# Pearson Edexcel 

Mark Scheme (Results)

Summer 2019

Pearson Edexcel International GCSE in
Chemistry (4CH1) Paper 2CR

## Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.Edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.Edexcel.com/contactus.

## Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2019
Publications Code 4CH1_2CR_msc_20190822
All the material in this publication is copyright
© Pearson Education Ltd 2019

## General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in actly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the e boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.


| Question number | Answer | Notes | Marks |
| :---: | :---: | :---: | :---: |
| 2 (a) | atomic number 5 11 <br> mass number 6  <br> number of neutrons   <br> group in the Periodic table that contains boron 3  <br> period in the Periodic table that contains boron 2  <br> electronic configuration of an atom of boron <br> 3 2,  | ACCEPT $\begin{aligned} & 1 s^{2} 2 s^{2} \\ & 2 p^{1} \end{aligned}$ | 5 |
| (b) | - Sum of masses multiplied by percentages <br> - Division by 100 to give final answer <br> M1 $(18.7 \times 10)+(81.3 \times 11)$ OR 1081.3 <br> M2 10.8 OR answer from M1 divided by 100 | ACCEPT 1080 and 1081 <br> ACCEPT 10.81 and <br> 10.813 <br> Correct answer without working scores 2 <br> 11 without working scores 0 <br> 11 with correct working scores 1 |  |


| Question number |  | Answer | Notes | Marks |
| :---: | :---: | :---: | :---: | :---: |
| 3 (a) | (i) | fractional distillation | ALLOW fractionating /fractionation | 1 |
|  | (ii) | crude oil/it is heated/vapourised | ALLOW boiled | 1 |
|  |  |  | IGNORE evaporates |  |
|  | (iii) | A description which refers to the following four points | ACCEPT reverse arguments for E | 4 |
|  |  | M1 B contains larger/longer molecules |  |  |
|  |  | M2 B has a higher boiling point | ALLOW E is more volatile |  |
|  |  |  | IGNORE melting point |  |
|  |  | M3 B has a darker colour | ALLOW arison giving specific colours e.g $B$ is orange and $E$ is pale yellow |  |
|  |  | M4 B is more viscous/ has greater viscosity | ALLOW E is more runny |  |
|  |  |  | MAX 2 marks if no reference to fractions E or $B$ in the answer? |  |
| (b) |  | An planation which links the following two points |  | 2 |
|  |  |  | ALLOW sulfur trioxide/ $/ \mathrm{SO}_{3}$ |  |
|  |  | M1 (when sulfur burns) sulfur dioxide $/ \mathrm{SO}_{2}$ is formed | IGNORE sulfur oxides |  |
|  |  |  | ALLOW a specified harmful effect of acid rain |  |
|  |  |  | ACCEPT references to causing/ acerbating respiratory problems |  |
|  |  |  | ALLOW greenhouse gas/ causes global warming/ imate change |  |
|  |  |  |  | Total 8 |


| Question number | Answer | Notes | Marks |
| :---: | :---: | :---: | :---: |
| 4 (a) | M1 fluorine - gas <br> M2 astatine - black | ACCEPT very dark grey | 2 |
| (b) | An planation linking the following two points |  | 2 |
|  | M1 bromine / $\mathrm{Br}_{2}$ is formed / displaced / produced <br> M2 as chlorine is more reactive (than bromine) | REJECT bromide for bromine <br> ACCEPT bromine/ $\mathrm{Br}_{2}$ shown as the product in an equation <br> IGNORE state of bromine <br> REJECT bromide/chloride |  |


| Question number | Answer | Notes | Marks |
| :---: | :---: | :---: | :---: |
| $4 \text { (c) }$ | M1 correct structure of potassium ion <br> M2 correct structure of bromide ion <br> M3 charges on both ions correct (with or without square brackets). | ACCEPT any combination of dots and crosses. <br> IGNORE inner shells even if incorrect | 3 |


| Question number | Answer | Notes | Marks |
| :---: | :---: | :---: | :---: |
| 4 (d) | An planation linking the following five points <br> M1 water is covalently bonded / has a simple molecular structure <br> M2 water does not contain any free (moving) charged parti es (so does not conduct electricity) <br> M3 sodium chloride has a giant ionic structure / has an ionic lattice structure /is ionically bonded <br> M4 the ions are in fixed positions / cannot move (so does not conduct electricity) <br> M5 in solution/ aqueous sodium chloride the ions are free to flow / move (so the solution does conduct electricity) | ALLOW water is a covalent ound <br> ACCEPT water does not contain any free ions/electrons or delocalised electrons <br> ALLOW sodium chloride is an ionic ound/ contains ions <br> REJECT mention of atoms/ molecules/intermolecular forces in Na for M3 only <br> M4 subsumes M3 <br> REJECT electrons being unable to move for M4 <br> REJECT reference to electrons conducting electricity in aqueous sodium chloride for M5 <br> IGNORE reference to ions carrying charge/current | 5 |
| (e) <br> (i) <br> (ii) | $2 \rightarrow 2+2 e^{(-)}$ <br> electrons are lost (by chloride ions/ ${ }^{-}$) | ALLOW 2- $-2 \mathrm{e} \rightarrow \quad 2$ <br> ACCEPT oxidation number of chlorine increases (by <br> 1) <br> / changes from - 1 to 0 <br> REJECT chlorine loses electrons <br> IGNORE references to gain of oxygen |  |


| (iii) | A hydrogen <br> B is incorrect as oxygen is not formed at the <br> cathode <br> C is incorrect as sodium is not formed when <br> graphite electrodes are used <br> Dis incorrect as water is not formed at the <br> cathode | Total 15 |
| :---: | :--- | :---: | :---: |

\begin{tabular}{|c|c|c|c|}
\hline Question number \& Answer \& Notes \& Marks \\
\hline 5 (a) (i) \& \begin{tabular}{l}
\[
\begin{aligned}
\& 2 \mathrm{CH}_{3} \mathrm{COOH}+\mathrm{K}_{2} \mathrm{CO}_{3} \rightarrow 2 \mathrm{CH}_{3} \mathrm{COOK}+\mathrm{CO}_{2} \\
\& +\mathrm{H}_{2} \mathrm{O}
\end{aligned}
\] \\
M1 \(2 \mathrm{CH}_{3} \mathrm{COOK}\)
\[
\mathbf{M} 2 \mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}
\] \\
effervescence / fizzing / bubbles
\end{tabular} \& \begin{tabular}{l}
ALLOW multiples \\
ACCEPT \(2 \mathrm{CH}_{3} \mathrm{COO}^{-\mathrm{K}^{+}}\) \\
ALLOW \(2 \mathrm{KCH}_{3} \mathrm{COO}\) \\
If M1 not awarded any numbers before \(\mathrm{CO}_{2}+\) \(\mathrm{H}_{2} \mathrm{O}\) can be ignored and M2 can be awarded. \\
For both marks to be awarded the equation must be correctly balanced \\
IGNORE carbon dioxide/gas given off/evolved/ formed /produced \\
IGNORE mention of incorrect gas
\end{tabular} \& 2

1 <br>

\hline | (b) |
| :--- |
| (i) |
| (ii) |
| (iii) | \& | (acts as a) catalyst |
| :--- |
| ethanol is flammable / might catch fire / might ignite |
| (ester has) sweet / fruity / distinctive smell | \& | ACCEPT increases the rate of the reaction/speeds up the reaction |
| :--- |
| ACCEPT ethyl ethanoate /the mixture /it is flammable /might catch fire /might ignite |
| ALLOW liquid (ester) floats on top of mixture OWTTE | \& 1

1 <br>
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|}
\hline Question number \& Answer \& Notes \& Marks \\
\hline \begin{tabular}{l}
5 (c) (i) \\
(ii)
\end{tabular} \& \begin{tabular}{l}


 \\
water
\end{tabular} \& \begin{tabular}{l}
Penalise missing bond between O and H once only \\
If incorrect number of carbon atoms in alcohol and or acid allow ECF for structure of ester formed from their alcohol and acid \\
ACCEPT \(\mathrm{H}_{2} \mathrm{O}\)
\end{tabular} \& 3

1 <br>

\hline (d) \& food flavourings / perfumes \& | ACCEPT any correct use |
| :--- |
| e.g. in cosmetics / making soaps / making detergents /solvents (for paints / varnishes) | \& Total 11 <br>

\hline
\end{tabular}





\begin{tabular}{|c|c|c|c|}
\hline Question number \& Answer \& Notes \& Marks \\
\hline 7 (a) \& reversible reaction \& \begin{tabular}{l}
IGNORE references to equilibrium \\
ALLOW the reaction goes both ways \\
ALLOW the reaction can go forwards and backwards
\end{tabular} \& 1 \\
\hline \begin{tabular}{l}
(b) \\
(i) \\
(ii)
\end{tabular} \& \begin{tabular}{l}
M1 yield increases \\
\(\mathbf{M 2}\) (equilibrium shifts to the right as the forward) reaction is endothermic \\
M1 yield decreases \\
M2 (equilibrium shifts to the left as) fewer moles/molecules (of gas) on lhs / more moles/molecules (of gas) on rhs OWTTE
\end{tabular} \& \begin{tabular}{l}
ACCEPT more hydrogen produced \\
IGNORE references to Le Chatelier e.g. an increase in temperature favours the forward reaction \\
M2 dep on M1 correct or missing \\
ACCEPT less hydrogen produced \\
ALLOW parti es \\
REJECT atoms \\
IGNORE references to Le Chatelier e.g. an increase in pressure favours the side with fewer moles \\
M2 dep on M1 correct or missing
\end{tabular} \& 2

2 <br>
\hline
\end{tabular}

| Question number | Answer | Notes | Marks |
| :---: | :---: | :---: | :---: |
| 7 (c) | - calculate the amount, in moles, of methane <br> - use the equation to calculate the amount of hydrogen <br> - multiply amount by 24 to find the volume of hydrogen <br> - final answer in standard form <br> M1 $\frac{10,000,000}{16}$ OR 625,000 <br> M2 625,000 $\times 3$ OR 1,875,000 <br> M3 1,875,000 $\times 24$ OR 45,000,000 ( $\mathrm{dm}^{3}$ ) <br> M4 $4.5 \times 10^{7}\left(\mathrm{dm}^{3}\right)$ | Mark consequentially for M2, M3 and M4. <br> 45,000,000 without working scores 3 <br> Correct answer in standard form without working scores 4 <br> Common answers $\begin{aligned} & 4.5 \times 10^{4}(3) 45,000(2) \\ & 4.5 \times 10^{1}(3) 45(2) \\ & 1.5 \times 10^{7}(3) 15,000,000 \end{aligned}$ <br> (2) <br> NOTE even if working is incorrect e.g. division by 24 instead of multiplication M4 can still be awarded for correct conversion to standard form | $4$ |
|  |  |  | Total 9 |

