Mark Scheme (Results)

January 2017

International GCSE Mathematics A 4MA0/3H

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please visit our website at www.edexcel.com.

Our website subject pages hold useful resources, support material and live feeds from our subject advisors giving you access to a portal of information. If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.
www.edexcel.com/contactus

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Janaury 2017
Publications Code 4MAO_3H_1701_MS
All the material in this publication is copyright
© Pearson Education Ltd 2017

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.
- Types of mark
o M marks: method marks
o A marks: accuracy marks
o B marks: unconditional accuracy marks (independent of M marks)
- Abbreviations
o cao - correct answer only
o ft - follow through
o isw - ignore subsequent working
o SC-special case
o oe - or equivalent (and appropriate)
o dep - dependent
o indep - independent
o eeoo - each error or omission

- No working

If no working is shown then correct answers normally score full marks
If no working is shown then incorrect (even though nearly correct) answers score no marks.

- With working

If there is a wrong answer indicated on the answer line always check the working in the body of the script (and on any diagrams), and award any marks appropriate from the mark scheme.
If it is clear from the working that the "correct" answer has been obtained from incorrect working, award 0 marks.
Any case of suspected misread loses A (and B) marks on that part, but can gain the M marks.
If working is crossed out and still legible, then it should be given any appropriate marks, as long as it has not been replaced by alternative work.
If there is a choice of methods shown, then no marks should be awarded, unless the answer on the answer line makes clear the method that has been used.
If there is no answer on the answer line then check the working for an obvious answer.

- I gnoring subsequent work

It is appropriate to ignore subsequent work when the additional work does not change the answer in a way that is inappropriate for the question: eg. Incorrect cancelling of a fraction that would otherwise be correct.
It is not appropriate to ignore subsequent work when the additional work essentially makes the answer incorrect eg algebra.
Transcription errors occur when candidates present a correct answer in working, and write it incorrectly on the answer line; mark the correct answer.

- Parts of questions

Unless allowed by the mark scheme, the marks allocated to one part of the question CANNOT be awarded in another.

International GCSE Maths				
Apart from questions $3,5 \mathrm{~d}, 17,18,20 \& 23$ (where the mark scheme states otherwise) the correct answer, unless clearly obtained from an incorrect method, should be taken to imply a correct method.				
Q	Working	Answer	Mark	Notes
(a)	$\begin{aligned} & 18 \div 60 \text { oe or } \\ & 7.3 \text { or } 7 \frac{18}{60} \text { or } 7 \frac{3}{10} \text { or } 7 \times 60+18(=438) \end{aligned}$		3	M1 for changing time to a decimal (7.3)
	$750 \times$ " 7.3 " oe or $750 \times \frac{438 \text { " }}{60}$ oe			M1 for speed \times time (allow 750×7.18 or answer of 5385)
		5475		A1
(b)	for at least one correct operation eg. $750 \times 1000,750 \div 60$ or $\frac{1000}{60 \times 60}(=0.27 \ldots$.$) or \frac{5}{18}$		3	M1 for one or two of $\times 1000, \div 60, \div 60$ (can be implied by 750000 or 12.5 or 12500 or 0.2083)
	$\frac{750 \times 1000}{60 \times 60} \mathrm{oe}$			M1 complete correct method
		208		A1 accept answers in range $208-208.3^{3}$
	Alternative mark scheme ft from (a)			
	$\begin{aligned} & " 5475 " \times 1000(=5475000) \text { OR } \\ & 7 \times 60+18=438 \text { and } 438 \times 60(=26280(\mathrm{sec})) \end{aligned}$		3	M1
	"5475000" $\div 26280$			M1 dep complete correct method
		208		A1 accept answers in range 208-208.3
				Total 6 marks

2	$3 \times 7(=21)$		2	M1 or for 3 numbers with a total of 21 or 3 numbers with a median of 5 or 3 numbers with a range of 14 or $(a+c=) 3 \times 7-5(=16)$	
		1, 5, 15			numbers can be in any order
					Tot

5 (a)		$h(7+h)$	1	B1	
(b)	$4 p+20+7 p-14$		2	M1	Any 3 terms correct
		$11 p+6$		A1	cao NB $11 p+6$ followed by, for example, $17 p$ scores M1 A0
(c)	$\begin{aligned} & 7 \times(-2)^{2}+5 \text { or } 7 \times 4+5 \text { or } \\ & 7(-2)^{2}+5 \end{aligned}$		2	M	for correct substitution or 7×4 or 28
		33		A1	
(d)	$\begin{aligned} & 5 q-15(=12-q) \\ & \text { or } q-3=\frac{12}{5}-\frac{q}{5} \end{aligned}$		3	M1	
	E.g. $5 q+q=12+15$ or $6 q=27$			M1	For a correct equation with the q terms collected on one side of the equation and the non q terms on the other side. ft from $5 q-3=12-q$ for this mark only
		4.5			for 4.5 or $\frac{9}{2}$ oe dep on at least M1
(e)	$-7 t \geq 31-3$ or $7 t \leq 3-31$ oe		2	M1	$-7 t \geq 31-3 \text { or } 7 t \leq 3-31 \text { or }-4$ or $t \geq-4$ accept an equation or the wrong inequality sign in the working
		$t \leq-4$		A1	or for $-4 \geq t$
				Total 10 marks	

6	$\begin{aligned} & 2.5 \times 28+7.5 \times 32+12.5 \times 20+17.5 \times 14+ \\ & 22.5 \times 6 \text { or } \\ & 70+240+250+245+135 \text { or } \\ & 940 \end{aligned}$		4	M2	$f \times d$ for at least 4 products with correct midinterval values and intention to add. If not M2 then award M1 for d used consistently for at least 4 products within interval (including end points) and intention to add or for at least 4 correct products with correct midinterval values with no intention to add
	$\begin{aligned} & (2.5 \times 28+7.5 \times 32+12.5 \times 20+17.5 \times 14+ \\ & 22.5 \times 6) \div 100 \text { or } \\ & (70+240+250+245+135) \div 100 \text { or } \\ & \text { " } 940 \text { " } \div 100 \end{aligned}$				dep on M1 NB: accept their 100 if addition shown
		9.4			SC: B2 for answer of 9.44 (B1 for 944 in working)
					Total 4 marks

7	$96 \div 3(=32)$		3	M1	$\text { M2 for } \frac{5}{3} \times 96$
	$\begin{aligned} & 9 \times{ }^{\prime} 32^{\prime}(=288) \text { or } 4 \times{ }^{\prime} 32^{\prime}(=128) \\ & \text { or }(9-4) \times{ }^{\prime} 32^{\prime} \end{aligned}$			M1 dep	
		160		A1	
					Total 3

8 (a)	$\begin{aligned} & (-1,6)(0,4)(1,2) \\ & (2,0)(3,-2)(4,-4) \\ & (5,-6) \end{aligned}$	Correct line between $x=-1$ and $x=5$	4	B4	For a correct line between $x=-1$ and $x=5$
				B3	For a correct line through at least 3 of $(-1,6)(0,4)(1,2)$ $(2,0)(3,-2)(4,-4)(5,-6)$ OR for all of $(-1,6)(0,4)(1,2)(2,0)(3,-2)(4,-4)(5,-6)$ plotted but not joined.
				B2	For at least 2 correct points plotted
					For at least 2 correct points stated (may be in a table) or seen in working OR for a line drawn with a negative gradient through $(0,4)$ OR for a line with the correct gradient.
(b)			3		for $y=-4$ drawn; accept full or dashed line NB A shaded rectangle implies a choice of lines so M0
				M1	for $x=1$ drawn; accept full or dashed line NB A shaded rectangle implies a choice of lines so M0
		For correct region identified			for correct region identified. Condone no label if region clear. ft from an incorrect straight line in part (a)
				Total 7 marks	

10	$0.82 x=25.83$ or $82 \%=25.83$		3	M1 or for use of 0.82 in a calculation
	$\frac{25.83}{0.82}$ or $\frac{25.83}{82} \times 100$		M1	
		$31.5(0)$		A1
				Total 3 marks

12 (a)(i)	2×48	96	1	B1	
(ii)		The angle at the centre is double the angle at the circumference	1	B1	NB : accept twice, double, origin (O) accept 'angle at circumference is half the angle at the centre' oe
(b) (i)	180-48	132	1	B1	
(ii)		The opposite angles in a cyclic quadrilateral total $\underline{180^{\circ}}$	1		accept supplementary angles accept The angle at the centre is double the angle at the circumference with angles at a point sum to 360°
					Total 4 marks

13	$0.0275 \times 4000(=110)$ $\begin{aligned} & \text { E.g. } \\ & 0.0275 \times(4000+" 110 ")(=113.025) \\ & \text { and } \\ & 0.0275 \times(4000+" 110 "+" 113.025 ") \end{aligned}$		3	M1 for interest for first year or 330 or answer of 4330 M1 for a complete method	M2 for $1.0275^{3} \times 4000$ oe
		4339.16		A1 Accept answer in range 4339 - 4340 NB: Answer in range $339-340$ gets M2A0	
					Total 3 ma

14 (a)	$T=k \sqrt{x}$		3	M1	or for $T=\sqrt{m x}$ k may be numeric (but not 1)
	$\begin{aligned} & 400=k \sqrt{625} \text { or } k=16 \text { or } \\ & 400=\sqrt{m 625} \text { or } m=256 \end{aligned}$			M1	implies the first M1
		$T=16 \sqrt{x}$			accept $T=\sqrt{256 x}$ Award 3 marks if $T=k \sqrt{x}$ but k is evaluated correctly in part (a) or (b). SC: B2 for correct formula for x in terms of T
(b)		120	1		ft for a correct answer from a substitution into an equation (or expression) in the form ($T=$) $k \sqrt{x}$ except for $k=1$
					Total 4 marks

16	$\sqrt[3]{\frac{264}{891}}$ or $\sqrt[3]{\frac{891}{264}}$ or $\frac{2}{3}$ or or $\frac{3}{2}$ oe or $2: 3$ or $\sqrt[3]{264}: \sqrt[3]{891} \quad(=6.415: 9.622)$		2	M1	correct linear scale factor or correct ratio (numbers may be in either order)
		12		A1	cao
(b)	$\begin{aligned} & 459 \times\left(\frac{2}{3}\right)^{2} \text { oe or } 459 \div\left(\frac{3}{2}\right)^{2} \text { oe or } \\ & 459 \times 41(.153 \ldots) \div 92(.594 \ldots) \end{aligned}$		2	M1	correct method to find the surface area of A
		204		A1	cao
					Total 4 marks

18	$\left(\frac{\mathrm{d} y}{\mathrm{~d} x}=\right) 20 x+9$ $20 x+9=0$			M1 for differentiating $10 x^{2}$ or $9 x$ correctly M1 equating their $\frac{\mathrm{d} y}{\mathrm{~d} x}$ (of the form $\mathrm{ax}+b$) to zero, dep on previous M1	$\begin{aligned} & \text { M2 for } \frac{-9}{2 \times 10} \\ & \left(\text { from } \frac{-b}{2 a}\right. \text {) } \end{aligned}$
	$x=-0.45$ oe			A1 dep on at least M1 for $x=-0.45$ oe	
		$(-0.45,2.975)$ oe	4	A1ft dep on M2 accept fractions $\left(-\frac{9}{20}, 2 \frac{39}{40}\right) \text { or }\left(-\frac{9}{20}, \frac{119}{40}\right)$	
	Alternative scheme (completing the square)				
	$\left(x+\frac{9}{20}\right)^{2}+\ldots .$			M1	
	$\left(x+\frac{9}{20}\right)^{2}-\left(\frac{9}{20}\right)^{2}+\frac{5}{10}=0$			M1	
	$x=-0.45$ oe			A1 dep on at least M1 for $x=-0.45$ oe	
		$(-0.45,2.975)$ oe	4	A1ft dep on M2 accept fractions $\left(-\frac{9}{20}, 2 \frac{39}{40}\right) \text { or }\left(-\frac{9}{20}, \frac{119}{40}\right)$	

19	$k^{2}=\frac{5 m+2 e}{3 e} \text { or } k \sqrt{3 e}=\sqrt{5 m+2 e}$		4	M1	Squaring both sides or clearing fraction
	$3 e k^{2}=5 m+2$			M1	Clearing fraction and squaring both sides
	$\begin{aligned} & 3 e k^{2}-2 e=5 m \text { or }-5 m=2 e-3 e k^{2} \\ & e\left(3 k^{2}-2\right)=5 m \text { or }-5 m=e\left(2-3 k^{2}\right) \end{aligned}$			M1	Isolating terms in e in a correct equation
		$e=\frac{5 m}{3 k^{2}-2}$			for $e=\frac{5 m}{3 k^{2}-2}$ or $e=\frac{-5 m}{2-3 k^{2}}$ oe
					Total 4 marks

$\mathbf{2 1}$ (a)		12	1	B1
(b)		7	1	B1
	(c)	Correct region shaded		1
				B1 Must be unambiguous

22	$\frac{75}{360} \times \pi \times d(2 r)=7.2$		4		for a correct equation linking the angle and arc length NB: $0.208\left(3 \ldots\right.$) may be used in place of $\frac{75}{360}$ or 4.8 in place of $\frac{360}{75}$
	$\frac{7.2 \times 360}{75 \times \pi}$ oe or $\frac{7.2 \times 360}{75 \times 2 \times \pi}$ oe or $d=11(.0 \ldots) \text { or } r=5.5(0 \ldots)$				for a complete method to find the radius or diameter.
	$\begin{aligned} & \frac{75}{360} \times \pi \times\left(\frac{" 111^{\prime \prime}}{2}\right)^{2} \text { or } \frac{75}{360} \times \pi \times 5.55^{\prime \prime 2} \text { or } \\ & \frac{75}{360} \times 95(.04 \ldots) \end{aligned}$				dep on previous M1
		19.8			for answer in range 19.8-19.82
					Total 4 marks

23	$x^{2}+(8-2 x)^{2}=52$		6	M1 for elimination of one variable $\left(\frac{8-y}{2}\right)^{2}+y^{2}=52$
	$x^{2}+4 x^{2}-16 x-16 x+64=52$			M1 (indep) for a correct expansion of $\begin{aligned} & (8-2 x)^{2} \text { or }\left(\frac{8-y}{2}\right)^{2} \\ & \left(\frac{64-8 y-8 y+y^{2}}{4}\right)+y^{2}=52 \end{aligned}$
	$5 x^{2}-32 x+12(=0)$			A1 for correct simplified 3 term quadratic equation in any form (may not be equated to zero) $5 y^{2}-16 y-144(=0)$
	$\begin{aligned} & (5 x-2)(x-6)(=0) \\ & \text { or } \frac{--32 \pm \sqrt{(-32)^{2}-4 \times 5 \times 12}}{2 \times 5} \end{aligned}$ (may be partially evaluated, condone lack of brackets around negative numbers)			M1 $(5 y-36)(y+4)(=0)$ $\text { or } \frac{--16 \pm \sqrt{(-16)^{2}-4 \times 5 \times-144}}{2 \times 5}$ (may be partially evaluated, condone lack of brackets around negative numbers) NB: can ft for this mark only provided M1 awarded and a 3 term quadratic
	$x=\frac{2}{5}$ or $x=6$			A1 for both x values (or both y values) $y=\frac{36}{5}$ or $y=-4$
		$\begin{aligned} & x=\frac{2}{5} \mathrm{oe}, y=\frac{36}{5} \mathrm{oe} \\ & x=6, y=-4 \end{aligned}$		A1 for both solutions with x and y values correctly paired
				Total 6 marks

24	$\frac{6}{9} \times \frac{7}{10} \times \frac{7}{10}\left(=\frac{49}{150}\right)$ oe or $\frac{3}{9} \times \frac{4}{10} \times \frac{4}{10}\left(=\frac{4}{75}\right)$ oe OR $\frac{6}{9} \times \frac{7}{10} \times a$ and $\frac{3}{9} \times \frac{4}{10} \times b$ a and b must both be a single fraction where $0<a, b<1$ and $a \neq \frac{7}{10}, \quad b \neq \frac{4}{10}$		3	M1	
	$\frac{6}{9} \times \frac{7}{10} \times \frac{7}{10}$ oe and $\frac{3}{9} \times \frac{4}{10} \times \frac{4}{10}$ oe			M	Both products correct (addition not needed)
		$\frac{19}{50}$		A	$\text { oe E.g. } \frac{342}{900}$
					Total 3 marks

