star of known luminosity	(1)	1

*17(c)(ii)	(QWC – Work must be clear and organised in a logical manner using technical wording where appropriate) If Polaris were closer,	
	Its ("known") luminosity would be less than had been thought (1)	
	Idea that distances to other astronomical bodies would be less than had been thought (1)	
	So the Hubble constant would be greater than had been thought Or appropriate reference to $v = H_0 d$ (1)	
	As age = $1/H_0$, the universe would not be as old as had been thought. (1)	4
	Total for Question 17	18