www.igexams.com

Mark Scheme (Results)

January 2021

Pearson Edexcel International GCSE Mathematics A (4MA1) Paper 2H

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <u>www.edexcel.com</u> or <u>www.btec.co.uk</u>. Alternatively, you can get in touch with us using the details on our contact us page at <u>www.edexcel.com/contactus</u>.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

January 2021 Publications Code 4MA1_2H_2101_MS All the material in this publication is copyright © Pearson Education Ltd 2021

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme.

Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.

- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

• Types of mark

- M marks: method marks
- A marks: accuracy marks
- B marks: unconditional accuracy marks (independent of M marks)

• Abbreviations

- cao correct answer only
- ft follow through
- isw ignore subsequent working
- SC special case
- oe or equivalent (and appropriate)

- dep dependent
- o indep independent
- o awrt answer which rounds to
- eeoo each error or omission

• No working

If no working is shown then correct answers normally score full marks

If no working is shown then incorrect (even though nearly correct) answers score no marks.

• With working

If there is a wrong answer indicated on the answer line always check the working in the body of the script (and on any diagrams), and award any marks appropriate from the mark scheme.

If it is clear from the working that the "correct" answer has been obtained from incorrect working, award 0 marks.

If a candidate misreads a number from the question. Eg. Uses 252 instead of 255; method marks may be awarded provided the question has not been simplified. Examiners should send any instance of a suspected misread to review. If there is a choice of methods shown, mark the method that leads to the answer on the answer line; where no answer is given on the answer line, award the lowest mark from the methods shown.

If there is no answer on the answer line then check the working for an obvious answer.

• Ignoring subsequent work

It is appropriate to ignore subsequent work when the additional work does not change the answer in a way that is inappropriate for the question: eg. Incorrect cancelling of a fraction that would otherwise be correct.

It is not appropriate to ignore subsequent work when the additional work essentially makes the answer incorrect eg algebra.

Transcription errors occur when candidates present a correct answer in working, and write it incorrectly on the answer line; mark the correct answer.

• Parts of questions

Unless allowed by the mark scheme, the marks allocated to one part of the question CANNOT be awarded to another.

Internatio	onal GCSE Maths				
Apart from	m questions 14a, 21 where the mark scheme state	es otherwise, the correct	answer, ui	nless clearly obtained from an incorrect me	ethod,
should be	taken to imply a correct method.				
Question	Working	Answer	Mark	Notes	
1	6 hrs 39 mins = 6.65 (hrs) or		3	B1	
	$6\frac{39}{60}$ or $6\frac{13}{20}$ or $\frac{133}{20}$ or 399 (mins)				
	Average speed = $\frac{429}{6.65}$ oe eg $\frac{429}{399} \times 60$			M1 Use of $S = D \div T$ (use of their hours) [allow 429 ÷ 6.39 if B0 award	
		64.5		A1 Awrt 64.5	
				Total	3 marl
2		3, 7, 8, 8 and one of	3	B3 For a list of 5 correct numbers	
		4 or 5 or 6		(B2 for a list of 5 numbers with median of 7, mode of 8, range of	
				B1 for a list of 5 or 6 numbers w of: median of 7, mode of 8, range o	
				Total	3 mar

3	(a)	520 - 465 (= 55) or $\frac{520}{465}$ (=1.118)		3	M1	
		$\frac{55''}{465} \times 100$ or $100 \times (1.118'' - 1)$ oe	11.8		M1	
					A1 11.8 or b	etter (11.827956)
	(b)	0.12×550 oe (= 66)		3	M1 oe	M2 for
		550 - "66"			M1	0.88×550 oe
			484		A1	
						Total 6 marks

4	(a)(i)	1 L	Correct line	1	B1	For $x = 1.5$ drawn
	(ii)		Correct line	1	B1	For $y = x$ drawn
	(iii)	5 4 3 2 1 0 1-2 3 4 5 6 7 3 c	Correct line	1	B1	For $x + y = 6$ drawn
	(b)		Correct region	1	B1	dep on B3 for correctly indicating the region R accept unlabelled or unshaded if clear. Shading can be 'in' or 'out'.
						Total 4 marks

5	(a)	$8x^2 + 20x - 6x^2 + 9x$		2	M1	3 correct terms or all 4 terms condoning incorrect signs
			$2x^2 + 29x$		A1	
	(b)	eg $y^5 \times y^n = y^{19}$ or $y^{-1} \times y^n = y^{13}$ or $5 + n - 6 = 13$		2	M1	Use of 1 rule of indices or a correct linear equation in <i>n</i>
			14		A1	Accept y ¹⁴
	(c)(i)	7t - 2t < 7 + 8 oe eg $5t < 15$ oe		2	M1	Terms in <i>t</i> on one side and number terms the other side – may be in an equation or the incorrect inequality sign or an answer of $t = 3$ or eg $t \ge 3$
			<i>t</i> < 3		A1	
	(ii)		open circle at $t = 3$ and a line with an arrow to the left	1	B1ft	ft their inequality Allow a line without an arrow if it reaches to at least -5, with an arrow it can be any length
						Total 7 marks

6	(a)		1	1	B1	
	(b)	$3 \times 10^{125} + 2 \times 10^{124}$ or digits 1024×10^{n} oe		3	M1	
		$\begin{array}{c} 32 \times 10^{124} \text{ or } 3 \times 10^{125} + 0.2 \times 10^{125} \text{ or} \\ 30 \times 10^{124} + 2 \times 10^{124} \end{array}$			M1	oe 'correct' answer in incorrect form.
			3.2×10^{125}		A1	
						Total 4 marks

7	5 × 398 (= 1990) or 6 × 401 (= 2406)		3	M1	Correct total for 5 or for 6 cocoa pods
	"2406" – "1990"		-	M1	(M2 for $398 + 6 \times 3$ or $401 + 5 \times 3$)
		416	-	A1	
					Total 3 marks

				-	
8	$8^2 + 15^2 (= 289)$		5	M1	
	$\sqrt{8^2 + 15^2} (= 17)$			M1	
	$\pi \times \left("\frac{17}{2} " \right)^2 (= 226.98) \text{ or } 0.5 \times 15 \times 8 (= 60)$			M1	
	$\pi \times \left(\left\ \frac{17}{2} \right\ \right)^2 - 0.5 \times 15 \times 8$			M1	
	("226.98" – "60")				
		167		A1	Accept answers which round to 167
					Total 5 marks
9		$2^4 \times 3^2 \times 5^4 \times 11 \times 13$	2	B2	(B1 for 12 870 000 or correct

	•			Total 2 marks
9		$2^4 \times 3^2 \times 5^4 \times 11 \times 13$	2	B2 (B1 for 12 870 000 or correct unsimplified product or $2^m \times 3^n \times 5^p \times 11 \times 13$ with at least 1 of <i>m</i> , <i>n</i> or <i>p</i> correct or for $2^4 \times 3^2 \times 5^4$)

10	$eg\frac{4}{5} \times \frac{3}{7} (=\frac{12}{35}) oe \text{ or } 0.24 \times \frac{4}{7} (=\frac{96}{700}) oe \text{ or}$ $eg\frac{4}{5} \times 3 (=\frac{12}{5} = 2.4) \text{ and } 0.24 \times 4 (=\frac{24}{25} = 0.96) (or 3.36) \text{ or}$ $eg\frac{4}{5} \times 300 (= 240) \text{ and } 0.24 \times 400 (= 96) (or 336)$		3	M1
	$eg''\frac{12}{35}'' + "\frac{96}{700}'' \left(=\frac{336}{700}\right) \text{ oe or}$ $\frac{"2.4" + "0.96"}{3+4} \left(=\frac{3.36}{7}\right) \text{ oe or}$			M1 or 0.48 or 48% or correct unsimplified fraction eg $\frac{84}{175}$
	eg $\frac{"240"+"96"}{300+400} \left(=\frac{336}{700}\right)$ oe	$\frac{12}{25}$		A1 cao
				Total 3 marks

11	(definition of part: there are 3 parts: one part is the number, one part the letter <i>t</i> and one part the letter <i>w</i>Definition of terms: there are 6 terms: 2 number terms, 2 terms in <i>t</i> and 2 terms in <i>w</i>)		3	M1 indep	Fully correct cancellation of any two parts of their fraction at any stage of working
				M1 indep	correctly apply the negative power to the whole of their bracket (all parts or all terms) or correctly square all parts or terms of their bracket or correctly apply the negative power AND square of at least two parts (maybe 4 terms) of their bracket
		$4t^4w^2$		A1	Allow $(2t^2w)^2$ after the correct answer
	ALTERNATIVE				
			3	M2	2 correct terms (M1 for 1 correct term)
		$4t^4w^2$		A1	Allow $(2t^2w)^2$ after the correct answer
					Total 3 marks

12	13 - 4		2	M1 For selecting 4 and 13
		9		A1
				Total 2 marks

13	(a) (i)	62	3	B1
	(a) (ii)	118		B1ft 180 – their (a)(i)
	(b)	62		B1
				Total 3 marks

14	(a)	eg $20 \times \frac{9a-7}{5} - 20 \times \frac{3a-7}{4} = 20 \times 4.55 (= 91)$ or eg $4(9a-7) - 5(3a-7) = 20 \times 4.55$ or eg $\frac{4(9a-7)}{20} - \frac{5(3a-7)}{20} (= 4.55)$ or eg $\frac{4(9a-7) - 5(3a-7)}{20} (= 4.55)$		3	M1	For clear intention to multiply all terms by 20 (or 4×5) or a multiple of 20 oe or to express LHS as two fractions over 20 (or 4×5) or a multiple of 20 oe or as a single fraction with a denominator of 20 (or 4×5) or a multiple of 20 oe if expanded numerator, allow one error
		eg $36a - 28 - 15a + 35 = 20 \times 4.55$ or 21a = 84 oe	4	-	M1 A1	Expanding brackets and multiplying by denominator with no more than one sign error dep on M1
	(b)	$p^2 = \frac{ac+8}{3+c}$		4	M1	for removing square root
		$3p^2 + cp^2 = ac + 8$			M1	for multiplying by denominator and expanding in a correct equation
		$cp^2 - ac = 8 - 3p^2$ or $3p^2 - 8 = ac - cp^2$			M1ft	for gathering terms in c on one side and other terms the other side ft their equation dep on 2 terms in c and two other terms
			$c = \frac{8 - 3p^2}{p^2 - a}$		A1	or $c = \frac{3p^2 - 8}{a - p^2}$
						Total 7 marks

15	(a)	$63 \div 1.5 (= 42) \text{ or } a \text{ correct value written on FD scale}$ $(10 \text{ small squares} = \text{FD } 10) \text{ or}$ $10 \text{ squares} = 1 \text{ parcel or } 1 \text{ big square} = 2.5 \text{ parcels oe}$ $eg \text{ area} = 18 \times 5 + 15 \times 42 + 10 \times 24 + 10 \times 30 + 20$ $\times 8 (= 1420)$ $3.6 \times 1 + 3 \times 8.4 + 2 \times 4.8 + 2 \times 6 + 4 \times 1.6 (= 56.8)$ (at least 3 bars correct for any method of summing area)		3	M1	For use of area related to frequency eg showing a correct unambiguous value on the frequency density scale or calculating the area in some form
		$0.5 \times 18 + 63 + 1 \times 24 + 1 \times 30 + 2 \times 8$ (9 + 63 + 24 + 30 + 16) oe eg "1420" ÷ 10 or "56.8" × 2.5 oe	142		M1 A1	Total of 5 frequencies with just one error or Area of bars with just one error, with correct calculation to give frequency
			142		AI	
	(b)	$0.75 \times 24 (= 18) + 30 + 16 (= 64)$ oe Eg "their (a)" - (9 + 63 + 0.25 × 24) (= 64) (ft figures from (a) dep on M1 for (a))		3	M1ft	(dep on M1 in (a))if working with small squares they may get eg $\frac{640}{1420}$
		$\frac{"64"}{142} \times \frac{"63"}{141}$ (ft their value of 142 from (a))			M1	64 must come from correct working allow $\frac{"64"}{142} \times \frac{"64"}{142}$ (ft their value of 142 from (a))
			$\frac{672}{3337}$		A1	0.201 or better (0.20137)
						Total 6 marks

			38	-	B1	their $2x + 12$
		<i>x</i> = 13			A1	correct value for <i>x</i>
	(b)	$2x + 6 + x + 2 + 4 + 9 + 9 + 11 = 80$ $(80 - 6 - 2 - 4 - 9 - 9 - 11) \div 3$		3	M1ft	ft their Venn diagram A correct equation to find <i>x</i> or subtracting all numerical values from 80 and dividing by 3 or other fully correct method to find <i>x</i> with all sections completed
16	(a)	$ \begin{array}{c} \varepsilon \\ 2x \\ 4 \\ 9 \\ G \end{array} $		3	B3	For all sections completed correctly (B2 for 5 or 6 sections correct (excl <i>x</i>), B1 for 3 or 4 sections correct (excl <i>x</i>))

17	(a)	$\left(\frac{37+28}{2}\right) \times 20 (= 650)$		4	M1	Correct method to find area of trapezium
		$\sqrt{4.5^2 + 20^2} (= 20.5)$ oe			M1	Correct method to find slanted edge <i>AB</i> oe
		$2 \times `650' + 2 \times `20.5' \times 24 + 37 \times 24 + 28 \times 24$ (2 × `650' + 2 × 492 + 888 + 672)			M1	method to find the sum of the surface areas of at least 4 correct faces (ft their area of trapezium) ignore incorrect areas
			3844		A1	2
	(b)	eg $\sqrt{24^2 + (37 - "4.5")^2} (= 40.4)$ (AF =) $\sqrt{24^2 + 20^2 + (37 - "4.5")^2} (= 45.08)$		3	M1	Correct method to find diagonal from <i>A</i> to point on <i>HE</i> below <i>F</i> or <i>AF</i>
		$\tan x = \frac{20}{"40.4"} \text{ or } \sin x = \frac{20(\sin 90)}{"45.08"} \text{ or}$ $\cos x = \frac{"40.4"^2 + "45.08"^2 - 20^2}{2 \times "40.4" \times "45.08"}$			M1	Correct trig statement for finding the required angle
			26.3		A1	26.3 - 26.4
	1					Total 7 marks

18	(a)			4	B 1	<i>b</i> = 14
		(Gradient $AB =$) $\frac{12}{5}$ oe or eg $\frac{102}{14}$ oe			M1	For the gradient of <i>AB</i>
		(Gradient $BC =$) $-\frac{5}{12}$ oe			M1	Ft correct use of $m_1 \times m_2 = -1$ for <i>their</i> gradient of <i>AB</i> or $a = 2.5$ or $c = -9.5$
			a = 2.5, c = -9.5		A1	for $a = 2.5$ and $c = -9.5$
	(b)	$(AB =) \sqrt{(1 - 4)^2 + (10 - 2)^2}$		3	M1	
		$(=\sqrt{5^2+12^2} (=13))$				
		$(BC =)\sqrt{(19-1)^2 + (10-2.5)^2}$		-	M1	ft their value of a
		$(=\sqrt{18^2+7.5^2} (= 19.5))$ or				
		$\sqrt{(19-1)^2 + (10 - \text{their } a)^2}$ or				
		1.5 × "13"				
			65		A1	
						Total 7 marks

10		Ι	_		
19	$(v =) 3t^2 + 10t - 8$		5	M1	For at least 2 terms differentiated correctly
	$3t^2 + 10t - 8 = 0$			M 1	Their $v = 0$ dep on M1 could be implied by
					correct values
	(3t-2)(t+4) (= 0)			M1	2
	2				dep on M1 for correct values for t or for $t = \frac{2}{3}$
	(3t-2)(t+4) (= 0) $(t=) \frac{2}{3}$ or $(t=) -4$				3
	3				or
					correct method to solve their 3 term quadratic
					equation:
					If factorising, allow brackets which when
					expanded give 2 out of 3 terms correct (If
					using formula or completing the square allow
					one sign error and some simplification – allow
					as far as eg $\frac{-10 \pm \sqrt{100 + 96}}{6}$ oe
					6
					$3(t+\frac{5}{3})^2-\frac{48}{3}=0$)
					$3(1+3)^{2} 3^{-6}$
	$(2)^{3}$ (2)	2 2		M1	2
	$(s=)\left(\frac{2}{3}\right)^3 + 5 \times \left(\frac{2}{3}\right)^3$	$-8 \times \frac{2}{-} + 10$			For $\frac{2}{3}$ (only) substituted into formula for s or
	$\left \begin{array}{c} (3) \\ (3) \\ \end{array}\right $	3			5
					for selecting the value from this substitution or
					for an answer of 7.185
		19	94	A1	oe but numerator and denominator must be
		$\overline{2}$	7		integers.
			-	1	Total 5 marks
I					

20	eg $0.5 \times x \times x \times \sin 60 \left(= \frac{\sqrt{3}}{4} x^2 = 0.433x^2 \right)$ oe where $x = PQ$ eg $0.5 \times 2n \times 2n \times \sin 60 \left(= \sqrt{3}n^2 = 1.732n^2 \right)$ oe where $2n = PQ$ or use $0.5 \times b \times h$ where $h = \sqrt{x^2 - (0.5x)^2} \left(= \frac{\sqrt{3}}{2} x \right)$ oe eg $6 \times 0.5 \times 1.5x \times 1.5x \times \sin 60 \left(= \frac{27\sqrt{3}}{8} x^2 = 5.845x^2 \right)$ oe eg $6 \times 0.5 \times 3n \times 3n \times \sin 60 \left(= \frac{27\sqrt{3}}{2} n^2 = 23.382n^2 \right)$ oe or eg $2\left(\frac{1}{2} \times 1.5x \times 1.5x \times \sin 120\right) + 1.5x \times AE$ where $AE = \sqrt{(1.5x)^2 + (1.5x)^2 - 2 \times 1.5x \times 1.5x \times \cos 120}$ $\left(= \frac{27\sqrt{3}}{8} x^2 = 5.845x^2 \right)$ or use of $6 \times 0.5 \times b \times h$, finding h by Pythagoras		4	M1	For expression for area of triangle [using $AB = x$ and $PQ = \frac{2}{3}x$ gives $\frac{\sqrt{3}}{9}x^2 = 0.192x^2$] (correct expression in 1 variable eg PQ) for expression for area of hexagon [using $AB = x$ and $PQ = \frac{2}{3}x$ gives $\frac{3\sqrt{3}}{2}x^2 = 2.598x^2$] (correct expression in 1 variable eg AB)
	eg $6 \times 0.5 \times 1.5x \times 1.5x \times \sin 60 - 0.5 \times x \times x \times \sin 60 = 72\sqrt{3}$ oe or $\left(\frac{27\sqrt{3}}{8} - \frac{\sqrt{3}}{4}\right)x^2 = 72\sqrt{3}$ or $(5.845 0.433)x^2 = 124.7$ or eg $6 \times 0.5 \times 3n \times 3n \times \sin 60 - 0.5 \times 2n \times 2n \times \sin 60 = 72\sqrt{3}$ oe $\left(\frac{27\sqrt{3}}{2} - \sqrt{3}\right)n^2 = 72\sqrt{3}$ or $(23.382 1.732)n^2 = 124.7$	4.8		M1	for a correct equation for shaded area (correct equation in 1 variable, eg PQ or x etc)

			Total 4 marks
$\begin{array}{ c c c c c c }\hline 21 & (5x-8)(5x+8) \\\hline (5x+2)(x-3) \times \frac{(x-5)(x-3)}{5x+8} \text{ or eg } \frac{(5x-8)(x-5)}{(5x+2)}(-(x-7)) \\\hline \end{array}$	4	M2	For factorising at least 2 of the quadratics correctly – could be implied by 2 factors cancelled correctly (M1 For factorising at least 1 of the 3 quadratics correctly)
$\frac{\frac{(5x-8)(x-5)-(x-7)(5x+2)}{5x+2}}{(5x+2)} \text{ oe or} \\ \frac{\frac{5x^2-25x-8x+40-(5x^2-35x+2x-14)}{5x+2}}{(5x+2)} \text{ oe or} \\ \frac{\frac{(25x^2-64)(x^2-8x+15)-(x-7)(5x^2-13x-6)(5x+8)}{(5x^2-13x-6)(5x+8)}}{(5x^2-13x-6)(5x+8)} \text{ oe or} \\ \frac{\frac{(5x-8)(x^2-8x+15)-(x-7)(5x+2)(x-3)}{(5x+2)(x-3)}}{(5x+2)(x-3)} \text{ oe or} \\ \frac{\frac{(25x^2-64)(x-5)-(x-7)(5x+2)(5x+8)}{(5x+2)(5x+8)}}{(5x+2)(5x+8)} \text{ oe} \end{cases}$		M1	(indep (ft if M2 awarded)) For writing the fractions over a common denominator with or without brackets removed – need not be in simplest form Could be written as 2 separate fractions over a common denominator
$\frac{54}{5x+2}$		A1	dep on M3
			Total 4 marks

22	eg (AD =) $\sqrt{6^2 + 6^2 - 2 \times 6 \times 6 \times \cos(50)}$ (= 5.07) or 2 × 6sin25 (=5.07) or $\frac{6 \sin 50}{\sin 65}$ (= 5.07) oe		6	M1	Correct expression for AD ie $AD = \dots$ or $x = oe$
	eg 6 + 6 + $\sqrt{6^2 + 6^2 - 2 \times 6 \times 6 \times \cos(50)}$ or 12 + "5.07" (=17.0)7 or 17.1)			M1	A correct statement of perimeter of triangle <i>OAD</i>
	eg (arc <i>BC</i> =) $\frac{50}{360} \times \pi \times 2 \times (6+x)$ oe			M1	A correct statement for arc <i>BC</i> (condone missing brackets around $(6 + x)$ for this mark only)
	eg 2×"17.1" = 12+2x+ $\frac{50}{360}$ × π ×2×(6+x) oe			M1	dep on M3 for a correct equation for <i>x</i>
	eg 2×17.1-12 $-\frac{30}{18}\pi = 2x + \frac{5x}{18}\pi$			M1	isolating terms in x in a correct equation
		5.89		A1	5.88 - 5.89
					Total 6 marks

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London, WC2R 0RL, United Kingdom