Please check the examination details below	before entering your candidate information
Candidate surname	Other names
Pearson Edexcel International GCSE (9–1)	e Number Candidate Number
Thursday 14 Jan	uary 2021
Morning (Time: 1 hour 15 minutes)	Paper Reference 4CH1/2C
Chemistry Unit: 4CH1 Paper 2C	
You must have: Calculator, ruler	Total Marks

Instructions

- Use **black** ink or ball-point pen.
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer **all** questions.
- Answer the questions in the spaces provided
 - there may be more space than you need.
- Some questions must be answered with a cross in a box ⋈. If you change your mind about an answer, put a line through the box ⋈ and then mark your new answer with a cross ⋈.

Information

- The total mark for this paper is 70.
- The marks for **each** question are shown in brackets
 - use this as a guide as to how much time to spend on each question.

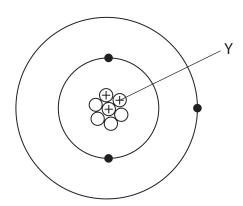
Advice

- Read each question carefully before you start to answer it.
- Try to answer every question.
- Check your answers if you have time at the end.

Turn over ▶

The Periodic Table of the Elements

Table Tabl	This contains the part This contains Thi								
1	1	0	4 He helium 2	20 Ne neon 10	40 Ar argon 18	84 Kr krypton 36	Xe xenon 54	[222] Rn radon 86	fully
1	1	7		19 F fluorine 9	35.5 CI chlorine 17	80 Br bromine 35	127 	[210] At astatine 85	orted but not
1	1	9		16 O oxygen 8		79 Se selenium 34	128 Te tellurium 52	[209] Po polonium 84	ave been rep
1	1	2		14 N nitrogen 7	31 P phosphorus 15	75 As arsenic 33	122 Sb antimony 51	209 Bi bismuth 83	s 112–116 ha authenticatec
1	1	4		12 C carbon 6		73 Ge germanium 32	119 Sn th 50	207 Pb lead 82	omic numbers
1	1	ო		11 B boron 5	27 Al aluminium 13	70 Ga gallium 31	115 In indium 49	204 T thallium 81	ents with atc
Sample S	Sample Secondary Seconda		·			65 Zn zinc 30	112 Cd cadmium 48	201 Hg mercury 80	Elem
1	Secondary 10 10 10 10 10 10 10 1					63.5 Cu copper 29	108 Ag silver 47	197 Au gold 79	[272] Rg roentgenium 111
1	1					59 Ni nickel 28	106 Pd palladium 46	195 Pt platinum 78	[271] Ds damstadtium 110
Sample	Sample					59 Co cobalt 27	103 Rh rhodium 45	192 Ir iridium 77	[268]
Sample	Sample		1 H hydrogen			56 Fe iron 26	101 Ru ruthenium 44	190 Os osmium 76	[277] Hs hassium 108
Sample	Sample					55 Mn manganese 25		186 Re rhenium 75	[264] Bh bohrium 107
Sample	Sample			mass bol number		52 Cr chromium 24	96 Mo molybdenum 42	184 W tungsten 74	[266] Sg seaborgium 106
9 Be beryllium 4 A	9 Be beryllium 4 A 24 Mg magnesium 12 A 0 45 Ca Sc calcium 20 Sr Y strontium 339 A 137 Ba La* barium 339 C26 C3 Sc candium 14 C27 C3 Sc candium 14 C40 C5 C4 C5 C5 C6 C		Key	ve atomic omic syminame name (proton) r		51 V vanadium 23		181 Ta tantalum 73	[262] Db dubnium 105
9 Be beryllium 4 A 24 Calcium 20 Sr strontium 38 Ba barium 56 Ra ractium 88 Ra Ractium 88 Ra Ractium 88	9 Be beryllium 4 A0 Ca calcium 20 Sr strontium 38 Ba barium 56 Ra Ra Radium 888			relati atc atomio		48 Ti titanium 22	91 Zr zirconium 40	178 Hf hafnium 72	[261] Rf rutherfordium 104
						45 Sc scandium 21	89 × yttrium 399	139 La * Ianthanum 57	[227] Ac* actinium 89
	7 Li lithium 3 23 Ra sodium 11 11 39 K potassium 19 85 Rb rubdium 37 133 Cs caesium 55 Fr francium 87	2		9 Be beryllium 4	24 Mg magnesium 12	40 Ca calcium 20	Sr strontium 38	137 Ba barium 56	[226] Ra radium 88
Li Li Li Li Li Li Li Li		_		7 Li lithium 3	23 Na sodium 11	39 K potassium 19	85 Rb rubidium 37	133 Cs caesium 55	[223] Fr francium 87


^{*} The lanthanoids (atomic numbers 58–71) and the actinoids (atomic numbers 90–103) have been omitted.

The relative atomic masses of copper and chlorine have not been rounded to the nearest whole number.

Answer ALL questions. Write your answers in the spaces provided.

1 The diagram shows an atom of an element.

(a) (i) What is the name of the particle labelled Y?

(1)

- A electron
- B ion
- C neutron
- **D** proton
- (ii) Give the mass number of this atom.

(1)

(iii) Name this element.

Use the Periodic Table on page 2 to help you.

(1)

(b) There are two isotopes of this element.

Give one way, in terms of sub-atomic particles, that these isotopes are the same and one way that they are different.

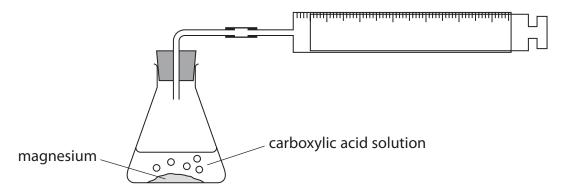
(2)

same

different

(Total for Question 1 = 5 marks)

argon	carbon dioxide	hydrogen	nitrogen	oxygen	
se gases from the b	oox to answer these q	uestions.			
ach gas may be use	d once, more than or	nce or not at all.			
(i) Name the mo	ost abundant gas in th	ne Earth's atmos	phere.	(1)
(ii) Name the gas	s that is a compound.			(1)
(iii) Name the lea	st reactive of the gas	es.		(1)
(iv) Name the gas	s formed by the comp	olete combustio	n of hydrocarb		1)
o) Describe the test	for hydrogen gas.			(1)
		mete combustio	in or nydrocarb		



(2)

3 This question is about carboxylic acids.

Solutions of carboxylic acids react with magnesium metal to form hydrogen gas.

A student uses this apparatus to investigate the time taken to produce 10 cm³ of hydrogen gas from different carboxylic acids.

This is the student's method.

- pour some carboxylic acid solution into a conical flask
- add some magnesium powder
- quickly connect the gas syringe and start a timer
- record the time taken to collect 10 cm³ of hydrogen gas

The student repeats the method with three other carboxylic acids.

(a) (i) All the carboxylic acids are of the same concentration.Give two other variables the student should control in his investigation.

1	
2	
(ii) Give a reason why it is important to connect the gas syringe quickly.	(1)

(b) The table shows the student's results.

Carboxylic	Formula of	Tir	Time taken to produce 10 cm³ of hydrogen in s			
acid	carboxylic acid	Experiment 1	Experiment 2	Experiment 3	Experiment 4	Mean time in s
Methanoic acid	НСООН	48	50	47	49	49
Ethanoic acid	CH₃COOH	61	63	60	61	61
Propanoic acid	CH₃CH₂COOH	69	93	70	71	
Butanoic acid	CH₃CH₂CH₂COOH	83	85	82	81	83

(i) Calculate the mean (average) time for propanoic acid to produce 10 cm³ of hydrogen gas.

(2)

mean time =	
	. 2

(ii) Deduce the relationship between the number of carbon atoms in the molecule and the time taken to produce 10 cm³ of hydrogen gas.

(1)

(c) An ester is formed by adding ethanoic acid to ethanol in the presence of sulfuric acid.

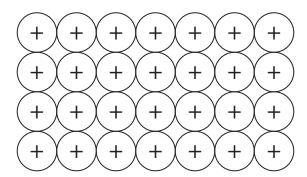
Give the displayed formula of the ester produced when ethanoic acid reacts with ethanol.

(2)

(Total for Question 3 = 8 marks)

8

(3)


- 4 This question is about sodium and potassium.
 A trough is filled with water and a few drops of phenolphthalein indicator are added.
 (a) A small piece of sodium is dropped into the water. One of the products of the reaction is an alkali.
 (i) Complete the chemical equation for the reaction of sodium with water.
 (2)
 ____Na(______) + ___H₂O(l) → ____NaOH(______) + H₂(g)
 (ii) Identify the ion that causes the solution to become alkaline.
 (1)
 (iii) Give three observations that would be made when sodium reacts with water.

(b) Explain why potassium is more reactive than sodium.	
Refer to the electronic configurations of the atoms in your answer.	(3)
	(3)
(Total for Question	1 4 = 9 marks)

- **5** This question is about the metal aluminium.
 - (a) Aluminium is malleable and conducts electricity.

The diagram shows the arrangement of the ions in aluminium metal.

+ aluminium ion

(i) Explain why aluminium is malleable.

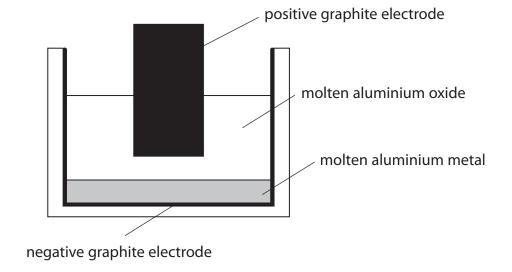
(2)

(ii) Explain why aluminium conducts electricity.

(2)

(b) Aluminium cannot be extracted by heating a mixture of carbon and aluminium oxide.

Give a reason why heating a mixture of aluminium oxide and carbon does not produce aluminium.


(1)

(c) Aluminium is extracted industrially by the electrolysis of molten aluminium oxide Al_2O_3 at a temperature of about 950 °C.

Aluminium metal forms at the negative electrode and oxygen gas forms at the positive electrode. The positive and negative electrodes are made of graphite.

The diagram shows the apparatus used.

(i) Explain how aluminium metal forms at the negative electrode.

(ii) Write an ionic half-equation for the formation of oxygen gas at the positive electrode.

(iii) Suggest why carbon dioxide gas is also produced at the positive electrode.	(2)
(d) Aluminium reacts with iron(III) oxide. The reaction is exothermic.	
The equation for the reaction is	
$2Al + Fe_2O_3 \rightarrow Al_2O_3 + 2Fe$	
(i) State how the equation shows that iron(III) oxide is reduced.	(1)
(ii) Draw an energy level diagram for the reaction between aluminium and iron(III	l) oxide. (3)
Energy	
(Total for Question 5 = 14 ma	arks)

6	This question is about the insoluble salt silver chloride (AgCl).				
	Silver chloride can be made by the reaction between copper(II) chloride and silver nit	he reaction between copper(II) chloride and silver nitrate.			
	(a) Describe how a student could prepare a pure, dry sample of silver chloride starting with copper(II) chloride solution and silver nitrate solution.	g			
		(4)			

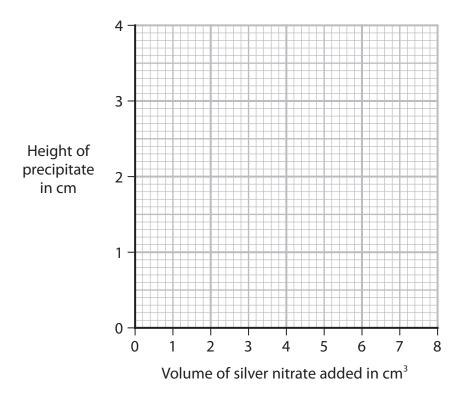
(b) A student investigates the quantity of silver chloride produced when different volumes of silver nitrate solution are added to copper(II) chloride solution.

This is the student's method.

- pour 5.0 cm³ of copper(II) chloride solution into a test tube
- add 1.0 cm³ of silver nitrate solution to the test tube
- allow the silver chloride precipitate to settle
- measure the height of the precipitate

The student repeats the method using different volumes of silver nitrate solution.

The table shows the student's results.


Volume of silver nitrate added in cm ³	Height of precipitate in cm
0.0	0.0
1.0	0.5
2.0	1.0
3.0	1.2
4.0	2.0
5.0	2.5
6.0	3.0
7.0	3.0
8.0	3.0

(i) Plot the student's results.

(2)

(ii) Draw two straight lines of best fit, ignoring the anomalous result.

(1)

(iii) Suggest a mistake the student made to cause the anomalous result.

(1)

(iv) Give a reason why the last three heights are the same.

(1)

(c) The equation for the reaction between copper(II) chloride and silver nitrate is

$$CuCl_2(aq) + 2AgNO_3(aq) \rightarrow 2AgCl(s) + Cu(NO_3)_2(aq)$$

A student measures 25.0 cm³ of 0.500 mol/dm³ copper(II) chloride solution and reacts it with silver nitrate solution.

(i) Name a piece of apparatus suitable for measuring 25.0 cm³ of copper(II) chloride solution.

(1)

(ii) Calculate the maximum mass, in grams, of silver chloride that could be produced.

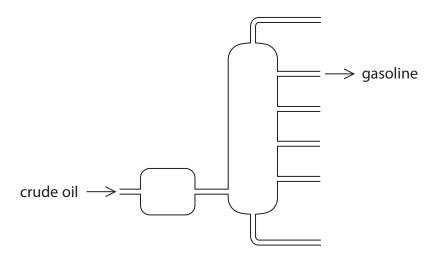
$$[M_{\rm r} \text{ of AgCl} = 143.5]$$

(3)

(iii) In an experiment using different solutions, the mass of silver chloride produced is 0.744 g.

The maximum mass of silver chloride that could be produced is 0.850 g.

Calculate the percentage yield.


(2)

percentage yield = %

(Total for Question 6 = 15 marks)

- 7 This question is about octane (C₈H₁₈) which is produced in the gasoline fraction during fractional distillation of crude oil.
 - (a) The diagram shows a fractionating column.

Describe how crude oil is separated into fractions in the fractionating column.

(4)

$(h) \cap C$	tane can	also he	nroduced	hy the	nrocess	of cracking

Give the conditions for cracking.

(2)

(c) A car is driven at constant speed for 4.00 km.

The exhaust gases are collected and their volume at room temperature and pressure (rtp) is 5.02×10^5 cm³.

The exhaust gases include carbon dioxide and oxides of nitrogen.

The carbon dioxide is removed from the exhaust gases. The volume of the remaining gases at rtp is 2.96×10^{5} cm³.

(i) Explain how oxides of nitrogen form in a car engine.

(2)

(ii) Give a reason why oxides of nitrogen should not be released into the atmosphere.

(1)

(iii) Show that the car produces less than $100\,\mathrm{g}$ of carbon dioxide per km.

[molar volume of carbon dioxide at rtp = $24\,000\,\text{cm}^3$]

(5)

(Total for Question 7 = 14 marks)

TOTAL FOR PAPER = 70 MARKS

