Mark Scheme (Results)

January 2018

Pearson Edexcel International GCSE
Mathematics A (4MA0)
Higher Paper 3HR

## Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please visit our website at www.edexcel.com.

Our website subject pages hold useful resources, support material and live feeds from our subject advisors giving you access to a portal of information. If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

www.edexcel.com/contactus

## Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

January 2018
Publications Code 4MA0_3HR_1801_MS
All the material in this publication is copyright
© Pearson Education Ltd 2018

## General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme.
Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.


## Types of mark

- M marks: method marks
- A marks: accuracy marks
- B marks: unconditional accuracy marks (independent of M marks)


## Abbreviations

- cao - correct answer only
- ft - follow through
- isw - ignore subsequent working
- SC - special case
- oe - or equivalent (and appropriate)
- dep - dependent
- indep - independent
- eeoo - each error or omission


## - No working

If no working is shown then correct answers normally score full marks
If no working is shown then incorrect (even though nearly correct) answers score no marks.

- With working

If there is a wrong answer indicated on the answer line always check the working in the body of the script (and on any diagrams), and award any marks appropriate from the mark scheme.
If it is clear from the working that the "correct" answer has been obtained from incorrect working, award 0 marks.
Any case of suspected misread loses A (and B) marks on that part, but can gain the M marks. If working is crossed out and still legible, then it should be given any appropriate marks, as long as it has not been replaced by alternative work.
If there is a choice of methods shown, then no marks should be awarded, unless the answer on the answer line makes clear the method that has been used.
If there is no answer on the answer line then check the working for an obvious answer.

## - Ignoring subsequent work

It is appropriate to ignore subsequent work when the additional work does not change the answer in a way that is inappropriate for the question: eg. Incorrect cancelling of a fraction that would otherwise be correct.
It is not appropriate to ignore subsequent work when the additional work essentially makes the answer incorrect eg algebra.
Transcription errors occur when candidates present a correct answer in working, and write it incorrectly on the answer line; mark the correct answer.

## - Parts of questions

Unless allowed by the mark scheme, the marks allocated to one part of the question CANNOT be awarded in another.

| Question | Working | Answer | Mark | Notes |
| :---: | :---: | :---: | :---: | :---: |
| $1 \text { (a) }$ | $5 x+5 y-3 x+3 y$ | $2 x+8 y$ | 2 | $\begin{aligned} & \mathrm{M} 1 \\ & \mathrm{~A} 1 \end{aligned}$ |
| (b) |  | $t^{10}$ | 1 | B1 |
|  |  |  | 1 | B1 |
| 2 | $\begin{aligned} & \angle A D E=180-124(=56) \text { or } \angle A D E=\frac{360-2 \times 124}{2}(=56) \\ & \angle D A E=\angle A D E=' 56 ' \\ & \angle A E C=2 \times ' 56 \text { ' } \end{aligned}$ | 112 | 4 | ```M1 M1 M1 for \(2 \times\) ' 56 ' or for \(\angle A E D=\) \(180-2 \times\) '56' ( \(=68\) ) and \(\angle A E C=180-{ }^{\prime} 68\) ' A1``` |


| Question | Working | Answer | Mark | Notes |
| :---: | :---: | :---: | :---: | :---: |
| 3 | $210 \div 9.72$ (= (€)21.60..) | 55 | 4 | $\begin{array}{ll} \text { M1 } & \text { for } 210 \div 9.72 \text { or }(\$) 1=9.72 \div 1.10 \\ & (=8.836 . .(\text { EGP })) \text { oe } \end{array}$ |
|  | $' 21.60 . . ' \times 1.10(=(\$) 23.765)$ |  |  | M1 for' $21.60 .$. ' $\times 1.10$ or $210 \div$ '8.836..' ( $=23.765 .$. ) oe |
|  | $79-23.765 .$. |  |  | M1 |
|  |  |  |  | A1 (Accept answer in the range 55 55.3) |
| ALT | $\begin{aligned} & 79 \div 1.1 \times 9.72(=698.7 \ldots) \text { OR } \\ & 79 \div 1.1(=71.81 \ldots) \text { and } 210 \div 9.72(=21.60 \ldots) \end{aligned}$ | 55 | 4 | M1 convert $\$ 79$ into pounds OR convert $\$ 79$ into euros and 210 pounds into euros |
|  | $‘ 698^{\prime}-210(=488.7 \ldots) \text { OR }{ }^{\prime} 71.8^{\prime}-{ }^{\prime} 21.6^{\prime}(=50.21 \ldots)$ |  |  | M1 (dep) for subtraction ' 698 ' -210 or '71.8' - '21.6' |
|  | ${ }^{\prime} 488{ }^{\prime} \div 9.72 \times 1.1$ OR ' 50.2 ' $\times 1.1$ |  |  | M1 for conversion of answer into dollars <br> A1 (Accept answer in the range 55 55.3) |



\begin{tabular}{|c|c|c|c|c|}
\hline Question \& Working \& Answer \& Mark \& Notes \\
\hline 6 \& \[
\pi \times 80(=251.327 \ldots . .)
\]
\[
\pi \times 80-2 \times 80(=91.327 \ldots)
\] \& 91.3 \& 3 \& \begin{tabular}{ll} 
M1 \& oe \\
M1 \& for a complete method \\
A1 \& \(91.2-91.43\)
\end{tabular} \\
\hline 7 \& \[
\begin{aligned}
\& \frac{3}{4} \times 24(=18) \text { or } \frac{1}{4} \times 24(=6) \\
\& ‘ 18 \times 30(=540) \text { or }{ }^{\prime} 6 \prime \times 20(=120) \\
\& \frac{1540^{\prime}+' 120 '-400}{400} \times 100(=65) \text { oe }
\end{aligned}
\] \& 65\% \& 4 \& \begin{tabular}{l}
M1 \\
M1 \\
M1 for a complete method \\
A1 \\
SC: B3 for an answer of \(165 \%\)
\end{tabular} \\
\hline 8 \& \[
\begin{aligned}
\& 50000 \times 30(=1500000) \\
\& \text { or } 50000 \div(100 \times 1000)(=0.5) \\
\& \text { or } 30 \div(100 \times 1000)(=0.0003) \\
\& \text { ' } 1500000 ’ \div(100 \times 1000) \\
\& \text { or }{ }^{`} 0.5 ’ \times 30 \\
\& \text { or }{ }^{\prime} 0.0003 ’ \times 50000
\end{aligned}
\] \& 15 \& 3 \& \begin{tabular}{l}
M1 for a correct first step or an answer with the digits 15 eg \(0.0015,1500\) \\
M1 for a complete method \\
A1
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline Question \& Working \& Answer \& Mark \& Notes \\
\hline 9 \& \begin{tabular}{l|l}
\(\frac{5}{8} \times \frac{3}{4}\left(=\frac{15}{32}\right)\) \& \(\frac{5}{8} \times 320(=200)\) or \(\left(1-\frac{5}{8}\right) \times 320(=120)\) \\
\(\left(1-\frac{5}{8}\right) \times \frac{2}{3}\left(=\frac{6}{24}\right)\) \& \(\frac{3}{4} \times{ }^{\prime} 200^{\prime}(=150)\) oe and \(\frac{2}{3} \times{ }^{\prime} 120 \prime(=80)\) oe \\
\({ }^{\prime} \frac{15}{32},+{ }^{\prime} \frac{6}{24}\), oe \& \(\frac{150^{\prime}+' 800^{\prime}}{320}\) oe
\end{tabular} \& \(\frac{23}{32}\) \& 4 \& \begin{tabular}{l}
M1 \\
M1 \\
M1 for a complete method \\
A1 oe
\end{tabular} \\
\hline \begin{tabular}{l}
\[
10 \quad \text { (a) }
\] \\
(b)
\end{tabular} \& \& \[
\begin{gathered}
2,3,4,6 \\
8,9,10 \\
12 \\
\\
5,7,11 \\
13
\end{gathered}
\] \& 2 \& \begin{tabular}{l}
B1 \\
B2 (B1 any set of 4 elements which satisfies exactly one of \(A \cap C=\) \(\varnothing, B \cap C=\varnothing\) or just 2 or 3 of 5 , \(7,11,13\) or all four correct values and one incorrect value eg 1, 5, 7, 11, 13)
\end{tabular} \\
\hline 11 \& \[
\begin{aligned}
\& 20^{2}-10^{2}(=300) \\
\& B D=\frac{\sqrt{300^{\prime}}}{2}(=8.66 \ldots) \\
\& A D^{2}=10^{2}+(0.5 \times \text { their } B C)^{2}
\end{aligned}
\] \& 13.2 \& 4 \& \begin{tabular}{l}
M1 \\
M1 \\
M1 (indep) \\
A1 for answer in the range 13.2 13.25
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline Question \& Working \& Answer \& Mark \& Notes \\
\hline \begin{tabular}{l}
12 (a) \\
(b)
\end{tabular} \& \(\frac{12}{8}\) oe or \(\frac{8}{12}\) oe or \(\frac{5}{8}\) oe or \(\frac{8}{5}\) oe
\[
13.5-\frac{8}{12} \times 13.5 \mathrm{oe}
\] \& \[
7.5
\]
\[
4.5
\] \& \begin{tabular}{l}
\[
2
\] \\
2
\end{tabular} \& \begin{tabular}{l}
M1 \\
A1 oe \\
M1 for a complete method \\
A1 oe
\end{tabular} \\
\hline 13 \& \[
\text { Total distance }=b+x \text { or } v \mathrm{~km} / \mathrm{h}=v \times 1000 \div 3600 \mathrm{~m} / \mathrm{s}
\]
\[
(T=)(b+x) /(v \times 1000 \div 3600)
\] \& \(T=\frac{18(b+x)}{5 v}\) \& 3 \& \begin{tabular}{l}
M1 for total distance or conversion from \(\mathrm{km} / \mathrm{h}\) to \(\mathrm{m} / \mathrm{s}\) \\
M1 for any correct expression for \(T\) \\
A1 correct and fully simplified (numerator may not be factorised)
\end{tabular} \\
\hline 14 \& \[
\begin{aligned}
\& 3000 \times(1+0.024)^{3}(=3221.22(5 \ldots)) \\
\& \text { or } \\
\& 3072,3145.72(8), 3221.22(5 \ldots) \\
\& \\
\& ‘ 3221.22(5 \ldots .) \quad-\left[\left({ }^{\prime} 3221.22(5 \ldots) '-3000\right) \times 0.4\right] \mathrm{oe}
\end{aligned}
\] \& 3132.74 \& 4 \& \begin{tabular}{l}
M2 for a complete method to find the amount in the account after 3 years before the \(40 \%\) deduction \\
If not M2 then M1 for \(3000 \times(1+\) 0.024 ) oe or \(3000 \times(1+0.024)^{2}\) oe \\
M1 (indep) for finding \(60 \%\) of their interest \\
A1 3132-3133
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Question \& Working \& Answer \& Mark \& \multicolumn{2}{|r|}{Notes} \\
\hline 15 \&  \& \[
2,-\frac{1}{2}
\] \& 3 \& \multicolumn{2}{|l|}{\begin{tabular}{l}
M1 for a complete method to eliminate one variable (condone one arithmetic error) \\
M1 (Dep on M1) for substituting the found variable or starting again to eliminate the other variable \\
A1 dep on M1 \\
NB: candidates showing no correct algebraic working score 0 marks.
\end{tabular}} \\
\hline 16 (a) \& \& 700 \& 1 \& \& Answer in the range 700-720 \\
\hline (b) \& eg \(\mathrm{Q}_{1}=510\), eg \(\mathrm{Q}_{3}=870\) \& 360 \& 2 \& A \& for a correct method to identify lower and upper quartiles eg readings from 30 and 90 from the vertical axis Answer in the range 330-380 \\
\hline (c) \& \[
\frac{85}{100} \times 120(=102) \text { or } \frac{15}{100} \times 120(=18)
\] \& 940 \& 3 \& M
M

A \& for using the graph to find the value of $N$

$$
930-950
$$ <br>

\hline
\end{tabular}




| Question | Working | Answer | Mark | Notes |
| :---: | :---: | :---: | :---: | :---: |
| 19 | $\begin{aligned} & \angle T O B=2 \times 78(=156) \\ & \begin{array}{l} \text { Reflex } \angle T O B=360-' 156 ' \\ \text { 204 }) \text { and } \angle O T P=90 \end{array}=\left\lvert\, \begin{array}{l} \angle O B T=\angle O T B=(180 \\ -56) \div 2 \\ (=12) \text { and } \angle O T P= \\ 90 \end{array}\right. \\ & \angle O B P=360-\text { ' } 204 \prime-90-34 \text { or } \angle O B P=180-90-\text { ' } 12 \prime \\ & \times 2-34 \end{aligned}$ <br> NOTE: Values could be marked on the diagram | 32 | 4 | M1  <br> M1 for M1 for method to find <br> method to $\angle O B T, \angle O T B$ and <br> find reflex $\angle O T P$ <br> $\angle T O B$ and  <br> $\angle O T P$  <br> M1 for a complete method <br> A1 |
| 20 | e.g. $\begin{aligned} & 5 \times 25(=125) \\ & 10 \times 10 \times 3(=300) \end{aligned}$ <br> Area from 55 to 90 is $5 \times ' 25 \text { ' }+10 \times 10 \times 3(=425)$ | $\frac{425}{1875}$ | 3 | M1 for frequency found for any bar between 10 and 55 or between 55 and 90 <br> M1 for a complete method to find the number of snails with lengths more than 55 mm <br> A1 oe |



| Question | Working | Answer | Mark | Notes |
| :--- | :--- | :---: | :---: | :--- |
| 22 | eg $\frac{1}{3} \times \pi \times(3 r)^{2} \times 4 r\left(=12 \pi r^{3}\right)$ or $\frac{1}{2} \times \frac{4}{3} \times \pi \times(3 r)^{3}\left(=18 \pi r^{3}\right)$ | $\sqrt[3]{11}$ | 5 | M1for a method to find the volume <br> of the cone or the hemisphere <br> (condone missing brackets) <br> eg $\frac{1}{3} \times \pi \times(3 r)^{2} \times 4 r+\frac{1}{2} \times \frac{4}{3} \times \pi \times(3 r)^{3}$ <br> eg $\frac{1}{3} \times \pi \times(3 r)^{2} \times 4 r+\frac{1}{2} \times \frac{4}{3} \times \pi \times(3 r)^{3}=330 \pi$ <br> $30 \pi r^{3}=330 \pi$ |



