Mark Scheme (Results)

January 2019

Pearson Edexcel International GCSE In Mathematics A (4MA1) Higher Tier Paper 1H

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

January 2019
Publications Code 4MA1_1H_1901_MS
All the material in this publication is copyright
© Pearson Education Ltd 2019

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme.
Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

- Types of mark

- M marks: method marks
- A marks: accuracy marks
- B marks: unconditional accuracy marks (independent of M marks)
- Abbreviations
- cao - correct answer only
- ft - follow through
- isw - ignore subsequent working
- SC - special case
- oe - or equivalent (and appropriate)
- dep-dependent
- indep - independent
- eeoo - each error or omission

- No working

If no working is shown then correct answers normally score full marks
If no working is shown then incorrect (even though nearly correct) answers score no marks.

- With working

If there is a wrong answer indicated on the answer line always check the working in the body of the script (and on any diagrams), and award any marks appropriate from the mark scheme.
If it is clear from the working that the "correct" answer has been obtained from incorrect working, award 0 marks.
If a candidate misreads a number from the question. Eg. Uses 252 instead of 255; method marks may be awarded provided the question has not been simplified. Examiners should send any instance of a suspected misread to review. If working is crossed out and still legible, then it should be given any appropriate marks, as long as it has not been replaced by alternative work.
If there is a choice of methods shown, then no marks should be awarded, unless the answer on the answer line makes clear the method that has been used.
If there is no answer on the answer line then check the working for an obvious answer.

- Ignoring subsequent work

It is appropriate to ignore subsequent work when the additional work does not change the answer in a way that is inappropriate for the question: eg. Incorrect cancelling of a fraction that would otherwise be correct.
It is not appropriate to ignore subsequent work when the additional work essentially makes the answer incorrect eg algebra.
Transcription errors occur when candidates present a correct answer in working, and write it incorrectly on the answer line; mark the correct answer.

- Parts of questions

Unless allowed by the mark scheme, the marks allocated to one part of the question CANNOT be awarded in another

Question	Working	Answer	Mark	Notes
3	$\begin{aligned} & 1-(0.15+0.26+0.33) \text { or } 1-0.74 \\ & (=0.26) \end{aligned}$			M1 can be implied by two values where $\mathrm{P}($ brown $)+\mathrm{P}($ yellow $)=0.26$ (may be seen in table)
	$(\mathrm{P}(\text { yellow })=) \frac{" 0.26 "-0.06}{2} \text { or } 0.1$			M1 for a complete method to find P(yellow)
	150×20.1 "			M1 independent mark Award for $150 \times p$ where $0<p<1$
		15	4	A1 NB: An answer of $\frac{15}{150}$ scores M3 A0

Question	Working	Answer	Mark		Notes
5	$\begin{array}{\|l} \text { E.g. } 4 x+15+30 x-5=180 \text { OR } \\ 20 x+45+4 x+15=180 \text { OR } \\ 4 x+15+20 x+45=180 \text { OR } \\ 30 x-5=20 x+45 \\ x=5 \end{array}$ E.g. $20 \times$ " 5 " $+45(=145)$ or $4 \times$ " 5 " $+15(=35)$ or $30 \times$ " 5 " $-5(=145)$ OR E.g. $4 x+15+30 x-5=180$ AND $30 x-5=20 x+45$ E.g. $A F C=145$ and $F C D=145 \quad$ OR $A F C=145$ and $B C F=35$ OR $x=5$ from the solution of two equations			M1	for forming an appropriate equation
				M1	for substituting their value for x into the expression NOT used to form the equation solved
					OR forms a second equation in x
		Shown correctly with reasons	5	A1	dep on previous M1 NB : It must be clear which angles are being found
				B1	For full reasons: Alternate angles are equal and angles in a straight line add to $180^{\circ} \mathbf{O R}$ Allied angles (or co-interior) add to 180° and angles in a straight line add to 180°

Question	Working	Answer	Mark	Notes
$\begin{array}{rr}6 & \text { (a) } \\ & \text { (b) } \\ & \\ & \text { (c) }\end{array}$		(6),2,(0),(0),(2),6	1	B1 For both entries correct
	$(0,6),(1,2),(2,0),(3,0),(4,2),(5,6)$			M1 for at least 5 points plotted correctly (ft their table)
		Correct curve	2	A1 for a correct curve
	$x^{2}-5 x+6=x-1$			M1 or for $y=x-1$
				M1 for $y=x-1$ drawn
		1.6 and 4.4	3	A1 dep on M2 ft from their graph in (b) if at least 1 mark scored in (b)
7 (a)		71800000	1	B1
(b)	$\operatorname{Eg} 1.88 \times 10^{7}+3.10 \times 10^{8}+2.64 \times 10^{8}+7.18 \times 10^{7}$ or $18800000+310000000+264000000+71800$ 000 with at least 3 numbers correct			M1 for a complete method or for digits 6646
		6.646×10^{8} oe	2	A1 for 6.646×10^{8} oe eg 664600000
(c)		9.88×10^{6}	1	B1

Question	Working	Answer	Mark	Notes
8	$\frac{1}{2} \times 5 \times h=12$ oe or $\frac{1}{2} \times 2.5 \times h=6$ oe or $h=4.8$			M1 NB: 4.8 may be seen on the diagram
	$\begin{aligned} & (x=) \sqrt{2.5^{2}+4 . .^{2} n} \text { or }(x=) \sqrt{" 29.29} " \\ & \text { or } 5.41(202 \ldots) \end{aligned}$			M1 ft the candidate's value for height for this mark (award of this mark does not depend on award of previous mark)
	$2 \times 15.41 "+5$			M1 dep on previous M1
		15.8	4	A1 for $15.8-15.83$

Question		Working	Answer	Mark		Notes
9	(a)		3, 19, 43, 53, 58, 60	1	B1	
	(b)				M1	ft from (a) if only one addition error for at least 4 points plotted correctly at end of interval or for all 6 points plotted consistently within each interval in the frequency table at the correct height (Eg. using values of 5, 15, 25 etc on x axis)
			correct cf graph	2	A	accept curve or line segments accept curve which is not joined to $(0,0)$
	(c)	15 and 45 indicated on the cumulative frequency axis and readings taken from speed axis			M	ft from a cf graph for a correct method to find LQ and UQ and intention to subtract Eg for a correct reading from 45/45.75 and $15 / 15.25$ from vertical axis to find LQ and UQ and an intention to subtract
			13-15	2	A1	accept $13-15$ ft from a cf graph

Question	Working	Answer	Mark		Notes
10	Working with $C D$ and then triangle $A B D$ E.g. $\tan 20=\frac{C D}{13}$			M1	for a correct statement or equation including $C D$ as the only variable $\text { E.g. } C D^{2}=\left(\frac{13}{\cos 20}\right)^{2}-13^{2}$
	$\text { E.g. }(C D=) 13 \tan 20 \text { or } 4.7(316 \ldots)$			M1	for a correct method to find $C D$ E.g. $\sqrt{\left(\frac{13}{\cos 20}\right)^{2}-13^{2}}$
	$\text { E.g. } \tan (B A D)=\frac{8+4.73 "}{13} \text { or } \tan (B A D)=0.97(93 \ldots)$			M1	for a correct statement or equation including angle $B A D$ as the only variable
	E.g. $(\mathrm{BAD}=) \tan ^{-1}(" 0.979$ ") or $44.4(024 \ldots)$	24.4	5	M1	for a correct method to find angle $B A D$
				A1	for 24.3-24.41
					Award M1A1M1M1A0 for an answer in the range 44.3-44.41

Question	Working	Answer	Mark		Notes
10	Alternative mark scheme - working with $A C$ and then triangle $A B C$ $\text { E.g. } \cos 20=\frac{13}{A C}$			M1	for a correct statement or equation including $A C$ as the only variable E.g. $A C^{2}=13^{2}+(13 \tan 20)^{2}$
	E.g. $(A C=) \frac{13}{\cos 20}$ or $13.8(3 \ldots)$			M1	for a correct method to find $A C$ E.g. $\sqrt{13^{2}+(13 \tan 20)^{2}}$
	E.g. $(A B=) \sqrt{113.8^{12}+8^{2}-2 \times 13.8 \times 8 \times \cos (110)}$ ($=18.1$ (9..) or 18.2			M1	for a correct method to find $A B$
	E.g. $\frac{\sin B A C}{8}=\frac{\sin 110}{" 18.1 "}$ or $8^{2}=" 13.8^{" 2}+" 18.1^{" 2}-2 \times " 13.8 " \times " 18.1 " \times \cos B A C$	24.4	5	M1	for a correct statement or equation including angle $B A C$ as the only variable
				A1	for ans in range 24.3-24.41
					Award M4A0 for an answer in the range 44.3-44.41

Question	Working		Answer	Mark	Notes
11	E.g. $\frac{10 x}{6 x}-\frac{3(x+2)}{6 x}$ or $\frac{10 x-3(x+2)}{6 x}$			M1	for two correct fractions with common denominator or a single correct fraction
	$\frac{10 x-3 x-6}{6 x} \text { or } \frac{7}{6 x}-\frac{1}{x}$			M1	for a correct single fraction with brackets expanded
		$\frac{7 x-6}{6 x}$	3		for $\frac{7 x-6}{6 x}$ as the final answer
					SC: If no marks awarded then award B1 for an answer of $\frac{7 x+6}{6 x}$

Question	Working	Answer	Mark	Notes
12 (a)	$3 \times \frac{1}{3} x^{2}-9$			M1 for $3 \times \frac{1}{3} x^{2}$ oe or -9 oe
		$x^{2}-9$ oe	2	A1 or for $1 x^{2}-9$ oe
(b)		$-3<x<3$ oe	3	B3 may be seen as two separate inequalities
				if not B3 then award B2 for $\begin{aligned} & x<3 \\ & \text { or } x>-3 \\ & \text { or }-3 \leq x \leq 3 \end{aligned}$
				if not B2 then award B1 for $x^{2}-9<0$ or $x^{2}<9$ oe or for $(x-3)(x+3)$ or for $(x=) \pm 3$ (values maybe seen in incorrect inequalities)
				SC: If no marks awarded and M1 awarded in (a) then award B1 for "quadratic" <0

Question	Working	Answer	Mark	Notes
14 (a)	$T=k r^{3}$			M1 Allow $r^{3}=m T$ Do not allow $T=r^{3}$
	$21.76=k \times 4^{3}$ oe or $k=0.34$			M1 for correct substitution into a correct equation; implies first M1
				Award M2 if $k=0.34$ stated unambiguously ($m=2.94$)
				Condone use of proportional sign in place of equals sign
		$T=0.34 r^{3}$ oe	3	A1 Only award if T is the subject Award M2A1 if $T=k r^{3}$ on answer line and k given as 0.34 oe in working space.
(b)		73.44	1	B1 ft for their value of k if $T=k r^{3}$

Question	Working	Answer	Mark	Notes
16 (a)	$\begin{aligned} & \operatorname{Eg} \frac{a+\sqrt{4 b}}{a-\sqrt{4 b}} \times \frac{a+\sqrt{4 b}}{a+\sqrt{4 b}} \text { or } \frac{a+2 \sqrt{b}}{a-2 \sqrt{b}} \times \frac{a+2 \sqrt{b}}{a+2 \sqrt{b}} \text { or } \\ & \frac{(a+2 \sqrt{b})^{2}}{(a+2 \sqrt{b})(a-2 \sqrt{b})} \end{aligned}$			M1 For multiplying the numerator and denominator by $a+\sqrt{4 b}$ or $a+2 \sqrt{b}$
	$\operatorname{Eg} \frac{(a+\sqrt{4 b})(a+\sqrt{4 b})}{a^{2}-4 b}$			M1 dep on M1 for correctly simplified denominator
		$\frac{a^{2}+4 a \sqrt{b}+4 b}{a^{2}-4 b}$	3	A1 for $\frac{a^{2}+4 a \sqrt{b}+4 b}{a^{2}-4 b}$ or $\frac{(a+2 \sqrt{b})^{2}}{a^{2}-4 b}$
(b)		2.5 oe	1	B1

Question	Working	Answer	Mark	Notes
17	$\left(A C^{2}=\right) 4.1^{2}+5.3^{2}-2 \times 4.1 \times 5.3 \times \cos (110)$			M1 for the correct use of Cosine rule to find $A C$
	$(A C=) \sqrt{16.81+28.09+14.8(641 \ldots)}$ or $\sqrt{59.7(641 \ldots)}$ or $7.7(3073)$ or $A C^{2}=59.7 \ldots$			M1 NB: there must be evidence of correct order of operations for this mark to be awarded
	$\operatorname{Eg} \frac{\sin x}{5.3}=\frac{\sin 110}{" 7.7^{\prime \prime}}$ or $\frac{5.3}{\sin x}=\frac{" 7.7^{\prime \prime}}{\sin 110}$ or			M1 dep on first M1 for correct use of sine rule or cosine rule ft for their value of $A C$ or $A C^{2}$
	$\begin{aligned} & \operatorname{Eg} \sin x=\frac{\sin 110}{" 7.7 "} \times 5.3(=0.644(2 \ldots)) \text { or } \\ & \cos x=\frac{4.1^{2}+" 7.7^{\prime 2}-5.3^{2}}{2 \times 4.1 \times " 7.7^{\prime \prime}}(=0.764(83 \ldots) \end{aligned}$			M1 for isolating $\sin x$ or $\cos x$
		40.1	5	A1 for 40.1-40.11

Question	Working	Answer	Mark		Notes
18 (a)		Parabola through$(-4,5),(-2,0),(0,-3),(2,-4),(4,-3)(6,0),(8,5)$	21	B2	For a parabola with minimum $(2,-4)$ through at least 5 of $(-4,5),(-2,0),(0,-3),(4,-3)(6,0),(8,5)$
					If not B 2 then B 1 For u-shaped parabola with minimum $(2,-4)$ or For u-shaped parabola through $(-2,0),(6,0)$ or For u-shaped parabola through $(-4,5),(8,5)$
(b)		3		B1	

Question		Working	Answer	Mark	Notes	
19			$y \geq-3$	1	B1	Accept $\mathrm{g}^{-1}(x) \geq-3$
	(b)	$\begin{aligned} & (x+3)^{2}-3^{2} \text { or }(x+3)^{2}-9 \text { or }(y+3)^{2}-3^{2} \text { or } \\ & (y+3)^{2}-9 \end{aligned}$			M1	for completing the square
		$y+9=(x+3)^{2}$ or $x+9=(y+3)^{2}$			M1	
		$\sqrt{y+9}=x+3$ or $\sqrt{x+9}=y+3$			M1	
			$-3+\sqrt{x+9}$	4	A1	oe
						M3A0 for $-3+\sqrt{y+9}$ and for $-3 \pm \sqrt{x+9}$

Question	Working	Answer	Mark	Notes
	Mark scheme 1 (see next page for alternative mark scheme)			
21	$(8 x+2)-(2 x+23)(=6 x-21) \text { or }(2 x+23)-(8 x+2) \quad(=-6 x+$ $\begin{aligned} & (20 x-52)-(8 x+2)(=12 x-54) \text { or }(8 x+2)-(20 x-52)(=-12 x \\ & +54) \end{aligned}$			M1 for a correct expression for the common difference in terms of x brackets must be present or removed correctly
	$\begin{aligned} & (8 x+2)-(2 x+23)=(20 x-52)-(8 x+2) \text { oe or } \\ & (2 x+23)-(8 x+2)=(8 x+2)-(20 x-52) \text { oe } \end{aligned}$			M1 for a correct equation
	$x=5.5$			A1
	Eg $2 \times 5.5+23(=34)$ and $8 \times 5.5+2(=46)$ OR $8 \times 5.5+2(=46)$ and $20 \times 5.5-52(=58)$	shown	4	A1 for 12 from correct working

Question	Working	Answer	Mark		Notes
21	Alternative method - starts by assuming $d=12$ E.g. $\begin{aligned} & (2 x+23)+12=(8 x+2) \text { or }(8 x+2)+12=(20 x-52) \text { or } \\ & (2 x+23)-12=(8 x+2) \text { or }(8 x+2)-12=(20 x-52) \end{aligned}$ or $(2 x+23)+(8 x+2)+(20 x-52)=\frac{3}{2}(2(2 x+23)+2 \times 12)$ $\begin{aligned} & x=5.5 \\ & \text { or } x=1.5 \text { from }(2 x+23)-12=(8 x+2) \\ & \text { or } x=3.5 \text { from }(8 x+2)-12=(20 x-52) \\ & 2 \times 5.5+23(=34) \text { and } 8 \times 5.5+2(=46) \\ & \text { and } 20 \times 5.5-52(=58) \end{aligned}$ OR $2 x+23)+12=(8 x+2) \text { and }(8 x+2)+12=(20 x-52)$ $\text { and gets } x=5.5 \text { both times }$			M2	for a correct equation If not M2 then award M1 for a correct expression for the common difference in terms of x brackets must be present or removed correctly e.g $(8 x+2)-(2 x+23)(=6 x-21)$ or $(20 x-52)-(8 x+2)(=12 x-54)$
		shown	4	A1 A1	for explicitly showing both common differences are 12 OR solves both $\begin{aligned} & (2 x+23)+12=(8 x+2) \text { and } \\ & (8 x+2)+12=(20 x-52) \\ & \text { and gets } x=5.5 \text { both times } \end{aligned}$

