

Mark Scheme (Results)

January 2017

International GCSE Mathematics A 4MAO/3HR

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please visit our website at www.edexcel.com.

Our website subject pages hold useful resources, support material and live feeds from our subject advisors giving you access to a portal of information. If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

www.edexcel.com/contactus

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

January 2017
Publications Code 4MA0_3HR_1701_MS
All the material in this publication is copyright
© Pearson Education Ltd 2017

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme.
 Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Types of mark

- o M marks: method marks
- o A marks: accuracy marks
- B marks: unconditional accuracy marks (independent of M marks)

Abbreviations

- o cao correct answer only
- o ft follow through
- o isw ignore subsequent working
- o SC special case
- o oe or equivalent (and appropriate)
- o dep dependent
- o indep independent
- eeoo each error or omission

No working

If no working is shown then correct answers normally score full marks

If no working is shown then incorrect (even though nearly correct) answers score no marks.

With working

If there is a wrong answer indicated on the answer line always check the working in the body of the script (and on any diagrams), and award any marks appropriate from the mark scheme.

If it is clear from the working that the "correct" answer has been obtained from incorrect working, award 0 marks.

Any case of suspected misread loses A (and B) marks on that part, but can gain the M marks.

If working is crossed out and still legible, then it should be given any appropriate marks, as long as it has not been replaced by alternative work.

If there is a choice of methods shown, then no marks should be awarded, unless the answer on the answer line makes clear the method that has been used.

If there is no answer on the answer line then check the working for an obvious answer.

Ignoring subsequent work

It is appropriate to ignore subsequent work when the additional work does not change the answer in a way that is inappropriate for the question: eg. Incorrect cancelling of a fraction that would otherwise be correct.

It is not appropriate to ignore subsequent work when the additional work essentially makes the answer incorrect eg algebra.

Transcription errors occur when candidates present a correct answer in working, and write it incorrectly on the answer line; mark the correct answer.

Parts of questions

Unless allowed by the mark scheme, the marks allocated to one part of the question CANNOT be awarded in another.

International GCSE Maths January 2017 – Paper 3HR Mark scheme

Apart from Questions 11a, 15, 16a where the mark scheme states otherwise, the correct answer, unless clearly obtained by an incorrect method, should be taken to imply a correct method.

Q	Working	Answer	Mark	Notes
1	$100^2 \text{ or } 10\ 000$			M1 e.g. 12×100^2
		120 000	2	A1
				Total 2 marks

2	$360 \div 18 \text{ or } \frac{(2n-4)90}{n} = 162 \text{ or } \frac{(n-2)180}{n} = 162$			M1
		20	2	A1
				Total 2 marks

3	$\left(\frac{4+8}{2},\frac{11+3}{2}\right)$			M1	for $\frac{4+8}{2}$ or $\frac{11+3}{2}$ oe or $(6, y)$ or $(x, 7)$ or $(7, 6)$
		(6,7)	2	A1	
					Total 2 marks

4	$15 \div 60 \ (=0.25) \text{ or } 13.25 \text{ or } 13 \times 60 + 15 \ (=795) \text{ or}$			M1
	$13 \times 3600 + 15 \times 60 \ (=47700)$			
	8740 ÷ "13.25" or 8740 ÷ "795" × 60 or			M1 accept $8740 \div 13.15$ or an answer of
	8740 ÷ "47700" × 3600			664 - 665
		660	3	A1 accept 659.6 – 660
				Total 3 marks

5	$80 \div (3+1) (=20)$ or 20 or 60		5	M1	
	0.15 × (3 × "20") (=9)			M1	M1 for $0.85 \times (3 \times "20") = 51$
	"20" ÷ 5 (=4)			M1	M1 for $\frac{4}{5}$ × "20" (=16)
	80 – "9" – "4"			M1	M1 for "16" + "51"
		67		A1	
	or				
5	$\frac{3}{4} \times \frac{15}{100} (= \frac{9}{80} \text{ or } 0.1125)$		5	M1	M1 $\frac{3}{4} \times \frac{85}{100} (= \frac{51}{80} \text{ or } 0.6375)$
	$\frac{1}{4} \times \frac{1}{5} = \frac{1}{20} \text{ or } 0.05$			M1	M1 $\frac{1}{4} \times \frac{4}{5} (= \frac{1}{5} \text{ or } 0.2)$
	"\frac{9}{80}"+"\frac{1}{20}"\left(=\frac{13}{80}\right)\text{or "0.1125" + "0.05"(=0.1625)}			M1	M1 $\frac{51}{80} + \frac{1}{5}$
	$(1-"\frac{13}{80}")\times 80$ or $(1-"0.1625")\times 80$ or $\frac{67}{80}$			M1	M1 $(\frac{51}{80} + \frac{1}{5}) \times 80$ oe or $\frac{67}{80}$
		67		A1	
					Total 5 marks

6 a			B1	for reflection
	Reflection in $y = -1$	2	B1	for $y = -1$
				NB. If more than one transformation then
				award no marks
b	Vertices at (-2, 1) (-2, 6) (-5, 1) (-5, 3)	2	B2	If not B2 then award B1 for a correct
				transformation 90° clockwise about $(0, 0)$ or 3
				vertices correct or correct shape in correct
				orientation but in wrong position
				Total 4 marks

7	x -2 -1 0 1 2 3 4 y 10 8 6 4 2 0 -2	y = 6 - 2x drawn from x = -2 to x = 4	4	B4	For a correct line between $x = -2$ and $x = 4$
				В3	For a correct straight line segment through at least 3 of (-2, 10) (-1, 8) (0, 6) (1, 4) (2, 2) (3, 0) (4, -2) OR for all of (-2, 10) (-1, 8) (0, 6) (1, 4) (2, 2) (3, 0) (4, -2) plotted but not joined
				B2	For at least 2 correct points plotted
				B1	For at least 2 correct points stated (may be in a table) OR for a line drawn with a negative gradient through (0, 6) OR a line with gradient -2
					Total 4 marks

8	a	224 ÷ 8 oe		2	M1
			28		A1
	b	523 – 411 (=112) or		3	M1
		$\frac{523}{411}$ (=1.273) or $\frac{523}{411}$ ×100 (=127.3)			
		$\frac{"112"}{411} \times 100 \text{ or } 100 \times "1.273" - 100$			M1 dep
		or "127.3" – 100			
			27.3		A1 27.25 – 27.3
					Total 5 marks

9	a		$100 < w \le 110$	1	B1
	b	$85 \times 3 + 95 \times 5 + 105 \times 7 + 115 \times 4 + 125$		3	M2 for frequency × mid-interval for at least 4
		255 + 475 + 735 + 460 + 125			products multiplied consistently and summing
					If not M2 then award M1 for multiplying consistently by value within intervals for at least 4 products (eg. end of interval) and summing products or mid-intervals used
			20.50		but not summed.
			2050		A1 SC: B2 for an answer of 102.5
					Total 4 marks

10	1.02 (1.4.0)2 (.075)			3.71	
10	$18^2 - (14 \div 2)^2 (=275)$		4	M1	or M1 for $\cos x = \frac{7}{18}$ or $\sin y = \frac{7}{18}$
					18 18
					$18^2 + 18^2 - 14^2$
					$\mathbf{or} \ \cos z = \frac{18^2 + 18^2 - 14^2}{2 \times 18 \times 18}$
	$\sqrt{18^2 - (14 \div 2)^2}$ or $\sqrt{275}$ or $5\sqrt{11}$ or 16.5 or 16.6			M1	or M1 for $x = \cos^{-1}\left(\frac{7}{18}\right)$ or $x = 67.1$
					or $y = \sin^{-1}\left(\frac{7}{18}\right)$ or $y = 22.8$
					or $z = \cos^{-1} \left(\frac{18^2 + 18^2 - 14^2}{2 \times 18 \times 18} \right)$ or $z = 45.77$
	$0.5 \times 14 \times \text{``}16.5\text{''} \text{ or } 35\sqrt{11}$			M1	or M1 for 0.5×14×18×sin("67.1…") or
	0.5 \ 14 \ 10.5 01 55 \ \ 11				$0.5 \times 18 \times 18 \times \sin(2 \times "22.8")$ or
					0.5×18×18×sin("45.77")
		116		A1 116	- 116.1
				110	Allow use of Hero's formula
					Total 4 marks
	Alternative scheme				Z OWI T IIIII IN
			1	MO	
	25(25-18)(25-18)(25-14)(=13475) oe		4	M2	
	√13475 oe			M1	
	120.70 00	116		A1	
		110		AI	
					Total 4 marks

11 a	e.g. $12x = 36$ or $24y = -60$		3	M1	for addition of given equations or a complete method to eliminate <i>y</i> or <i>x</i> (condone one arithmetic error)
	e.g. $7 \times$ "3"+ 2y = 16 or $7x + 2 \times -2.5 = 16$			M1	(dep) for method to find second variable
	7X + Z × Z.3 = 10	x = 3 oe, y = -2.5		A1	dep on M1 for both values correct. NB. Candidates showing no working score zero
b	$k^2 + 9k - 5k - 45$	12 . 41 . 45	2	M1	for 3 terms correct or all 4 terms correct ignoring signs or $y^2 + 4k + \dots$ or $\dots + 4k - 45$
С	$= \log \left(\frac{1}{8x^6y^3}\right)^{-\frac{1}{3}} \text{ or } \left(\frac{8x^6y^8}{y^5}\right)^{\frac{1}{3}} \text{ or }$	$k^2 + 4k - 45$	3	A1	NB: do not accept decimal powers unless recurring dot is shown
	$\left(\frac{y^{\frac{-5}{3}}}{0.5x^{-2}y^{\frac{-8}{3}}}\right) \text{ oe }$			M10e	any one of correct simplification of <i>y</i> term or reciprocal or cube root of at least all variables
	eg $(8x^6y^3)^{\frac{1}{3}}$ or $\left(\frac{1}{8^{\frac{-1}{3}}x^{-2}y^{-1}}\right)$ or			M1oe	any two of correct simplification of y term or reciprocal or cube root of at least all variables
	$\left(\frac{2x^2y^{\frac{8}{3}}}{y^{\frac{5}{3}}}\right) \text{ oe }$				
		$2x^2y$		Aloe	e.g. $\left(\frac{y}{0.5x^{-2}}\right)$ SCB2 for $\left(\frac{1}{2x^2y}\right)$ or ax^ny^m with 2 of $a = 2, n = 2, m = 1$
					Total 8 marks

12 a	correct gra	ph 2	B2 Points at end of intervals and joined with curve or line segments
			If not B2 then B1 for 5 or 6 of their points from table plotted consistently within each interval at their correct heights and joined with smooth curve or line segments
b		2	M1 ft for a cf graph horizontal line or mark drawn at 40 or 40.5 or vertical line at correct place, ft their cf graph
			40.5 of vertical line at correct place, it then of graph
	57 – 59		A1 ft from their cf graph
С		2	M1ft for reading from cf axis ft their graph from 90 on time
			axis or 72 ft
	8		Alft
			Total 6 marks

13 a	0.00079	1	B1 cao	
b		2	M1 for 20.1	5×10^9 or 20150000000
			or 2.015	5×10^n where $n \neq 10$
	2.015×10^{10}		A1 For 2 ×	10 ¹⁰ or better
				Total 3 marks

14	9000 × 0.018 (= 162) or 9000 × 1.018 (=9162)		3	M1	or for $\frac{3 \times 1.8}{100} \times 9000$ (=486) or 9486	M2 for 9000×1.018^3
	(9000 + "162)×0.018 (=164.916) ("9162" + "164.916")×0.018 (= 167.88) "9162" + "164.916" + "167.88"			M1	for complete method	
		9494.8(0)		A1	accept 9494.8 - 9495	
						Total 3 marks

15	-4y = 5 - 3x		4	M1	isolates term in y
	y = 0.75x (+ c) or gradient of A = 0.75 oe			M1	
	gradient of $\mathbf{B} = \frac{3-7}{-1-4} \left(= \frac{4}{5} \right)$ oe			M1	or $y = 0.8x (+ c)$ oe
		No with correct figures		A1	eg. No gradient of $\mathbf{A} = 0.75$ but gradient of $\mathbf{B} = 0.8$ oe
					Total 4 marks

16 a	e.g. $3(3x+1) - 5(x-4) = 2 \times 15$ or $\frac{3(3x+1)}{15} - \frac{5(x-4)}{15} = 2$ or $\frac{3(3x+1) - 5(x-4)}{15} = 2$		3	M1	deals with fractions eg. finds common denominator (15 or a multiple of 15) or multiplies by common multiple in a correct equation.
	e.g. $9x + 3 - 5x + 20 = 30$			M1	Expands brackets and multiplies by common denominator in a correct equation
		1.75 oe		A1	dep on M1
b	t(3p+1) = 7 - 2p		4	M1	multiplies by $3p + 1$ must have brackets
	3pt + 2p = 7 - t			M1	isolates terms in p
	p(3t+2) = 7 - t			M1	takes p out as a common factor
		$p = \frac{7 - t}{3t + 2}$		A1	or $p = \frac{t-7}{-3t-2}$ oe with p as the subject
					Total 7 marks

17	e.g. $\frac{12}{3} = \frac{RX}{4}$ or $12 \times 4 = XR \times 3$ or $3x = 48$		3	M1 or $(2r-3) \times 3 = 12 \times 4$
	$(XR =) 12 \times 4 \div 3 (=16)$			M1 or $2r - 3 = 12 \times 4 \div 3$ or $XR = 16$ or an answer of 19
		9.5		Aloe e.g. $\frac{19}{2}$
				Total 3 marks

18	$\frac{7\sqrt{p}-p^2}{p\sqrt{p}} \text{or} \frac{7\sqrt{p}-p^2}{\sqrt{p^3}} \times \frac{\sqrt{p^3}}{\sqrt{p^3}} \text{ oe}$		3	M1 e.g. $\frac{7p^{\frac{1}{2}}-p^2}{p^{\frac{3}{2}}}$
	$ \frac{7\sqrt{p} - p^2}{p\sqrt{p}} \times \frac{\sqrt{p}}{\sqrt{p}} \text{ or } \frac{7\sqrt{p} - p\sqrt{p}\sqrt{p}}{p\sqrt{p}} $ $ 7\sqrt{p}\sqrt{p^3} - p^2\sqrt{p^3} $			M1 e.g. $\frac{7p^2 - p^{\frac{7}{2}}}{p^3}$ oe
	$\frac{q^{2}\sqrt{P^{2}\sqrt{P^{2}}}}{p^{3}}$ oe	$\frac{7-p\sqrt{p}}{p}$		A1 for $\frac{7 - p\sqrt{p}}{p}$ or $\frac{7}{p} - \sqrt{p}$ oe or
				$\frac{7-p^{\frac{3}{2}}}{p} \text{ oe}$ Total 3 marks

19	a		2	1	B1
	b		0.5 oe	1	B1
	С	y(2-x) = 3 or x(2-y) = 3 oe		2	M1
			2x-3		A1 $\frac{3-2x}{}$ or $2-\frac{3}{}$
			X		-x x
					must be in terms of x
	d	$\frac{3}{2 - \frac{2x+1}{3}}$ oe		2	M1
			$\frac{9}{5-2x}$		A1
					Total 6 marks

20 a			2	M1	for any 2 of $3x^2$ or $-8x$ or $+5$ differentiated
					correctly
		$3x^2 - 8x + 5$		A1	
b	$3x^2 - 8x + 5 = 1$		4	M1	ft from (a)
	$3x^2 - 8x + 4 = 0$			M1	ft rearrange ready to solve, ft as long as
					$ax^2 - bx + c$
	eg (3x-2)(x-2) = 0			M1	ft correct method to solve quadratic – if
					using formula, every term to be substituted
					correctly as long as $ax^2 - bx + c$
		$\frac{2}{3}$, 2		A1	cao dep on M2
		${3}$, 2			Ignore any attempts to find y values
					Total 6 marks

21	$(OB^2 =) 12^2 + 16^2 - 2 \times 12 \times 16 \times \cos(60^\circ)$ $(OB =)\sqrt{208} \text{ or } 4\sqrt{13} \text{ or } 14.4 \text{ or } (OB^2) = 208$		5	M1 M1	M2 for $\sqrt{(12^2 + 16^2 - 2 \times 12 \times 16 \times \cos(60^\circ))}$
	$0.5 \times 12 \times 16 \times \sin(60^{\circ}) (= 83.1\text{ or } 48\sqrt{3} \text{) or }$ $\frac{38}{360} \times \pi \times "14.4" \times "14.4" \ (=68.9) \text{ or }$			M1	ft their 14.4 provided first M1 awarded.
	$\frac{360}{360} \times \pi \times "208" (=68.9)$				
	$\frac{360}{0.5 \times 12 \times 16 \times \sin(60^{\circ}) + \frac{38}{360} \times \pi \times "14.4" \times "14.4"}$			M1	ft their 14.4 provided first M1 awarded.
	(68.9+ 83.1)				
		152		A 1	awrt 152
					Total 5 marks

22	$\frac{4}{12} \times \frac{3}{11} \times \frac{4}{10} \left(= \frac{48}{1320} = \frac{2}{55} \right) \text{ oe}$ $3 \times \frac{4}{12} \times \frac{3}{11} \times \frac{4}{10} \text{ or } 2 \times \frac{4}{12} \times \frac{3}{11} \times \frac{4}{10}$ $3 \times 3 \times 4 \times 3$		5	M1 M1 M1	M2 for $\frac{4}{12} \times \frac{3}{11} \times \frac{8}{10} \left(= \frac{96}{1320} = \frac{4}{55} \right)$ oe
	$3 \times 2 \times \frac{4}{12} \times \frac{3}{11} \times \frac{4}{10} \text{ oe or } 3 \times 3 \times \frac{4}{12} \times \frac{3}{11} \times \frac{4}{10}$ $3 \times 3 \times 2 \times \frac{4}{12} \times \frac{3}{11} \times \frac{4}{10} \text{ oe}$	26		M1	M1 for $3 \times \frac{4}{12} \times \frac{3}{11} \times \frac{8}{10}$ oe M1 for $3 \times 3 \times \frac{4}{12} \times \frac{3}{11} \times \frac{8}{10}$ oe
		$\frac{36}{55}$		oe eg.	864 1320 (0.65(45454))
	Alternative using 1 – (all different + all the same)				
	$\frac{4}{12} \times \frac{4}{11} \times \frac{4}{10}$ or $\frac{4}{12} \times \frac{3}{11} \times \frac{2}{10}$		5	M1	
	$\frac{4}{12} \times \frac{4}{11} \times \frac{4}{10} \times 6 \text{ or } \frac{4}{12} \times \frac{3}{11} \times \frac{2}{10} \times 3$			M1	
	$\frac{4}{12} \times \frac{4}{11} \times \frac{4}{10} \times 6 \text{ and } \frac{4}{12} \times \frac{3}{11} \times \frac{2}{10} \times 3$			M1	
	$1 - \left[\left(\frac{4}{12} \times \frac{4}{11} \times \frac{4}{10} \times 6 \right) + \left(\frac{4}{12} \times \frac{3}{11} \times \frac{2}{10} \times 3 \right) \right]$			M1	
		$\frac{36}{55}$		A1 oe eg.	864 1320 (0.65(45454))
					Total 5 marks

	SC: With replacement (maximum marks M3)			Total 5 marks
22	$3 \times \frac{4}{12} \times \frac{4}{12} \times \frac{4}{12} (= \frac{192}{1728} = \frac{1}{9}) \text{ or } 2 \times \frac{4}{12} \times \frac{4}{12} \times \frac{4}{12} (= \frac{128}{1728} = \frac{2}{27})$	3	M1	or $\frac{4}{12} \times \frac{4}{12} \times \frac{8}{12}$
	$3 \times 2 \times \frac{4}{12} \times \frac{4}{12} \times \frac{4}{12}$ oe or $3 \times 3 \times \frac{4}{12} \times \frac{4}{12} \times \frac{4}{12}$ oe		M1	or $3 \times \frac{4}{12} \times \frac{4}{12} \times \frac{8}{12}$
	$3 \times 3 \times 2 \times \frac{4}{12} \times \frac{4}{12} \times \frac{4}{12} $ oe		M1	M1 for $3 \times 3 \times \frac{4}{12} \times \frac{4}{12} \times \frac{8}{12}$

				·
23 a	$\overrightarrow{CD} = \overrightarrow{CB} + \overrightarrow{BA} + \overrightarrow{AD}$ or $-\mathbf{c} - \mathbf{b} + 3\mathbf{c}$		2	M1
		$2\mathbf{c} - \mathbf{b}$		A1
b	$\overrightarrow{BP} = \overrightarrow{BA} + \frac{2}{3}\overrightarrow{AC}$ or $\overrightarrow{PD} = \frac{1}{3}\overrightarrow{AC} + \overrightarrow{CD}$		4	M1ft Ft their \overrightarrow{CD}
	$\overrightarrow{BP} = -\mathbf{b} + \frac{2}{3} (\mathbf{b} + \mathbf{c}) \left(= \frac{2}{3} \mathbf{c} - \frac{1}{3} \mathbf{b} \right) \mathbf{or}$			M1ft
	$\overrightarrow{PD} = \frac{1}{3}(\mathbf{b} + \mathbf{c}) + 2\mathbf{c} - \mathbf{b} \left(= \frac{7}{3}\mathbf{c} - \frac{2}{3}\mathbf{b} \right)$			
	$\overrightarrow{BP} = -\mathbf{b} + \frac{2}{3} (\mathbf{b} + \mathbf{c}) (= \frac{2}{3} \mathbf{c} - \frac{1}{3} \mathbf{b}) \text{ AND}$			or $\overrightarrow{BP} = \frac{1}{3}(2\mathbf{c} - \mathbf{b})$ and
	$\overrightarrow{PD} = \frac{1}{3}(\mathbf{b} + \mathbf{c}) + 2\mathbf{c} - \mathbf{b} \left(= \frac{7}{3}\mathbf{c} - \frac{2}{3}\mathbf{b} \right)$			$\overrightarrow{CD} = 2\mathbf{c} - \mathbf{b}$
	OR			
	$\overrightarrow{BP} = -\mathbf{b} + \frac{2}{3} (\mathbf{b} + \mathbf{c}) (= \frac{2}{3} \mathbf{c} - \frac{1}{3} \mathbf{b}) \text{ AND}$			
	$\overrightarrow{BD} = -\mathbf{b} + 3\mathbf{c}$			
	OR			
	$\overrightarrow{PD} = \frac{1}{3}(\mathbf{b} + \mathbf{c}) + 2\mathbf{c} - \mathbf{b} \left(= \frac{7}{3}\mathbf{c} - \frac{2}{3}\mathbf{b} \right) \text{ AND}$			
	$\overrightarrow{BD} = -\mathbf{b} + 3\mathbf{c}$			

	No with correct appropriate vectors and reason	A1	E.g. $\overrightarrow{BP} = \frac{1}{3}(2\mathbf{c} - \mathbf{b})$ and $\overrightarrow{CD} = 2\mathbf{c} - \mathbf{b}$ are parallel and therefore not in a straight line \mathbf{OR} Correct simplified vectors for two of BP , BD , PD with explanation that vectors are not a multiple of each other
			Total 6 marks

www.igexams.com

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London, WC2R ORL, United Kingdom