

Mark Scheme (Results)

January 2021

Pearson Edexcel International GCSE In Chemistry (4CH1) Paper 1C and Science (Double Award) (4SD0) Paper 1C

#### **Edexcel and BTEC Qualifications**

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <a href="https://www.edexcel.com">www.btec.co.uk</a>. Alternatively, you can get in touch with us using the details on our contact us page at <a href="https://www.edexcel.com/contactus">www.edexcel.com/contactus</a>.

#### Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: <a href="https://www.pearson.com/uk">www.pearson.com/uk</a>

January 2021
Publications Code 4CH1\_1C\_2101\_MS
All the material in this publication is copyright
© Pearson Education Ltd 2021

#### **General Marking Guidance**

- All candidates must receive the same treatment. Examiners
  must mark the first candidate in exactly the same way as
  they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

| Question number | Ans                                | wer                     | Notes                                     | Marks   |
|-----------------|------------------------------------|-------------------------|-------------------------------------------|---------|
| 1 (a)           |                                    |                         | Award 1 mark for each                     | 3       |
|                 | Start                              | End                     | correct row                               |         |
|                 | solid                              | liquid                  |                                           |         |
|                 | solid                              | gas                     | <b>ALLOW</b> gas to solid for sublimation |         |
|                 | gas                                | liquid                  |                                           |         |
|                 | liquid                             | gas                     |                                           |         |
| (b)             | A description that refers t        | o any three of the      |                                           | 3       |
|                 | following points                   | o any amos or and       |                                           |         |
|                 | M1 irregular /random arra          | angement (of particles) |                                           |         |
|                 | M2 large gaps between th<br>spaced | nem /far apart /widely  | <b>ALLOW</b> spread out                   |         |
|                 | M3 random movement / r             | move freely             |                                           |         |
|                 | M4 move (very) quickly             |                         | <b>IGNORE</b> references to               |         |
|                 |                                    |                         | kinetic energy                            |         |
|                 |                                    |                         |                                           | 6 marks |

| Question<br>number | Answer                                                                      | Notes                                                               | Marks   |
|--------------------|-----------------------------------------------------------------------------|---------------------------------------------------------------------|---------|
| 2 (a) (i)          | A                                                                           |                                                                     | 1       |
|                    | A is the correct answer because 100°C is above the boiling point of W       |                                                                     |         |
|                    | B is not the correct answer because X is a solid at 100°C                   |                                                                     |         |
|                    | C is not the correct answer because Y is a solid at 100°C                   |                                                                     |         |
|                    | D is not the correct answer because Z is a solid at 100°C                   |                                                                     |         |
| (ii)               | В                                                                           |                                                                     | 1       |
|                    | B is the correct answer because X is a liquid for 1840°C                    |                                                                     |         |
|                    | A is not the correct answer because W is a liquid for 67°C                  |                                                                     |         |
|                    | C is not the correct answer because Y is a liquid for 1150°C                |                                                                     |         |
|                    | D is not the correct answer because Z is a liquid for 330°C                 |                                                                     |         |
| (iii)              | С                                                                           |                                                                     | 1       |
|                    | C is the correct answer because Y is a liquid at 1000°C and a gas at 2000°C |                                                                     |         |
|                    | A is not the correct answer because W is a gas at 1000°C and at 2000°C      |                                                                     |         |
|                    | B is not the correct answer because X is a liquid at 1000°C and 2000°C      |                                                                     |         |
|                    | D is not the correct answer because Z is a gas at 1000°C and at 2000°C      |                                                                     |         |
| (b)                | ionic                                                                       | ALLOW electrovalent                                                 | 1       |
| (c)                | the (impure) substance will melt over a range of temperatures               | <b>ALLOW</b> the (impure) substance will have a lower melting point | 1       |
|                    |                                                                             |                                                                     | 5 marks |

| Question number | Answer                                                                                                                                                                                                                   | Notes                                                                                                                                 | Marks   |
|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|---------|
| 3 (a) (i)       | M1 dissolving M2 diffusion                                                                                                                                                                                               | Answers can be in either order                                                                                                        | 2       |
| (b) (i)         | An explanation that links any two of the following points  M1 crystals dissolve faster  M2 (potassium iodide/ lead nitrate/ water) particles move faster / (lead/ iodide) ions move faster / rate of diffusion increases | ALLOW (potassium iodide /lead nitrate/ water) particles have more energy  ALLOW molecules in place of particles if referring to water | 2       |
|                 | M3 therefore (lead and iodide) ions/ particles meet / collide after a shorter period of time/ sooner                                                                                                                     | <b>IGNORE</b> references to more collisions or more energetic collisions                                                              |         |
| (c) (i)         | 3 / three                                                                                                                                                                                                                |                                                                                                                                       | 1       |
| (ii)            | 2+ /+2                                                                                                                                                                                                                   | <b>ALLOW</b> Pb <sup>2+</sup>                                                                                                         | 1       |
| (d)             | $Pb(NO_3)_2(aq) + 2KI(aq) \rightarrow PbI_2(s) + 2KNO_3(aq)$                                                                                                                                                             | <b>ALLOW</b> multiples and fractions                                                                                                  | 1       |
|                 |                                                                                                                                                                                                                          |                                                                                                                                       | 7 marks |

| Question<br>number | Answer                                                                                | Notes                                                                                           | Marks   |
|--------------------|---------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|---------|
| 4 (a)              | Example calculation  M1 (volume of oxygen =) 100 – 25 <b>OR</b> 75 (cm <sup>3</sup> ) | Correct answer of 20.5 % with or without working scores 3                                       | 3       |
|                    | M2 75 ÷ 365 × 100                                                                     | <b>ALLOW</b> ecf from M1                                                                        |         |
|                    | M3 20.5 (%)                                                                           | <b>ALLOW</b> ecf from M2                                                                        |         |
|                    |                                                                                       | <b>ALLOW</b> 2 or more significant figures                                                      |         |
|                    |                                                                                       | <b>REJECT</b> incorrect rounding Use of 265 instead of 365 gives an answer of 28.3 and scores 2 |         |
|                    |                                                                                       | Alternative method                                                                              |         |
|                    |                                                                                       | M1 (volume of air left<br>=) 265 + 25 <b>OR</b> 290<br>(cm <sup>3</sup> )                       |         |
|                    |                                                                                       | M2 290 ÷ 365 × 100 <b>OR</b> 79.5 (%)                                                           |         |
|                    |                                                                                       | M3 (100 – 79.5 =) 20.5 (%)                                                                      |         |
| (b) (i)            | M1 paint provides a barrier                                                           | <b>ALLOW</b> paint forms a coating (on the iron) / paint is non-permeable                       | 2       |
|                    | M2 which prevents oxygen / water getting to /reacting with the iron                   | ALLOW air                                                                                       |         |
| (ii)               | M1 zinc is more reactive/higher in the reactivity series (than iron)                  | <b>ALLOW</b> zinc is a sacrificial metal                                                        | 2       |
|                    | M2 zinc will oxidise / react / corrode instead of /before iron                        | <b>IGNORE</b> references to zinc rusting                                                        |         |
|                    |                                                                                       | <b>IGNORE</b> references to galvanising                                                         |         |
|                    |                                                                                       |                                                                                                 | 7 marks |

| Question<br>number | Answer                                                                                                                                                     | Notes                                                                          | Marks    |
|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|----------|
| 5 (a)              | Method filtration simple distillation or fractional distillation fractional distillation  crystallisation                                                  | ALLOW filtering ALLOW distillation REJECT simple distillation or distillation  | 4        |
| (b) (i)            | M1 A and B  M2 because they are the same height /moved the same distance up the paper / have the same R <sub>f</sub> values as the spots in the purple ink | M2 dep on M1 correct or missing                                                | 2        |
| (ii)               | M1 D M2 because the spot is closest to the start line /travelled the least distance (from the start line) / has the lowest $R_{\rm f}$ value               | M2 dep on M1 correct                                                           | 2        |
| (c)                | Example calculation M1 120 × 0.72 M2 86 / 86.4 (mm)                                                                                                        | or missing  Correct answer of 86 or 86.4 (mm) with or without working scores 2 | 2        |
|                    |                                                                                                                                                            | ı                                                                              | 10 marks |

| Question number | Ans                                                                                                                | swer                                                                        | Notes                                                                                                                                                                                                                                             | Marks |
|-----------------|--------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| 6 (a)           | precipitate of barium carbonate no precipitate precipitate of calcium carbonate                                    | precipitate of barium sulfate no precipitate precipitate of calcium sulfate | if barium sulfate and calcium carbonate correct but without including 'precipitate of' scores 1 out of 2  ALLOW correct formulae                                                                                                                  | 3     |
| (b)             | A description that refers points  M1 do a flame test  M2 sodium chloride prod  M3 add acid  M4 potassium carbonate |                                                                             | ACCEPT any description of a flame test  ACCEPT yellow-orange or orange  IGNORE any flame colour given for the potassium compounds  ALLOW any named acid  ACCEPT carbon dioxide/gas given off which turns limewater cloudy for M4  M4 is dep on M3 | 6     |
|                 | M5 add dilute nitric acid M6 add silver nitrate (sol M7 potassium chloride g M8 potassium iodide giv               | ives a white precipitate                                                    | M7 and M8 are dep on M6  ALLOW addition of chlorine/bromine solution as an alternative to M6  M7 no colour change with potassium chloride                                                                                                         |       |

| M8 solution turns brown with potassium iodide |         |
|-----------------------------------------------|---------|
| If this alternative given no M5               |         |
|                                               | 9 marks |

| Question<br>number | Answer                                                                                                  | Notes                                                                                   | Marks    |
|--------------------|---------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|----------|
| 7 (a)              | M1 two lithium atoms each lose one electron /give one electron to oxygen  M2 oxygen gains two electrons | ALLOW lithium loses one electron /gives one electron to oxygen                          | 3        |
|                    | M3 lithium (ion) has an electron configuration of 2 and oxide (ion) is 2,8                              | ALLOW oxygen becomes 2,8                                                                |          |
|                    |                                                                                                         | All 3 marks can be scored from diagrams showing the electron configurations of the ions |          |
|                    |                                                                                                         | 0 marks if reference to sharing electrons                                               |          |
| (b) (i)            | M1 (temperature after) = 27.7°C                                                                         |                                                                                         | 2        |
|                    | M2 temperature rise = 10.4 °C                                                                           | ALLOW ecf from M1                                                                       |          |
| (ii)               | Example calculation                                                                                     | Correct answer of 4400J with or without working scores 4                                | 4        |
|                    | M1 Use of 100 in Q = m x c (x $\Delta$ T)                                                               |                                                                                         |          |
|                    | M2 Use of 10.4 in Q = (m x) c x $\Delta$ T                                                              | ALLOW ecf from (b)(i)                                                                   |          |
|                    |                                                                                                         | 100 x 4.2 x 10.4 scores M1 and M2                                                       |          |
|                    | M3 4368J                                                                                                | ALLOW ecf from M1 and M2                                                                |          |
|                    | M4 4400J                                                                                                | ALLOW ecf from M3                                                                       |          |
|                    |                                                                                                         | IGNORE + or - sign in front                                                             |          |
| (iii)              | Example calculation                                                                                     | of answer<br>Correct answer of -89.8<br>(kJ/mol) scores 3                               | 3        |
|                    | M1 5210 ÷ 1000 or 5.21                                                                                  | (,                                                                                      |          |
|                    | M2 5.21 ÷ 0.0580                                                                                        |                                                                                         |          |
|                    | M3 -89.8(kJ/mol)                                                                                        | ALLOW -90 (kJ/mol) or<br>any number of sig figs as<br>long as correctly rounded.        |          |
| (iv)               | polystyrene is a good insulator /poor conductor (of heat) OR to minimise/reduce heat loss               | ALLOW prevent heat loss                                                                 | 1        |
|                    |                                                                                                         |                                                                                         |          |
|                    |                                                                                                         | l                                                                                       | 13 marks |

| Question number | Answer                                                                                                                                                                                                                                                                                                                                                                                                                                | Notes                                                                                                                                                                                                                                                                 | Marks |
|-----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| 8 (a)           | M1 solid M2 dark grey / black                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                       | 2     |
| (b) (i)         | Example calculation  M1 (51 × 79) + (49 × 81) <b>OR</b> 7998  M2 7998 ÷ 100                                                                                                                                                                                                                                                                                                                                                           | 80.0 with no working scores 3                                                                                                                                                                                                                                         | 3     |
|                 | M3 80.0                                                                                                                                                                                                                                                                                                                                                                                                                               | 79.9 with no working scores 1  79.98 or 80 with no working scores 2                                                                                                                                                                                                   |       |
| (ii)            | same electron configuration                                                                                                                                                                                                                                                                                                                                                                                                           | ALLOW same (total) number of electrons  IGNORE same number of electrons in the outer shell  IGNORE references to same number of protons                                                                                                                               | 1     |
| (c) (i)         | An explanation that links the following three points  M1 the order of reactivity is chlorine (most), bromine and iodine (least)  M2 chlorine (is most reactive because it) displaces bromine and iodine/ oxidises bromide and iodide (ions) / reacts with sodium bromide and sodium iodide  M3 bromine (is less reactive than chlorine since it) only displaces iodine / only oxidises iodide (ions) / only reacts with sodium iodide | ACCEPT bromine is only displaced by chlorine and iodine is displaced by chlorine and bromine scores M2 and M3  ALLOW chlorine has two reactions, bromine has one reaction and iodine no reactions for 1 mark out of M2 and M3  Deduct 1 mark for incorrect use of ine | 3     |

|       |                                                                                                                         | and ide e.g. bromine<br>displaces iodide                                               |   |
|-------|-------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|---|
| (ii)  |                                                                                                                         |                                                                                        | 1 |
|       | bromine cannot displace itself / bromine does not react with sodium bromide OWTTE                                       | <b>ALLOW</b> there would be no reaction                                                | 2 |
| (iii) | M1 bromine is reduced and iodide (ions)/l- is oxidised  M2 bromine gains electrons and iodide (ions)/l- loses electrons | Deduct 1 mark for<br>mention of iodine<br>(ions) being oxidised or<br>losing electrons |   |
|       | M1 bromine gains electrons so is reduced  M2 iodide (ions) /l <sup>-</sup> loses electrons so is oxidised               | <b>REJECT</b> iodine (ions) loses electrons so is oxidised                             |   |

12 marks

| Question number | Answer                                                                               | Notes                                                                                                  | Marks |
|-----------------|--------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|-------|
| 9 (a)           | M1 (propane/it) contains hydrogen and carbon (atoms)                                 | REJECT carbon and hydrogen molecules                                                                   | 2     |
|                 | M2 only                                                                              | M2 is dependent on<br>mention of just carbon<br>and hydrogen in M1                                     |       |
| (b) (i)         | carbon monoxide                                                                      | ALLOW CO                                                                                               | 1     |
| (ii)            | it decreases the capacity of the blood to transport oxygen OWTTE                     | ALLOW carbon<br>monoxide binds to<br>haemoglobin                                                       | 1     |
| (c)             | M1 (strong electrostatic) attraction between (bonding) pair of electrons             |                                                                                                        | 2     |
|                 | M2 (and) nuclei (of both atoms)                                                      | REJECT nucleus                                                                                         |       |
|                 | OR                                                                                   |                                                                                                        |       |
|                 | M1 (bonding) pair of electrons                                                       |                                                                                                        |       |
|                 | M2 attracted to nuclei                                                               | REJECT nucleus                                                                                         |       |
|                 |                                                                                      | 0 marks if reference to intermolecular forces between atoms                                            |       |
| (d)             | An explanation that links the following three points                                 |                                                                                                        | 3     |
|                 | M1 (crude oil) produces more long chain hydrocarbons than can be used directly OWTTE | ALLOW less demand for long chain hydrocarbons                                                          |       |
|                 | M2 shorter chain alkanes are more flammable<br>/more useful as fuels                 | ALLOW shorter chain alkanes/hydrocarbons are more useful                                               |       |
|                 | M3 alkenes are used to make polymers / plastics                                      |                                                                                                        |       |
| (e) (i)         | M1 C <sub>3</sub> H <sub>7</sub> Br                                                  |                                                                                                        | 2     |
|                 | M2 HBr                                                                               | ALLOW polysubstituted<br>product if correct<br>balancing number in<br>front of Br <sub>2</sub> and HBr |       |
| (ii)            | substitution                                                                         |                                                                                                        | 1     |

12 marks

| Que   | stion  | Anguar                                                                               | Notes                                                                | Mayles |
|-------|--------|--------------------------------------------------------------------------------------|----------------------------------------------------------------------|--------|
| _     | nber   | Answer                                                                               | Notes                                                                | Marks  |
| 10 (a | a) (i) | curve of best fit                                                                    | REJECT dot to dot line                                               | 1      |
|       | (ii)   | M1 lines shown on graph                                                              | <b>ALLOW</b> extra point on curve at 7 carbon atoms                  | 2      |
|       |        | M2 value correctly read from graph (expected value between 97 and 103°C)             | ACCEPT value to ± 1°C                                                |        |
|       | (iii)  | An explanation that links the following three points                                 |                                                                      | 3      |
|       |        | M1 the boiling point increases as the number of carbons / the chain length increases | <b>ALLOW</b> boiling point increases as the M <sub>r</sub> increases |        |
|       |        | M2 because the intermolecular forces (of attraction) get stronger                    | <b>REJECT</b> directly proportional                                  |        |
|       |        | M3 and therefore take more energy to overcome / break                                |                                                                      |        |
|       |        | bieak                                                                                | M3 dep on M2                                                         |        |
|       |        |                                                                                      | Any mention of breaking covalent bonds does not score M2 or M3       |        |
| (k    | 0)     | M1 same <b>molecular</b> formula                                                     |                                                                      | 2      |
|       |        | M2 different <b>displayed</b> / <b>structural</b> formulae                           | <b>ALLOW</b> different structures/ different arrangement of atoms    |        |
|       |        | M4 92 9 4 42 6 9                                                                     |                                                                      |        |
| ((    | c) (i) | M1 82.8 ÷ 12 <b>or</b> 6.9<br>17.2 ÷ 1 <b>or</b> 17.2                                | 0 marks if upside down calculation or use of atomic numbers          | 2      |
|       |        | M2 (divide by smallest to give) 1:2.5 which is 2:5                                   | ACCEPT alternative methods                                           |        |
|       | (ii)   | C <sub>4</sub> H <sub>10</sub>                                                       |                                                                      | 1      |

| (d) | M1 moles of $CO_2 = 7$ <b>or</b> $X = 7$  |                                                   | 3        |
|-----|-------------------------------------------|---------------------------------------------------|----------|
|     | M2 moles of $H_2O = 8$ <b>or</b> $Y = 8$  |                                                   |          |
|     | M3 balancing number = 11 <b>or</b> Z = 11 | <b>ALLOW</b> ecf from incorrect values of X and Y |          |
|     |                                           | ·                                                 | 14 marks |

Question **Notes** Marks Answer number **REJECT** burning splint 11 (a) (i) glowing splint relights 1 (ii) A description that refers to the following three 3 points M1 filter out manganese(IV) oxide / solid M2 leave to dry M3 same mass/ 1g of manganese(IV) oxide / solid M1 280 ÷ 120 (b) (i) 2 M2 2.33 **ALLOW** ecf from M1 **ALLOW** any number of significant figures except An explanation that links the following three points (ii) 3 M1 the concentration of hydrochloric acid is **ALLOW** the surface area greatest of zinc is greatest **ALLOW** greatest number of/more particles (of hydrochloric acid/ zinc) M2 therefore there are more collisions More frequent collisions 2 scores M2 and M3 M3 per unit time Max 1 if incorrect reference to energy (iii) M1 curve above original and starts at 0 M2 curve goes flat at same volume (410cm<sup>3</sup>)

| (iv) | M1 greater surface area                                                                                                                                  |                                                                                                                                   | 2        |
|------|----------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|----------|
|      | M2 more collisions per unit time / more frequent collisions                                                                                              |                                                                                                                                   |          |
| (c)  | M1 $8.46 \times 10^{-3}$ mol of zinc  M2 therefore $1.69 \times 10^{-2}$ mol hydrochloric acid needed (which is less than $2.50 \times 10^{-2}$ mol)  OR | <b>ALLOW</b> any number of sig figs including one e.g. 0.008 moles of zinc, therefore 0.016 moles of acid needed scores M1 and M2 | 2        |
|      | M1 $1.25 \times 10^{-2}$ mol of zinc are needed  M2 therefore $0.8(13)$ g of zinc is needed (and there is only $0.55$ g)                                 |                                                                                                                                   |          |
|      |                                                                                                                                                          |                                                                                                                                   | 15 marks |

