Pearson Edexcel

Mark Scheme (Results)

January 2021

Pearson Edexcel International GCSE Mathematics A (4MA1)
Paper 2HR

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

January 2021
Publications Code 4MA1_2HR_2101_MS
All the material in this publication is copyright
© Pearson Education Ltd 2021

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.
- Types of mark
- M marks: method marks
- A marks: accuracy marks
- B marks: unconditional accuracy marks (independent of M marks)
- Abbreviations
- cao - correct answer only
- ft - follow through
- isw - ignore subsequent working
- SC - special case
- oe - or equivalent (and appropriate)
- dep - dependent
- indep - independent
- eeoo - each error or omission

- No working

If no working is shown then correct answers normally score full marks
If no working is shown then incorrect (even though nearly correct) answers score no marks.

- With working

If there is a wrong answer indicated on the answer line always check the working in the body of the script (and on any diagrams), and award any marks appropriate from the mark scheme.
If it is clear from the working that the "correct" answer has been obtained from incorrect working, award 0 marks.
If a candidate misreads a number from the question. Eg. Uses 252 instead of 255; method marks may be awarded provided the question has not been simplified. Examiners should send any instance of a suspected misread to review. If there is a choice of methods shown, mark the method that leads to the answer on the answer line; where no answer is given on the answer line, award the lowest mark from the methods shown. If there is no answer on the answer line then check the working for an obvious answer.

- Ignoring subsequent work

It is appropriate to ignore subsequent work when the additional work does not change the answer in a way that is inappropriate for the question: eg. Incorrect cancelling of a fraction that would otherwise be correct.
It is not appropriate to ignore subsequent work when the additional work essentially makes the answer incorrect eg algebra.
Transcription errors occur when candidates present a correct answer in working, and write it incorrectly on the answer line; mark the correct answer.

- Parts of questions

Unless allowed by the mark scheme, the marks allocated to one part of the question CANNOT be awarded to another.

2	$\begin{aligned} & 0.5 \times \pi \times 6^{2}(=56.54 \ldots) \text { or } 12 \times 6(=72) \\ & \text { or } \pi \times 6^{2} \text { oe } \\ & \hline \end{aligned}$			M1		
	"72"-"56.54..."				dep M1 for	lete method
		15.5	3	A1	15.4 to 15.5	
						Total 3 ma

$\mathbf{3}$ (a) (i)		24,30	1	B1No repeats, omissions or extra values
(ii)		$21,23,25,27,29$	1	B1 No repeats, omissions or extra values (b)$\quad$$(A \cup B)^{\prime}$ or $A^{\prime} \cap B^{\prime}$
	1	B1 or $(B \cup A)^{\prime}$ or $B^{\prime} \cap A^{\prime}$		

4 (a)		$81 k^{8}$	2	B2B1 for 81 or k^{8} seen in their final answer.
(b)		$7 m^{4} n^{6}$	2	B2B1 for $7 m^{4}$ or n^{6} in a product with no other terms in m or n
				Total 4 marks

$\mathbf{5}$ (a)	vertices at $(-9,6)(-9,9)(-3,9)(-6,6)$	Shape in correct position	2	B2B1 for congruent shape in correct orientation but wrong position or quadrilateral with 2 or 3 vertices correct.
(b)	vertices at $(7,3)(10,6)(13,6)(13,3)$	Shape in correct position	1	B1
(c)		enlargement	3	B1for enlargement, enlarge, etc so long as no mention of rotation, reflection or translation, flip, move etc.
		scale factor 2 centre $(-3,3)$	B1SF 2, double, two times etc. $(-3,3)$ stated. Accept about, from etc. with no mention of line, or column vector.\quad Total 6 marks	

7		$\begin{gathered} y \geq 1 \mathrm{oe} \\ x \leq 3 \mathrm{oe} \\ y \leq 3 x-2 \mathrm{oe} \end{gathered}$	3	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & \text { B1 } \end{aligned}$	Allow $1 \leq y \leq 7$ Allow $1 \leq x \leq 3$ Condone $<$ and $>$ in place of \leq and \geq throughout. SC B1 if no marks awarded, recognition of lines $x=3$ and $y=1$. Allow incorrect inequality and condone use of equals signs eg $y<1, x=3$ may be seen on diagram.
					Total 3 marks

8 (a)		Pacific	1	B1	Accept 1.357×10^{5}
(b)	$1.119 \times 10^{5}-1.797 \times 10^{4}$		2	M1	Accept $111900-17970$ oe or 93930 or -93 930
		$9.393(0) \times 10^{4}$		A1	Accept (\pm) 9.393(0) $\times 10^{4}$ or $(\pm) 9.39 \times 10^{4}$ or $(\pm) 9.4 \times 10^{4}$
					Total 3 marks

9	$\begin{aligned} & \text { eg } \\ & (x \pm 20)(x \pm 1) \end{aligned}$	$\begin{aligned} & \frac{-(-21) \pm \sqrt{(-21)^{2}-4 \times 1 \times 20}}{2 \times 1} \\ & \text { or }\left(x-\frac{21}{2}\right)^{2}-\left(\frac{21}{2}\right)^{2}+20=0 \end{aligned}$		3		If factorising, allow brackets which expanded give 2 out of 3 terms correct - if using formula or completing the square allow one sign error and some simplification - allow as far as eg $\frac{21 \pm \sqrt{441-80}}{2} \text { or eg }\left(x-\frac{21}{2}\right)^{2}-\frac{361}{4}=0 \mathrm{oe}$
	$(x-20)(x-1)$	$\begin{aligned} & \text { eg } \frac{21 \pm \sqrt{441-80}}{2} \text { or } \\ & \frac{21 \pm \sqrt{361}}{2} \text { or } \frac{21 \pm 19}{2} \\ & \text { or } x= \pm \sqrt{\frac{361}{4}}+\frac{21}{2} \text { oe } \end{aligned}$			M1	dep on M1 for correct factorisation, or a correct expression for x if completing the square. or a correct substitution into quadratic formula with some processing.
			1,20		A1	for both correct values, dep on 1st M1 with no incorrect working.
						Total 3 marks

10	$\begin{aligned} & (11 \times 3)+(8 \times 5)+(6 \times 7)+(5 \times 9)(=160) \\ & (=33+40+42+45=160) \end{aligned}$		4	M1	Correct numerical products using midpoints (allowing one error) with intention to add. May be seen in table.
	$\begin{aligned} & " 160 "+x=4.25 \times(11+8+6+5+x) \text { oe } \\ & \text { or } \frac{160 "+x}{" 30 "+x}=4.25 \\ & \text { or " } 160 \text { " }+x=4.25 \times " 30 "+4.25 x \end{aligned}$			M1	dep M1 for correct equation ft their 160.
	$\begin{aligned} & " 160 "-" 127.5 "=4.25 x-x \\ & \text { or } 32.5=3.25 x \end{aligned}$			M1	Isolating x and number terms
		10		A1	dep 1st M1
					Total 4 marks

Alternative Mark Scheme for question 10

10	$\begin{aligned} & (11 \times 3)+(8 \times 5)+(6 \times 7)+(5 \times 9) \\ & (=33+40+42+45=160) \end{aligned}$		4	M1	Correct numerical products using midpoints (allowing one error) with intention to add. May be seen in table.
	$\begin{aligned} & 4.25 y=" 160 "+[y-(11+8+6+5)] \text { oe } \\ & 4.25 y=" 160 "+y-30 \end{aligned}$			M1	dep M1 for correct equation ft their 160 , where $y=$ total number of pupils
	$\begin{aligned} & 4.25 y-y=" 160 "-30 \\ & \text { or } 3.25 y=130 \\ & \text { or } y=40 \\ & \hline \end{aligned}$			M1	Isolating y and number terms or $y=40$
		10		A1	dep 1st M1
					Total 4 marks

11	$\begin{aligned} & 360-40(=320) \quad \text { or } \frac{320}{360} \text { oe } \\ & \text { or } \frac{40}{360} \times 2 \pi \times 9(=6.28 \ldots) \end{aligned}$		4	M1	
	$\begin{aligned} & \frac{" 320 "}{360} \times 2 \pi \times 9(=16 \pi=50.26 \ldots) \\ & \text { or } 2 \pi \times 9-" 6.28 "(=50.26) \end{aligned}$			M	
	" 50.26 " $+2 \times 9$			M	complete method to find perimeter
		68.3		A1	68.2 to 68.3
					Total 4 marks

13	$\begin{aligned} & \sin 23^{\circ}=\frac{" h "}{500} \text { oe or } \cos 67^{\circ}=\frac{" h "}{500} \text { oe } \\ & \text { or } \frac{" h "}{\sin 23^{\circ}}=\frac{500}{\sin 90^{\circ}} \text { or } \frac{\sin 23}{" h^{"}}=\frac{\sin 90}{500} \text { oe } \\ & \text { or } \cos 23^{\circ}=\frac{" x "}{500} \text { oe or } " x^{\prime \prime}=500 \cos 23^{\circ}(=460.25 . .) \\ & \text { and } " h^{\prime 2}=500^{2}-\left(" 460.25 \ldots .^{\prime 2}\right)^{2} \text { oe } \end{aligned}$		3		for a correct expression involving " h "
	$\begin{aligned} & \text { " } h "=500 \times \sin 23^{\circ} \text { oe } \\ & \text { or " } h "=\sqrt{500^{2}-(" 460.25 \ldots . . ")^{2}} \end{aligned}$			M	
		195.4		A1	195-195.4
					Total 3 marks

14	$0.85 \times x^{2}=1.0285 \quad$ or $85 \times x^{2}=102.85$ oe or $\left(x^{2}=\right) 1.0285 \div 0.85$ or $\left(x^{2}=\right) 102.85 \div 85$ oe or 1.21 oe	4 M2	for a correct equation using their chosen letter or value in place of letter, or a correct division or 1.21 seen otherwise: (M1 for either 0.85 or 1.0285 seen)	
	$(x=) \sqrt{1.0285 \div 0.85}$ or $(x=) \sqrt{102.85 \div 85}$ oe or $(x=) 1.1(0)$		M1	
			for a correct expression or value for x	
				A1

Alternative Mark Scheme for Q14					
14	$\begin{aligned} & \left(\frac{100+y}{100}\right)^{2} \times 0.85=1.0285 \text { oe or } \\ & \left(\frac{100+y}{100}\right)^{2}=1.21 \mathrm{oe} \\ & \text { or } 10^{4}+200 y+y^{2}=12100 \mathrm{oe} \end{aligned}$		4	M2	for a correct equation using their chosen letter, otherwise: (M1 for either 0.85 or 1.0285 seen)
	$\begin{aligned} & \frac{100+y}{100}=1.1 \text { or } 100+y=110 \mathrm{oe} \\ & \text { or }(y+210)(y-10)=0 \end{aligned}$				for a correct equation involving y with no square terms or a correct method for solving the quadratic: If factorising, allow brackets which expanded give 2 out of 3 terms correct - if using formula or completing the square allow one sign error and some simplification - allow as far as eg $\begin{aligned} & \frac{-200 \pm \sqrt{40000+8400}}{2} \text { or eg } \\ & (y+100)^{2}-12100=0 \text { oe } \end{aligned}$
		10		A1	
					Total 4 marks

15	$\begin{aligned} & \operatorname{eg}(2 m+1)(2 n+1) \\ & \text { or eg }(2 m-1)(2 n+3) \end{aligned}$		4		Product of 2 different odd numbers (in the form $2 n+k$ where k is odd). Must have different letters/variables. (M1 for the product of same or different odd numbers where the variable is the same eg $(2 n+1)(2 n-1)$ or $(2 n+1)(2 n+3) \quad)$
	$\begin{aligned} & \text { eg } 4 m n+2 m+2 n+1 \\ & \text { or eg } 4 n^{2}+4 n+1 \\ & \text { or eg } 4 n^{2}-1 \\ & \text { or eg } 4 n^{2}+8 n+3 \\ & \hline \end{aligned}$				dep M1 Multiplying out the two brackets with odd numbers correctly.
	eg $2(2 m n+m+n)+1$ therefore odd	Proved			dep M3 Factorising and a conclusion or stating that the 3 leading terms are all even, hence result is odd.
					Total 4 marks

17 (a)	g(3) $=-7$ or $f(3-10)=(3-10)^{2}+6$ or $3^{2}-20 \times 3+106 ~ o e ~$		2	M1

18	$\begin{aligned} & \frac{5}{x+2}+\frac{3}{x(x+2)} \quad(=2) \\ & \text { or } \frac{5 x}{x^{2}+2 x}+\frac{3}{x^{2}+2 x} \quad(=2) \end{aligned}$		5	M1	Factorising $x^{2}+2 x$ in correct expression on LHS or for writing the two fractions over a common denominator.
	$\frac{5 x+3}{x(x+2)}=2 \text { or } \frac{5 x+3}{x^{2}+2 x}=2$ or $5 x+3=2 x(x+2)$ oe or $5 x+3=2 x^{2}+4 x$ oe			M1	Correct simplified single fraction $=2$ or correct equation with no fractions.
	$2 x^{2}-x-3(=0)$			M1	Correct 3 term quadratic
	$\begin{aligned} & (2 x-3)(x+1)(=0) \\ & \text { or } \frac{--1 \pm \sqrt{(-1)^{2}-4 \times 2 \times(-3)}}{2 \times 2} \\ & \text { or }\left(x-\frac{1}{4}\right)^{2}-\frac{1}{16}-\frac{3}{2}=0 \text { oe } \end{aligned}$			M1ft	independent For solving their 3 term quadratic equation using any correct method. If factorising, allow brackets which expanded give 2 out of 3 terms correct (if using formula or completing the square allow one sign error and some simplification - allow as far as eg $\frac{1 \pm \sqrt{1+24}}{4}$ or eg $\left(x-\frac{1}{4}\right)^{2}=\frac{25}{16}$ oe
		1.5 and -1		A1	oe dep on M3
					Total 5 marks

Alternative Mark Scheme for question 18 (obtaining a cubic)

18	$\frac{5\left(x^{2}+2 x\right)+3(x+2)}{\left(x^{2}+2 x\right)(x+2)}(=2) \text { oe }$		5	M1	Correct fraction over a common denominator (may be 2 separate fractions)
	$\text { eg } 5\left(x^{2}+2 x\right)+3(x+2)=2\left(x^{2}+2 x\right)(x+2)$ oe			M1	Correct equation with no fractions.
	$2 x^{3}+3 x^{2}-5 x-6 \quad(=0)$			M1	Correct cubic
	$(x+1)(2 x-3)(x+2) \quad(=0)$			M1	For product of 3 correct linear factors.
		$\begin{gathered} 1.5 \text { and } \\ -1 \end{gathered}$		A1	oe dep on M3 Do not award A mark if extra solution (-2) given.
					Total 5 ma

19 (a)	$\operatorname{eg}\left(2^{3}\right)^{2} \times \sqrt[3]{\left(2^{2}\right)^{6}}$ or $\left(2^{3}\right)^{2} \times(4)^{\frac{6}{3}}$ or $4^{3} \times 4^{2}$ or 2^{6} or 2^{4} seen or $2^{6} \times 16$ or 64×4^{2} or $8^{2} \times 4^{2}$ or $8^{2} \times 16$ or 64×16		3	M1	a correct first stage.
	$2^{6} \times\left(2^{12}\right)^{\frac{1}{3}} \quad$ or $1024 \quad$ or 32^{2} or 4^{5} or $2^{6} \times 2^{4}$				dep on 1st M mark.
		2^{10}			dependent on first M1 isw if 2^{10} seen but then 10 given as answer.
(b)	$\left(n^{-\frac{4}{5}}=\right) \frac{1}{16} \quad \text { or } 0.0625 \mathrm{oe} \quad \mathrm{eg}\left(n^{-\frac{1}{5}}\right)^{4}=\left(\frac{1}{2}\right)^{4}$		4		for sight of $\frac{1}{16}$ oe, even if raised to an incorrect power. or for algebraic approach, separating out the 4 , or 5 or -1 in the power
	$\begin{array}{lll} \begin{array}{lll} (n=) & 16^{\frac{5}{4}} & \text { or } 0.0625^{-\frac{5}{4}} \text { oe } \\ (n=) & 2^{5} & \text { or } \sqrt[4]{1048576} \text { oe } \\ \text { or } \frac{1}{0.0625^{\frac{5}{4}}} & \text { or }\left(\frac{1}{16}\right)^{-\frac{5}{4}} & \text { eg }(n=)\left(\frac{1}{2}\right)^{-5} \\ \hline \end{array} \\ \hline \end{array}$				for a correct expression for n (M1 for one correct algebraic stage eg $n^{-\frac{1}{5}}=\frac{1}{2}$)
		32		A1	
					Total 7 marks

20	$75 \times 2(=150)$		5	M1	" 150 " for $A O C$ may be seen on diagram.
$\frac{" 150 " \times \pi r^{2}}{360} \text { oe }\left(=1.309 r^{2} \text { or } \frac{5 \pi}{12} r^{2}\right)$				M1	dep 1st M1
	$0.5 \times \sin$ (" 150 ") $\times r^{2}$ oe ($=0.25 r^{2}$)			M1	dep 1st M1 a complete method to find the area of triangle $O A C$ in terms of r
	$\begin{aligned} & \operatorname{eg} \frac{150 \pi}{360} r^{2}-0.5 \sin (150) r^{2}=200 \mathrm{oe} \\ & \text { or }(1.309 \ldots-0.25) r^{2}=200 \end{aligned}$			M1	correct equation in r^{2} or rearranged to make r^{2} or r the subject.
		13.7		A1	accept $13.7-13.8$
					Total 5 marks

21	$\frac{6}{n} \times \frac{5}{n-1}$ or $\frac{n-6}{n} \times \frac{n-7}{n-1}$ oe or $\frac{6}{n} \times \frac{n-6}{n-1}$		6	M	for red, red or blue, blue This may be seen as part of an equation allow eg $n-6-1$ in place of $n-7$ or for red, blue
	$\frac{6}{n} \times \frac{5}{n-1}$ and $\frac{n-6}{n} \times \frac{n-7}{n-1}$ oe or $2 \times \frac{6}{n} \times \frac{n-6}{n-1}$ oe			M	for both products, with no other products This may be seen as part of an equation or for red, blue + blue, red
	$\frac{6}{n} \times \frac{5}{n-1}+\frac{n-6}{n} \times \frac{n-7}{n-1}=\frac{9}{17}$ oe or $2 \times \frac{6}{n} \times \frac{n-6}{n-1}=1-\frac{9}{17}$ oe			M	Correct equation or correct equation using the complementary event.
	$2 n^{2}-53 n+306(=0)$ oe			A1	Correct simplification of equation to a 3 term quadratic. eg $8 n^{2}-212 n+1224(=0)$
	$\begin{aligned} & (2 n-17)(n-18)(=0) \\ & \text { or } \frac{--53 \pm \sqrt{(-53)^{2}-4 \times 2 \times 306}}{2 \times 2} \\ & \text { or }\left(n-\frac{53}{4}\right)^{2}-\left(\frac{53}{4}\right)^{2}+153=0 \mathrm{oe} \end{aligned}$			M	For solving correct 3 term quadratic equation using any correct method. If factorising, allow brackets which expanded give 2 out of 3 terms correct (if using formula or completing the square allow one sign error and some simplification - allow as far as eg $53 \pm \sqrt{2809-2448}$ or eg $\left(n-\frac{53}{4}\right)^{2}=\frac{361}{16}$ oe or for both correct solutions of the correct quadratic. $n=18, n=8.5$
		18		A1	cao dep M3 do not award if non-integer solution also given.
					Total 6 marks

22	$\sin \left(\frac{180-140}{2}\right)=\frac{M B}{8}$ oe or $\cos \left(\frac{140}{2}\right)=\frac{M B}{8}$ oe or $\frac{8}{\sin 20}=\frac{A C}{\sin 140} \quad$ and $\left(M B^{2}\right)=8^{2}-\left(\frac{" 15.035 "}{2}\right)^{2}$ or $A C=\sqrt{8^{2}+8^{2}-2 \times 8 \times 8 \times \cos 140}(=15.035 \ldots)$ and $\left(M B^{2}\right)=8^{2}-\left(\frac{" 15.035 "}{2}\right)^{2}$		4	M1 for a correct expression with $M B$ included, or an expression for $M B^{2}$ If using sine or cosine rule on the isosceles triangle $A B C$, use of Pythagoras required to obtain an expression for $M B^{2}$	
	$\begin{aligned} & (M B=) 8 \sin (" 20 ")(=2.736) \text { or }(M B=) 8 \cos (" 70 ")(=2.736) \\ & \text { or }(M B)=\sqrt{8^{2}-\left(\frac{" 15.035 "}{2}\right)^{2}} \end{aligned}$			M1	
	$\tan T M B=\frac{10}{" 2.736 "}$				dep 1st M1
		74.7		A1	74.65 to 74.75
					Total 4 marks
					OTAL FOR PAPER 100 MARKS

