Pearson Edexcel

Mark Scheme (Results)

November 2020
Pearson Edexcel International GCSE In Chemistry (4CH1) Paper 2CR

www.igexams.com

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Autumn 2020
Publications Code 4CH1_2CR_2011_MS
All the material in this publication is copyright
© Pearson Education Ltd 2020

www.igexams.com

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Question number	Answer	Notes	Marks
(a)	M1 A test tube / boiling tube	Grad	
	M3 B evaporating basin	ALLOW evaporating dish/crystallising dish	

www.igexams.com

Question number	Answer	Notes	Marks
2 (a)	A 3 B is incorrect as there are not 6 electrons in the outer shell of a thallium atom C is incorrect as there are not 13 electrons in the outer shell of a thallium atom D is incorrect as 81 is the total number of electrons in a thallium atom not the number in the outer shell		$\begin{array}{r} 1 \\ \text { Comp } \end{array}$
(b)	B 78 A is incorrect as there are not 3 electrons in a thallium ion C is incorrect as 81 is the number of electrons in a thallium atom not a thallium ion D is incorrect as there are not 84 electrons in a thallium ion		$\begin{array}{r} 1 \\ \text { Comp } \end{array}$

Question number	Answer	Notes	Marks
2 (c) (i)	M1 (number of protons) 81 M2 (number of neutrons) 124	ACCEPT eighty-one ACCEPT one hundred and twenty-four	$\stackrel{2}{\mathrm{Cl}}$
(ii)	- calculate sum of mass numbers multiplied by percentage abundances - divide answer by 100 - give answer to one decimal place Example calculation $\begin{aligned} & \text { M1 }(203 \times 30.8)+(205 \times 69.2) \text { OR } 20438.4 \\ & \text { M2 } 20438.4 \div 100 \text { OR } 204.384 \end{aligned}$		3 Exp
		ACCEPT 4, 5 or 6 sig fig ACCEPT 5 or 6 sig fig	
		$(203 \times 0.308)+(205 \times 0.692)$ OR 204.384 with or without working scores M1 and M2 Correct answer to 1 d.p. with or without working scores 3 marks	
			Total 7

www.igexams.com

Question number	Answer	Notes	Marks
$3 \quad \text { (a) (i) }$ (ii)	M1 (bitumen) (surfacing) roads/(surfacing) roofs M2 (gasoline) petrol / fuel for cars/vehicles An explanation that links the following two points M1 column is cooler near the top than at the bottom ORA M2 gasoline has a lower boiling point than bitumen (so is collected nearer the top) ORA	ALLOW other suitable uses ALLOW other suitable uses e.g. fuel for cooking ACCEPT column cool near the top and hot at the bottom ACCEPT temperature decreases up the column ORA ACCEPT gasoline has a low boiling point (so is collected near the top) and bitumen has a high boiling point (so is collected near the bottom)	$\begin{array}{r} 2 \\ \operatorname{Exp} \\ \\ 2 \\ \operatorname{Exp} \end{array}$
(b) (i) (ii)	M1 alumina/silica (catalyst) M2 600 - $700\left({ }^{\circ} \mathrm{C}\right)$ $\mathrm{C}_{12} \mathrm{H}_{26}$--> $\mathrm{C}_{7} \mathrm{H}_{16}+\mathrm{C}_{2} \mathrm{H}_{4}+\mathrm{C}_{3} \mathrm{H}_{6}$ M1 $\mathrm{C}_{2} \mathrm{H}_{4}$ M2 $\mathrm{C}_{3} \mathrm{H}_{6}$	ACCEPT $\mathrm{Al}_{2} \mathrm{O}_{3} / \mathrm{SiO}_{2}$ /aluminium oxide /silicon dioxide /aluminosilicate(s) /zeolite(s) ACCEPT range or any value within the range ACCEPT correct temperatures in other units ACCEPT answers in either order	$\begin{array}{r} 2 \\ \operatorname{Exp} \end{array}$ Exp Total 8

www.igexams.com

Question number	Answer	Notes	Marks
4 (a)	Any two of the following observations. M1 (sodium) floats/moves on surface (of water) M2 (sodium) melts/forms a ball M3 (sodium) gets smaller/disappears M4 (sodium forms) white trail	ALLOW dissolves IGNORE references to flame/heat released /temperature increases IGNORE fizzing /effervescence	Exp
(b) $\begin{aligned} & \text { (i) } \\ & \text { (ii) } \\ & \\ & \\ & \text { (iii) }\end{aligned}$	$2 \mathrm{Li}+\mathrm{F}_{2} \rightarrow 2 \mathrm{LiF}$	ALLOW multiples or fractions IGNORE state symbols even if incorrect	Exp ${ }^{1}$
	M1 flame test	ALLOW description of flame test	Exp ${ }^{2}$
	M2 red (flame)	ALLOW crimson /scarlet REJECT orange-red/ brick red	
	M1 correct electron arrangement of lithium ion $\underset{\mathrm{Li}^{+}}{\text {lithium }}$ [2] ${ }^{+}$	ACCEPT any combination of dots and crosses IGNORE empty second shell	Exp ${ }^{3}$
	M2 correct electron arrangement of fluoride ion fluoride ion $\mathrm{F}^{-}[2,8]^{-}$ M3 correct charges on both ions (with or without brackets)	Inner electron shell required to score M2 M3 not dep on M1 and M2 correct	

www.igexams.com

Question number	Answer	Notes	Marks
4 (c)	An explanation that links three of the following four points M1 the outer electron is further from the nucleus in potassium / potassium has more shells/ potassium has larger atomic radius ORA M2 there is more shielding (by the inner shells) in potassium ORA M3 there is less attraction between the outer electron and the nucleus in potassium ORA M4 (so outer) electron (in potassium) more easily lost ORA	ALLOW potassium atom is bigger than a sodium atom	Exp outer electron needs to be mentioned at least once in the answer for full marks

www.igexams.com

Question number	Answer	Notes	Marks
5 (a) (i) (ii)	A labelled diagram showing M1 at least three rows of at least three cations/atoms in a regular arrangement M2 surrounded by (delocalised) electrons Example of diagram An explanation that links the following two points M1 delocalised electrons M2 flow/are mobile/move/are free to move	Max 1 if no labels Minimum requirement for 2 marks is + signs on atoms and electrons labelled or shown as e^{-} IGNORE free electrons/ sea of electrons M2 dep on mention of electrons Any mention of ions/atoms moving scores 0	$\begin{array}{r} 2 \\ \operatorname{Exp} \end{array}$ $\begin{array}{r} 2 \\ \operatorname{Exp} \end{array}$
(b)	Any two of the following properties M1 low density M2 does not react with drink M3 malleable	ALLOW lightweight IGNORE light IGNORE less dense ALLOW does not corrode/non-toxic IGNORE does not rust ALLOW easy to bend/ easy to shape IGNORE references to cost IGNORE can be recycled IGNORE any irrelevant properties e.g. high melting/boiling point/ good conductor/ductile	$\begin{array}{r} 2 \\ \operatorname{Exp} \end{array}$

www.igexams.com

Question number	Answer	Notes	Marks
6 (a) (i)	pipette		1 Cl
(b) (i) (ii)	M1 (colour in NaOH) pink M2 (colour in HCl) colourless/no colour There is no clear (colour change at the) end point/ difficult to determine which shade of green is pH 7 OWTTE	ACCEPT magenta ALLOW red IGNORE clear 1 mark for two correct colours in the wrong order ALLOW it has a range of colours	2 Grad $\begin{array}{r} 1 \\ \operatorname{Exp} \end{array}$

Question number	Answer	Notes	Marks
6 (c) (i)	A description that makes reference to the following two points M1 add $21.5 \mathrm{~cm}^{3}$ of hydrochloric acid M2 to $25 \mathrm{~cm}^{3}$ of sodium hydroxide solution	0 marks if mention of adding indicator ALLOW repeat the titration without indicator for 1 mark ALLOW the following alternative method M1 add activated charcoal (to absorb the indicator) M2 filter (to remove the activated charcoal and indicator) M2 dep on M1	Exp^{2}

www.igexams.com

(ii)	A description that makes reference to the following four points M1 heat the solution to evaporate some of the water/ to form a saturated solution/ to crystallisation point M2 leave the solution to cool /leave the solution for (more) crystals to form M3 filter off the crystals M4 suitable method of drying the crystals	Max 1 mark if solution evaporated to dryness If solution left to partially evaporate without heating only M3 and M4 can be awarded IGNORE references to washing e.g. dry between filter papers/dry in a warm oven/ leave to dry REJECT hot oven or direct heating with Bunsen burner No M4 if crystals are washed after drying	$\begin{array}{r} 4 \\ \operatorname{Exp} \end{array}$
6 (d)	- calculate the amount, in moles, of NaOH - divide amount in moles by volume in dm3 - evaluation to obtain correct answer	correct answer without working scores 3 marks	Exp^{3}
	Example calculation M1 $n(\mathrm{NaOH})=0.0250 \times 0.800$ or $0.02(00)$ M2 conc $=(0.02 \div 0.0215)$ M3 0.930	answer to M1 $\div 0.0215$ ALLOW any number of sig fig except 1	
		ALLOW ecf on M2	
			Total 13

www.igexams.com

Question number	Answer	Notes	Marks
$7 \quad$ (a) (i) (ii)	sulfuric acid D orange to green A is incorrect as the solution is not colourless at the start of the reaction B is incorrect as the solution is not green at the start or orange at the end of the reaction C is incorrect as the solution is not colourless at the end of the reaction	IGNORE references to concentration ALLOW H2SO4 REJECT sulfurous acid	
(b) (i) (ii) (iii)	- show the expression for the sum of the bond energies for the breaking of bonds - evaluation to give answer in kJ Example calculation M1 $\sum \mathrm{C}-\mathrm{C}+5 \mathrm{C}-\mathrm{H}+\mathrm{C}-\mathrm{O}+\mathrm{O}-\mathrm{H}+3 \mathrm{O}=\mathrm{O}$ OR $\sum 346+(5 \times 412)+358+463+(3 \times 496)$ M2 4715 (kJ) - show the expression for the sum of the bond energies for the forming of bonds - evaluation to give answer in kJ Example calculation M1 $\sum 4 \mathrm{C}=\mathrm{O}+6 \mathrm{O}-\mathrm{H}$ OR $\sum(4 \times 743)+(6 \times 463)$ M2 5750 (kJ) $(4715-5750=)-1035(\mathrm{~kJ} / \mathrm{mol})$	correct answer without working scores 2 - 1 mark for each error correct answer without working scores 2 - 1 mark for each error IGNORE any signs in (i) and (ii) minus sign must be included ACCEPT - 1040 ($\mathrm{kJ} / \mathrm{mol}$) ALLOW ecf on answers to (i) and (ii) If answers to (i) and (ii) are reversed allow max 3 and ecf on (iii)	$\begin{array}{r} 2 \\ \text { Exp } \end{array}$ $\begin{array}{r} 2 \\ \operatorname{Exp} \end{array}$ $\begin{array}{r} 1 \\ \operatorname{Exp} \end{array}$

Question number	Answer	Notes	Marks
7 (c) (i) (ii) (iii)	ethyl methanoate M1 ester linkage M2 rest of molecule correct Structural formula of ethyl formate or ethyl methanoate M1 forward and reverse reactions occur at the same rate OWTTE M2 concentrations of reactants and products remain constant	ALLOW ethyl formate ALLOW words written without gap	
(d)	- calculate amount in moles of HCOOH - use equation to find amount in moles of CO_{2} - multiply amount in moles of CO_{2} by molar volume - evaluation of answer in cm^{3} Example calculation M1 $n(\mathrm{HCOOH})=2.3 \div 46$ or $0.05(0)$ $\mathbf{M} 2 n\left(\mathrm{CO}_{2}\right)=0.05(0) \div 2$ or 0.025 M3 (volume of CO_{2}) $=0.025 \times 24$ or 0.025×24000 M4 $600\left(\mathrm{~cm}^{3}\right)$	correct answer without working scores 4 No ecf from M1 and M2 if mass or M_{r} multiplied by $24 / 24000$ ALLOW ecf from M3 0.6, 1200 and 2400 score 3 1.2 and 2.4 score 2	4 Exp

www.igexams.com

		Total
16		

www.igexams.com

