edexcel 츷

Mark Scheme (Results)
Summer 2013

International GCSE
Chemistry (4CHO) Paper 2CR

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk for our BTEC qualifications.
Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

If you have any subject specific questions about this specification that require the help of a subject specialist, you can speak directly to the subject team at Pearson.
Their contact details can be found on this link: www.edexcel.com/teachingservices.

You can also use our online Ask the Expert service at www.edexcel.com/ask. You will need an Edexcel username and password to access this service.

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2013
Publications Code UG035550
All the material in this publication is copyright
© Pearson Education Ltd 2013

Question number	Answer	Notes	Marks
1 (a)	gallium / Ga		1
(b)	sodium / magnesium / aluminium / Na / Mg / Al		1
(c)	fluorine / F/ F_{2}		1
(d)	nitrogen / N/ N_{2}		1
(e)	neon / argon / krypton / xenon / radon / Ne/ Ar/ Kr/ Xe/Rn		1
		Total	5

Question number	Answer	Notes	Marks
2 (a)	B		1
	A		1
	D		1
	C		1
(b)	Mixture		1
	Compound	Mixture	
			1
			Total

Question number	Answer	Notes	Marks
3 (a)	hydrogen / H_{2} burns with a pop/squeak OR use burning/lit splint/flame to see if pop/squeak	Ignore H Must be reference to test and result Reference to splint/match with no indication of flame is not enough Reject reference to glowing splint Ignore flame extinguished 'Squaky pop test' on its own is not sufficient	1
(b) i	AgCl	Ignore names even if wrong Accept sufuric acid $/ \mathrm{H}_{2} \mathrm{SO}$ Reject hydrochloric acid $/ \mathrm{HCl}$ Ignore conc(entrated) acid Ignore acid(ified) without a named acid Reject other named acids	
ii	(dilute) nitric acid / HNO_{3}	Accept ferrous nitrate and ferric nitrate ignore oxidation states (II) and (III) Reject other oxidation states	

Question number	Answer	Notes	Marks
3 (c)	(add) sodium hydroxide (solution) / NaOH green precipitate	Any group I hydroxide / ammonium hydroxide / barium or calcium hydroxide / ammonia solution (names or formulae) If reagent incorrect, then 0/3 If reagent missing, then then M2 and M3 can be awarded If near miss (eg ammonia hydroxide) then M2 and M3 can be awarded	 Ignore qualifiers such as light / pale / dark Accept solid / suspension / ppt(e) in place of precipitate Reject all other colours Ignore names and formulae even if incorrect
brown precipitate	Ignore qualifiers such as light / pale / dark / rusty / foxy / orange Accept red-brown Accept solid / suspension / ppt(e) in place of precipitate Reject all other colours Ignore names and formulae even if incorrect If both colours correct, penalise missing precipitate once only Do not award M2 or M3 for two correct observations in the wrong order Ignore references to bubbles etc	1	
		1	

Question number	Answer	Notes	Marks
4 (a)	bubbles / fizzing / effervescence sodium moves / darts / floats sodium gets smaller / disappears sodium melts / forms ball white trail	Accept gas given off/evolved/formed/produced Accept hydrogen gas Ignore identity of gas Accept equivalents such as shoots/skims Accept dissolves Do not apply list principle Assume that it = sodium Ignore flames / sparks Any two for 1 each	2
(b)	Do not apply list principle	Assume that it = sodium	1
(c) i ii	hydrogen / H_{2} K^{+}	Ignore H	$\begin{aligned} & 1 \\ & 1 \end{aligned}$

Question number	Answer	Notes	Marks
4 (d)	Na is 2.8.1 K is 2.8.8.1	Accept other punctuation and no punctuation and diagrams in place of full stops If neither of M1 and M2 scored, allow potassium has more (electron) shells (or numbers of shells stated)/energy levels for 1 mark?	1 outer/valence electron / outer shell lelectron lost in K further from nucleus/protons
	less attracted by nucleus	Ignore potassium further from nucleus Accept (electron) more easily removed/lost /less energy needed to remove (electron) Accept potassium more willing to lose electron If no reference to nucleus or protons, then neither M3 nor M4 can be awarded A correct reference to nucleus/protons is needed before M3 and M4 can be awarded Ignore references to shielding Accept reverse arguments for sodium in M3 and M4	1

Question number	Answer			Notes	Marks
5 (a)	Statement	Fractional distillation	Cracking	1 mark for each line correct	5
	Crude oil is heated	(\checkmark)			
	A catalyst may be used		\checkmark		
	Alkenes are formed		\checkmark		
	Decomposition reactions occur		\checkmark		
	Fuels are obtained	\checkmark	\checkmark		
	Separation is the main purpose	\checkmark			
(b) i	$\mathrm{C}_{5} \mathrm{H}_{12}$			Accept $\mathrm{H}_{12} \mathrm{C}_{5}$	1
ii					1
iii	$\mathrm{C}_{5} \mathrm{H}_{12}$			Accept $\mathrm{H}_{12} \mathrm{C}_{5}$	1
iv	pentane				1
v	$\mathrm{C}_{n} \mathrm{H}_{2 n+2}$			Accept x and other letters in place of n Accept answers like $\mathrm{C}_{\mathrm{n}} \mathrm{H}_{2 \mathrm{n}}+2$ Ignore 2($n+1$)	1

Question number	Answer	Notes	Marks
$5 \text { (c) }$ ii	(products) 2 2 (oxygen) 3 4 electrons shared between 2 (carbon) atoms 4 electron pairs between 2 C and 4 H atoms	M1 and M2 independent Ignore inner electrons even if wrong I gnore number of hydrogen atoms Accept all permutations of dots and crosses Ignore intersecting circles Accept H atoms at all angles At least one C or one H atom must be labelled - max 1 if not Max 1 if more than 2 C atoms Max 1 if wrong number of electrons in outer shell of any atom	$\begin{aligned} & 1 \\ & 1 \\ & \\ & 1 \\ & 1 \end{aligned}$
(d) i ii	phosphoric acid / $\mathrm{H}_{3} \mathrm{PO}_{4}$ any value in range $250-350{ }^{\circ} \mathrm{C}$ $\begin{aligned} & 20(\mathrm{~mol}) \\ & \mathrm{M} 1 \times 24 \\ & 480\left(\mathrm{dm}^{3}\right) \end{aligned}$	Ignore concentrated / dilute Accept value without unit Accept 523-623 K Marks independent Accept $480000 \mathrm{~cm}^{3}$ If M1 incorrect but 480 is final answer, then only M3 can be awarded If no answer to amount of ethene, then $20 \times 24=480$ scores M2 and M3	$\begin{aligned} & 1 \\ & 1 \\ & \\ & 1 \\ & 1 \\ & 1 \end{aligned}$
		Total	19

Question number	Answer	Notes	Marks
6 (a)	ethanol/it is more volatile/evaporates more quickly/more easily/evaporates in a shorter time	Accept has a lower boiling point (than water) Ignore reference to melting point(s) Accept reverse arguments for water	1
(b) i	$0.3(0)$ (g)		1
ii	some copper did not stick to (negative) electrode/cathode some copper removed during washing/drying positive electrode/anode impure OR formed (anode) sludge	Accept some copper dropped off	2

Question number	Answer	Notes	Marks
6 (c) i ii iii iv v	all 9 points plotted correctly to nearest gridline straight line of best fit point at (7.40, 0.20) circled no charge/current/electricity passed AND no copper deposited/no change in mass/no electrolysis line is straight / fixed gradient AND goes through origin graph line extrapolated to (at least) 0.55 correct value from candidate graph	Deduct 1 mark for each error Award these marks if points too faint to be seen under correct line Ignore point at 0.55 Must be drawn with a ruler Must go through origin Ignore extrapolation beyond $(16,0.5)$ OWTTE, eg charge $=0$, so mass (increase) $=0$ Ignore references to direct proportion Ignore re-statements of the information given in the question, eg the greater the charge, the greater the mass (increase) Probably 17.4-17.8 M2 not dependent on extrapolation	
		\square Total for paper	$\begin{aligned} & 12 \\ & 60 \\ & \hline \end{aligned}$

Telephone 01623467467
Fax 01623450481
Email publication.orders@edexcel.com
Order Code UG035550 Summer 2013

Llywodraeth Cynulliad Cymru
For more information on Edexcel qualifications, please visit our website www.edexcel.com

