Pearson Edexcel

Mark Scheme (Results)

January 2021

Pearson Edexcel International GCSE
Mathematics A (4MA1)
Paper 2H

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

January 2021
Publications Code 4MA1_2H_2101_MS
All the material in this publication is copyright
© Pearson Education Ltd 2021

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme.
Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.
- Types of mark
- M marks: method marks
- A marks: accuracy marks
- B marks: unconditional accuracy marks (independent of M marks)
- Abbreviations
- cao - correct answer only
- ft - follow through
- isw - ignore subsequent working
- SC - special case
- oe - or equivalent (and appropriate)
- dep - dependent
- indep - independent
- awrt - answer which rounds to
- eeoo - each error or omission

- No working

If no working is shown then correct answers normally score full marks
If no working is shown then incorrect (even though nearly correct) answers score no marks.

- With working

If there is a wrong answer indicated on the answer line always check the working in the body of the script (and on any diagrams), and award any marks appropriate from the mark scheme.
If it is clear from the working that the "correct" answer has been obtained from incorrect working, award 0 marks.
If a candidate misreads a number from the question. Eg. Uses 252 instead of 255 ; method marks may be awarded provided the question has not been simplified. Examiners should send any instance of a suspected misread to review. If there is a choice of methods shown, mark the method that leads to the answer on the answer line; where no answer is given on the answer line, award the lowest mark from the methods shown.
If there is no answer on the answer line then check the working for an obvious answer.

- Ignoring subsequent work

It is appropriate to ignore subsequent work when the additional work does not change the answer in a way that is inappropriate for the question: eg. Incorrect cancelling of a fraction that would otherwise be correct.
It is not appropriate to ignore subsequent work when the additional work essentially makes the answer incorrect eg algebra.
Transcription errors occur when candidates present a correct answer in working, and write it incorrectly on the answer line; mark the correct answer.

- Parts of questions

Unless allowed by the mark scheme, the marks allocated to one part of the question CANNOT be awarded to another.

International GCSE Maths

Apart from questions 14a, 21 where the mark scheme states otherwise, the correct answer, unless clearly obtained from an incorrect method, should be taken to imply a correct method.

Question	Working	Answer	$\begin{aligned} & \text { Mark } \\ & \hline \end{aligned}$	Notes	
1	$\begin{aligned} & 6 \text { hrs } 39 \text { mins }=6.65(\mathrm{hrs}) \text { or } \\ & 6 \frac{39}{60} \text { or } 6 \frac{13}{20} \text { or } \frac{133}{20} \text { or } 399(\mathrm{mins}) \\ & \hline \end{aligned}$		3	B1	
	$\text { Average speed }=\frac{429}{6.65} \text { oe eg } \frac{429}{399} \times 60$			M1	Use of $S=D \div T$ (use of their time in hours) [allow $429 \div 6.39$ if B 0 awarded]
		64.5		A1	Awrt 64.5

$\mathbf{2}$		$3,7,8,8$ and one of 4 or 5 or 6	3	B3For a list of 5 correct numbers (B2 for a list of 5 numbers with 2 of: median of 7, mode of 8, range of 5
		B1 for a list of 5 or 6 numbers with 1 of: median of 7, mode of 8, range of 5)		

3	(a)	$520-465(=55)$ or $\frac{520}{465}(=1.118 \ldots)$	11.8	3	M1	
		$\frac{" 55 "}{465} \times 100 \quad \text { or } 100 \times(" 1.118 \text { " }-1) \text { oe }$			M1	
					A1	11.8 or better (11.827956...)
	(b)	0.12×550 oe $(=66)$	484	3	M1 oe	M2 for$0.88 \times 550 \text { oe }$
		550 - "66"			M1	
					A1	
						Total 6 marks

5	(a)	$8 x^{2}+20 x-6 x^{2}+9 x$	$2 x^{2}+29 x$	2	M1	3 correct terms or all 4 terms condoning incorrect signs
					A1	
	(b)	eg $y^{5} \times y^{n}=y^{19}$ or $y^{-1} \times y^{n}=y^{13}$ or $5+n-6=13$	14	2	M1	Use of 1 rule of indices or a correct linear equation in n
					A1	Accept y^{14}
	(c)(i)	$7 t-2 t<7+8$ oe eg $5 t<15$ oe	$t<3$	2	M1 Terms in t on one side and number terms the other side - may be in an equation or the incorrect inequality sign or an answer of $t=3$ or eg $t \geq 3$	
					A1	
	(ii)		open circle at $t=$ 3 and a line with an arrow to the left	1		ft their inequality Allow a line without an arrow if it reaches to at least -5 , with an arrow it can be any length
						Total 7 marks

$\mathbf{6}$	(a)		1	1	B1
	(b)	$3 \times 10^{125}+2 \times 10^{124}$ or digits 1024×10^{n} oe		3	M1
		32×10^{124} or $3 \times 10^{125}+0.2 \times 10^{125}$ or $30 \times 10^{124}+2 \times 10^{124}$			
			3.2×10^{125}		M1 oe 'correct' answer in incorrect form.

7		$5 \times 398(=1990)$ or $6 \times 401(=2406)$		3	M1 Correct total for 5 or for 6 cocoa pods
		$" 2406 "-" 1990 "$			M1 (M2 for $398+6 \times 3$ or $401+5 \times 3)$
			416		A1

8	$8^{2}+15^{2}(=289)$	167	5	M1	
	$\sqrt{8^{2}+15^{2}}(=17)$			M1	
	$\pi \times\left(" \frac{17}{2} "\right)^{2}(=226.98 \ldots) \text { or } 0.5 \times 15 \times 8(=60)$			M1	
	$\begin{aligned} & \pi \times\left(" \frac{17}{2} "\right)^{2}-0.5 \times 15 \times 8 \\ & (" 226.98 "-" 60 ") \end{aligned}$			M1	
				A1	Accept answers which round to 167
					Total 5 ma

9			$2^{4} \times 3^{2} \times 5^{4} \times 11 \times 13$	2	B2(B1 for 12870000 or correct unsimplified product or $2^{m} \times 3^{n} \times 5^{p} \times 11 \times 13$ with at least 1 of m, n or p correct or for $\left.2^{4} \times 3^{2} \times 5^{4}\right)$

10	eg $\frac{4}{5} \times \frac{3}{7}\left(=\frac{12}{35}\right)$ oe or $0.24 \times \frac{4}{7}\left(=\frac{96}{700}\right)$ oe or eg $\frac{4}{5} \times 3\left(=\frac{12}{5}=2.4\right)$ and $0.24 \times 4\left(=\frac{24}{25}=0.96\right)$ (or 3.36) or eg $\frac{4}{5} \times 300(=240)$ and $0.24 \times 400(=96)($ or 336$)$		3		M1
	eg" $\frac{12}{35} "+" \frac{96}{700} "\left(=\frac{336}{700}\right)$ oe or $\frac{" 2.4 "+" 0.96 "}{3+4}\left(=\frac{3.36}{7}\right)$ oe or eg $\frac{" 240 "+" 96 "}{300+400}\left(=\frac{336}{700}\right)$ oe	$\frac{12}{25}$			M1 or 0.48 or 48% or correct unsimplified fraction eg $\frac{84}{175}$
					A1 cao
					Total 3 marks

11	(definition of part: there are 3 parts: one part is the number, one part the letter t and one part the letter w Definition of terms: there are 6 terms: 2 number terms, 2 terms in t and 2 terms in w)		3	$\begin{gathered} \text { M1 } \\ \text { indep } \end{gathered}$	Fully correct cancellation of any two parts of their fraction at any stage of working
				M1 indep	correctly apply the negative power to the whole of their bracket (all parts or all terms) or correctly square all parts or terms of their bracket or correctly apply the negative power AND square of at least two parts (maybe 4 terms) of their bracket
		$44^{4} w^{2}$		A1	Allow ($2 t^{2}$ w $)^{2}$ after the correct answer
	ALTERNATIVE				
		$4 t^{4} w^{2}$	3	M2	2 correct terms (M1 for 1 correct term)
				A1	Allow ($\left.2 t^{2} w\right)^{2}$ after the correct answer
					Total 3 marks

$\mathbf{1 2}$		$13-4$		2	M1 For selecting 4 and 13
			9		

$\mathbf{1 3}$	(a) (i)		62	3	B1
	(a) (ii)		118		B1ft 180-their (a)(i)
	(b)		62	B1	

16	(a)			3	B3	For all sections completed correctly (B2 for 5 or 6 sections correct (excl x), B1 for 3 or 4 sections correct $(\operatorname{excl} x)$)
	(b)	$\begin{aligned} & 2 x+6+x+2+4+9+9+11=80 \\ & (80-6-2-4-9-9-11) \div 3 \end{aligned}$		3	M1ft	ft their Venn diagram A correct equation to find x or subtracting all numerical values from 80 and dividing by 3 or other fully correct method to find x with all sections completed
		$x=13$			A1	correct value for x
			38		B1	their $2 x+12$
					Total 6 marks	

18	(a)			4	B1	$b=14$
		(Gradient $A B=$) $\frac{12}{5}$ oe or eg $\frac{10--2}{1--4}$ oe			M1	For the gradient of $A B$
		(Gradient $B C=$) $-\frac{5}{12}$ oe			M1	Ft correct use of $m_{1} \times m_{2}=-1$ for their gradient of $A B$ or $a=2.5$ or $c=-9.5$
			$a=2.5, c=-9.5$		A1	for $a=2.5$ and $c=-9.5$
	(b)	$\begin{aligned} & (A B=) \sqrt{(1--4)^{2}+(10--2)^{2}} \\ & \left(=\sqrt{5^{2}+12^{2}}(=13)\right) \end{aligned}$		3	M1	
		$\begin{aligned} & (B C=) \sqrt{(19-1)^{2}+(10-2.5)^{2}} \\ & \left(=\sqrt{18^{2}+7.5^{2}}(=19.5)\right) \text { or } \\ & \sqrt{(19-1)^{2}+(10-\text { their } a)^{2}} \text { or } \\ & 1.5 \times " 13 \text { " } \\ & \hline \end{aligned}$			M1	ft their value of a
			65		A1	
						Total 7 marks

19	$(v=) 3 t^{2}+10 t-8$				For at least 2 terms differentiated correctly
	$3 t^{2}+10 t-8=0$				Their $v=0$ dep on M1 could be implied by correct values
	$\begin{aligned} & (3 t-2)(t+4)(=0) \\ & (t=) \frac{2}{3} \text { or }(t=)-4 \end{aligned}$				dep on M1 for correct values for t or for $t=\frac{2}{3}$ or correct method to solve their 3 term quadratic equation: If factorising, allow brackets which when expanded give 2 out of 3 terms correct (If using formula or completing the square allow one sign error and some simplification - allow as far as eg $\frac{-10 \pm \sqrt{100+96}}{6}$ oe $\left.3\left(t+\frac{5}{3}\right)^{2}-\frac{48}{3}=0\right)$
	$(s=)\left(\frac{2}{3}\right)^{3}+5 \times\left(\frac{2}{3}\right)^{2}-8 \times \frac{2}{3}+10$		5		For $\frac{2}{3}$ (only) substituted into formula for s or for selecting the value from this substitution or for an answer of 7.185...
		$\frac{194}{27}$			oe but numerator and denominator must be integers.
					Total 5 marks

20	eg $0.5 \times x \times x \times \sin 60\left(=\frac{\sqrt{3}}{4} x^{2}=0.433 \ldots x^{2}\right)$ oe where $x=P Q$ eg $0.5 \times 2 n \times 2 n \times \sin 60\left(=\sqrt{3} n^{2}=1.732 \ldots n^{2}\right)$ oe where $2 n=P Q$ or use $0.5 \times b \times h$ where $h=\sqrt{x^{2}-(0.5 x)^{2}}\left(=\frac{\sqrt{3}}{2} x\right)$ oe	4		For expression for area of triangle [using $A B=x$ and $P Q=\frac{2}{3} x$ gives $\left.\frac{\sqrt{3}}{9} x^{2}=0.192 \ldots x^{2}\right]$ (correct expression in 1 variable eg $P Q$)
	eg $6 \times 0.5 \times 1.5 x \times 1.5 x \times \sin 60\left(=\frac{27 \sqrt{3}}{8} x^{2}=5.845 \ldots x^{2}\right)$ oe eg $6 \times 0.5 \times 3 n \times 3 n \times \sin 60\left(=\frac{27 \sqrt{3}}{2} n^{2}=23.382 \ldots n^{2}\right)$ oe or eg $2\left(\frac{1}{2} \times 1.5 x \times 1.5 x \times \sin 120\right)+1.5 x \times A E$ where $A E=\sqrt{(1.5 x)^{2}+(1.5 x)^{2}-2 \times 1.5 x \times 1.5 x \times \cos 120}$ $\left(=\frac{27 \sqrt{3}}{8} x^{2}=5.845 \ldots x^{2}\right)$ or use of $6 \times 0.5 \times b \times h$, finding h by Pythagoras			for expression for area of hexagon [using $A B=x$ and $P Q=\frac{2}{3} x$ gives $\left.\frac{3 \sqrt{3}}{2} x^{2}=2.598 \ldots x^{2}\right]$ (correct expression in 1 variable eg $A B$)
	$\begin{aligned} & \operatorname{eg} 6 \times 0.5 \times 1.5 x \times 1.5 x \times \sin 60-0.5 \times x \times x \times \sin 60=72 \sqrt{3} \text { oe or } \\ & \left(\frac{27 \sqrt{3}}{8}-\frac{\sqrt{3}}{4}\right) x^{2}=72 \sqrt{3} \text { or }(5.845 \ldots-0.433 \ldots) x^{2}=124.7 \ldots \text { or } \\ & \operatorname{eg} 6 \times 0.5 \times 3 n \times 3 n \times \sin 60-0.5 \times 2 n \times 2 n \times \sin 60=72 \sqrt{3} \mathrm{oe} \\ & \left(\frac{27 \sqrt{3}}{2}-\sqrt{3}\right) n^{2}=72 \sqrt{3} \text { or }(23.382 \ldots-1.732 \ldots) n^{2}=124.7 \ldots \end{aligned}$			for a correct equation for shaded area (correct equation in 1 variable, eg $P Q$ or x etc)
			A1	

					Total 4 marks
21	$\frac{(5 x-8)(5 x+8)}{(5 x+2)(x-3)} \times \frac{(x-5)(x-3)}{5 x+8} \text { or eg } \frac{(5 x-8)(x-5)}{(5 x+2)}(-(x-7))$			M2	For factorising at least 2 of the quadratics correctly - could be implied by 2 factors cancelled correctly (M1 For factorising at least 1 of the 3 quadratics correctly)
	$\begin{aligned} & \frac{(5 x-8)(x-5)-(x-7)(5 x+2)}{5 x+2} \text { oe or } \\ & \frac{5 x^{2}-25 x-8 x+40-\left(5 x^{2}-35 x+2 x-14\right)}{5 x+2} \text { oe or } \\ & \frac{\left(25 x^{2}-64\right)\left(x^{2}-8 x+15\right)-(x-7)\left(5 x^{2}-13 x-6\right)(5 x+8)}{\left(5 x^{2}-13 x-6\right)(5 x+8)} \text { oe or } \\ & \frac{(5 x-8)\left(x^{2}-8 x+15\right)-(x-7)(5 x+2)(x-3)}{(5 x+2)(x-3)} \text { oe or } \\ & \frac{\left(25 x^{2}-64\right)(x-5)-(x-7)(5 x+2)(5 x+8)}{(5 x+2)(5 x+8)} \text { oe } \end{aligned}$				(indep (ft if M2 awarded)) For writing the fractions over a common denominator with or without brackets removed - need not be in simplest form Could be written as 2 separate fractions over a common denominator
		$\frac{54}{5 x+2}$	4		dep on M3
					Total 4 marks

22	$\begin{aligned} & \text { eg }(A D=) \sqrt{6^{2}+6^{2}-2 \times 6 \times 6 \times \cos (50)} \quad(=5.07 \ldots) \text { or } \\ & 2 \times 6 \sin 25(=5.07 \ldots) \text { or } \frac{6 \sin 50}{\sin 65}(=5.07 \ldots) \text { oe } \end{aligned}$		6	M1	Correct expression for $A D$ ie $A D=\ldots$ or $x=$ oe
	$\begin{aligned} & \operatorname{eg} 6+6+\sqrt{6^{2}+6^{2}-2 \times 6 \times 6 \times \cos (50)} \text { or } 12+" 5.07 \ldots " \\ & (=17.0) 7 \ldots \text { or } 17.1) \end{aligned}$			M1	A correct statement of perimeter of triangle $O A D$
	$\operatorname{eg}(\operatorname{arc} B C=) \frac{50}{360} \times \pi \times 2 \times(6+x) \text { oe }$			M1	A correct statement for arc $B C$ (condone missing brackets around $(6+x)$ for this mark only)
	$\text { eg } 2 \times 117.1 "=12+2 x+\frac{50}{360} \times \pi \times 2 \times(6+x) \text { oe }$				dep on M3 for a correct equation for x
	$\text { eg } 2 \times 17.1-12-\frac{30}{18} \pi=2 x+\frac{5 x}{18} \pi$			M1	isolating terms in x in a correct equation
		5.89		A1	5.88-5.89
					Total 6 marks

