

Mark Scheme (Results)

January 2020

Pearson Edexcel International GCSE In Mathematics A (4MA1) Paper 1H

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <u>www.edexcel.com</u> or <u>www.btec.co.uk</u>. Alternatively, you can get in touch with us using the details on our contact us page at <u>www.edexcel.com/contactus</u>.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

January 2020 Publications Code 4MA1_1H_2001_MS All the material in this publication is copyright © Pearson Education Ltd 2020

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme.

Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.

- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

• Types of mark

- M marks: method marks
- A marks: accuracy marks
- B marks: unconditional accuracy marks (independent of M marks)

• Abbreviations

- o cao correct answer only
- o ft follow through
- o isw ignore subsequent working
- o SC special case
- oe or equivalent (and appropriate)
- o dep dependent

- o indep independent
- o awrt answer which rounds to
- o eeoo each error or omission

• No working

If no working is shown then correct answers normally score full marks If no working is shown then incorrect (even though nearly correct) answers score no marks.

• With working

If there is a wrong answer indicated on the answer line always check the working in the body of the script (and on any diagrams), and award any marks appropriate from the mark scheme.

If it is clear from the working that the "correct" answer has been obtained from incorrect working, award 0 marks.

If a candidate misreads a number from the question. Eg. Uses 252 instead of 255; method marks may be awarded provided the question has not been simplified. Examiners should send any instance of a suspected misread to review. If there is a choice of methods shown, mark the method that leads to the answer on the answer line; where no answer is given on the answer line, award the lowest mark from the methods shown.

If there is no answer on the answer line then check the working for an obvious answer.

• Ignoring subsequent work

It is appropriate to ignore subsequent work when the additional work does not change the answer in a way that is inappropriate for the question: eg. Incorrect cancelling of a fraction that would otherwise be correct.

It is not appropriate to ignore subsequent work when the additional work essentially makes the answer incorrect eg algebra.

Transcription errors occur when candidates present a correct answer in working, and write it incorrectly on the answer line; mark the correct answer.

• Parts of questions

Unless allowed by the mark scheme, the marks allocated to one part of the question CANNOT be awarded to another.

Ques	stion	Working	Answer	Mark	Notes				
Apa	part from questions (where the mark scheme states otherwise) the correct answer, unless clearly obtained by an incorrect method,								
shou	ld be t	aken to imply a correct method							
1	(a)	$\frac{5+13}{2}$ or $\frac{-4+1}{2}$		2	M1 for a correct method to find one coordinate or for one coordinate correct or for $(-1.5, 9)$				
			(9, -1.5)		A1 oe				
	(b)		-3	1	B1				
	(c)		No with reason	1	B1 No (oe) and e.g. line goes through (100, -298) or (101.3(3), -302) or $\left(\frac{304}{3}, -302\right)$ or $(3 \times 100) - 302 = -2$ not (+)2				
					Total 4 marks				

2	28, 56, 84, 112 and 105, 210, 315, 420 or 2, 2, 7 and 3, 5, 7 or 2 = 2 = 7 = 3 = 5 or $\frac{28 \times 105}{7}$ or 2, 2, 3, 5, 7 oe		2	M1 for any correct valid method e.g. for starting to list at least four multiples of each number or 2, 2, 7 and 3, 5, 7 seen (may be in a factor tree and ignore 1) or a fully correct Venn diagram
		420		A1 cao
				Total 2 marks

3	E.g.		4	M1 for one correct relevant area
	$12 \times 9 \ (=108) \ or \ (9-6) \times x \ (=3x)$			
	E.g.			M1 (dep on M1) for 129 used correctly with another area
	129 – '108' (= 21) or			or
	108' + 3x' = 129			for a correct equation (ft) with bracket(s) expanded
	E.g.			M1 for a complete method
	$21' \div (9-6)$ or			
	129–'108'			
	x =			
		7		A1 Accept 7 cm
				Total 4 marks

4	(a)		$3 < w \leq 4$	1	B1
4	(a) (b)	$(12 \times 2.5) + (16 \times 3.5) + (9 \times 4.5) + (2 \times 5.5) + (1 \times 6.5)$ or 30 + 56 + 40.5 + 11 + 6.5 (= 144)	<u> </u>	4	M2 for at least 4 correct products added (need not be evaluated) or If not M2 then award M1 for consistent use of value within interval (including end points) for at least 4 products which must be added
		$[(12 \times 2.5) + (16 \times 3.5) + (9 \times 4.5) + (2 \times 5.5) + (1 \times 6.5)] \div 40$ or			or correct midpoints used for at least 4 products and not added M1 (dep on at least M1) Allow division by their Σf provided addition or total under column seen
		'144' ÷ 40			
	(c)	$\frac{2}{40} + \frac{1}{40}$	3.6	2	A1 oe M1 for $\frac{a}{40}$ where $0 < a < 40$ or $\frac{3}{b}$ where $b > 3$ where a and b are integers
			$\frac{3}{40}$		A1 0.075 oe
		•			Total 7 marks

5	$120 \div (3+5) (= 15)$		6	M1	M2 for
	'15' × 3 (= 45) or			M1	3,120 (
	'15' × 5 (= 75)				$\frac{3}{8} \times 120 (= 45)$ or
					$\frac{5}{9} \times 120 (= 75)$ oe
					$\frac{-120}{8}$ (= /5) oe
	'45' ÷ 3 (= 15) or			M1	
	'45' ÷ 3 × 2 (= 30)				
	$`75' \times \frac{16}{25} \ (=48) \text{ or } `75' \times \frac{9}{25} \ (=27)$			M1	
	E.g.			M1 for a complete method	
	$(45' \div 3 \times 2) + (75' \times \frac{9}{25})$ oe or				
	'27' + '30' or				
	('75' - '48') + ('45' - '15')				
		57		Al	
					Total 6 marks

6	(a)		0.000 78	1	B1
	(b)	22 500 000 oe e.g. 22.5×10^6		2	M1
		or $2.25 \times 10^n n \neq 7$			
			2.25×10^{7}		A1
					Total 3 marks

7	(a)	$m^2 - 8m + 5m - 40$		2	M1 for any 3 correct terms or for 4 out of 4 correct terms ignoring signs for $m^2 - 3m$ or for $-3m - 40$
			$m^2 - 3m - 40$		A1
	(b)		5y(1+4y)	2	B2 If not B2 then award B1 for $5(y + 4y^2)$ or $y (5 + 20y)$ or $5y(a + 4y)$ where <i>a</i> is an integer and $a \neq 0$ or $5y(1 + by)$ where <i>b</i> is an integer and $b \neq 0$
	(c)		1	1	B1
	(d)	E.g. $6x - 15$ or $12x - 30$ oe		4	M1 for expansion of a correct bracket
		$2 \times 3(2x-5) = 9 - x \text{ oe or}$ 2('6x-15') = 9 - x oe or 3(2x-5) = $\frac{9}{2} - \frac{x}{2}$ oe			M1 for removal of fraction or separating fraction (RHS) in an equation
		12x + x = 9 + 30 oe or $6x + \frac{x}{2} = \frac{9}{2} + 15 \text{ oe}$			M1 ft (dep on 4 terms) for terms in <i>x</i> on one side of equation; number terms on the other
			3		A1 dep on at least M2 awarded
					Total 9 marks

8	Trapezium	2	B2
	with		If not B2 then award
	vertices at		
	(6, 3)(8, 3)		B1 for shape of correct size and orientation or
	(8, 6) (4, 6)		3 or 4 points plotted correctly
			Total 2 marks

9	$\cos 63 = \frac{24.3}{(PQ)} \text{ or}$ $\sin 27 = \frac{24.3}{(PQ)} \text{ or}$ $\frac{(PQ)}{\sin 90} = \frac{24.3}{\sin 27} \text{ or } \frac{\sin 90}{(PQ)} = \frac{\sin 27}{24.3} \text{ oe}$		3	M1 for a correct trigonometric ratio	M2 for $(RQ =) 24.3 \times \tan 63 (= 47.6914)$ and $(PQ =) \sqrt{47.6914^{2} + 24.3^{2}}$ oe
	$(PQ =) \frac{24.3}{\cos 63} \text{ or}$ $(PQ =) \frac{24.3}{\sin 27} \text{ or}$ $(PQ) = \frac{24.3}{\sin 27} \times \sin 90$			M1 for a correct rearrangement for <i>PQ</i>	
		53.5		A1 Accept 53.5 - 53.53	
					Total 3 marks

			Total 3 marks
			Accept < for \leq and > for \geq throughout
			(If no marks gained B1 for understanding of equation $x + y = 4$ e.g. y > 4 - x)
	^y = 3 ^w = ^y		(SC B3 for $x \le -1$, $x + y \ge 4$ and $y \le \frac{1}{3}x - 2$ oe)
	$y \ge \frac{1}{2}x - 2$ oe		B1 for one correct inequality)
	$x + y \le 4$ oe		(B2 for two correct inequalities
10	$x \ge -1$ oe	3	B3 for all 3 correct inequalities

11	$\frac{6000 \times 1.015^2 (= 6181.35) \text{ or}}{6000 + (0.015 \times 6000) + (0.015 \times (6000 + 90')) (= 6181.35) \text{ or}}{(1.015)^2 (= 1.030225) \text{ or}}$ $\frac{6311.16}{6000} (= 1.05186)$		3	M1 for working out the total amount after two years or working out the compound interest multiplier after two years or working out the compound interest multiplier after three years
	$\frac{6311.16 \div `6181.35' (= 1.021) (\times 100) \text{ or}}{6311.16 - `6181.35'} (= 1.021) (\times 100) \text{ or}}{(\times 100) \text{ or}}$ $\frac{6311.16 - `6181.35'}{(\times 100) \text{ or}} (= 1.021) (\times 100) \text{ or}}{(\times 100) (\times 100)}$			M1 (dep on M1) for a complete method to find the compound interest multiplier (×100)
		2.1		A1 awrt 2.1
				Total 3 marks

12	(a)	E.g. 56 – 38		2	M1 for subtracting readings from 60 and 20 oe
			18		A1 for answer in the range $17 - 19$
	(b)	[40.5, 43]		3	B1
		'42' ÷ 0.6 oe			M1 for complete method to find the number of men
			70		A1
					Total 5 marks

13	$0.14 = \frac{56}{w^2}$ oe or $56 \div 0.14 (= 400)$		4	M1 for using the given formula correctly
	$\sqrt{\frac{56}{0.14}}$ or $\sqrt{400'}$ (=20)			M1 for a method to find <i>w</i>
	'20' × '20' × '20' oe			M1 (dep on M2) for a method to find the volume of the cube
		8000		A1
				Total 4 marks

14	(a)	$(0.5 \times) 9.3 \times 14.7 \times \sin 106$ or		2	M1 for applying the area of a triangle formula using correct values
		$(9.3 \times \cos 16) \times 14.7$ or			(to find half of the area of the parallelogram) or
		$(9.3 \times \sin 74) \times 14.7$			for a correct method to find the area of the parallelogram
			131		A1 awrt 131
	(b)	$(GE^2 =) 9.3^2 + 14.7^2 - 2 \times 9.3 \times 14.7 \times \cos 106$		3	M1 for the correct use of the cosine rule
		377(.9) or 378 or 86.49 + 216.09 + 75.3 or			M1 (dep on M1) for the correct order of operations
		302.58 + 75.3			
			19.4		A1 for 19.4 – 19.5
					Total 5 marks

15	(a)	$(2x+5)(x+1) = 2x^{2} + 2x + 5x + 5$ $(= 2x^{2} + 7x + 5) \text{ or}$ $(x+1)(3-x) = -x^{2} + 3x - x + 3$ $(= -x^{2} + 2x + 3) \text{ or}$ $(3-x) (2x+5) = -2x^{2} + 6x - 5x + 15$ $(= -2x^{2} + x + 15)$		3	M1 for multiplying out two brackets correctly at least 3 terms correct	M2 for at least 4 terms correct out of a maximum of 8 terms $6x^2 - 2x^3 + 6x - 2x^2 + 15x - 5x^2 + 15 - 5x$
		E.g. $[(2x^{2} + 7x + 5)(3 - x) =]$ $-2x^{3} - 7x^{2} - 5x + 6x^{2} + 21x + 15 \text{ or}$ $[(-x^{2} + 2x + 3)(2x + 5) =]$ $-2x^{3} - 5x^{2} + 10x + 4x^{2} + 6x + 15 \text{ or}$ $[(-2x^{2} + x + 15)(x + 1) =]$ $-2x^{3} - 2x^{2} + 15x + x^{2} + x + 15$			M1 for at least 3 terms correct out of a maximum of 6 terms or for at least 4 terms correct out of a maximum of 8 terms	
			Shown		A1	

15	(b)	$\left(\frac{\mathrm{d}V}{\mathrm{d}x}\right) = 16 - 2x + (3 \times -2x^2) \mathrm{oe}$		5 M1 for the correct differentiation of at least 2 correct terms from 16 or $-2x$ or $(3 \times -2x^2)$
		$\left(\frac{\mathrm{d}V}{\mathrm{d}x}\right) = 16 - 2x - 6x^2 \text{ oe}$		A1 for a correct differentiated expression
		$16-2x-6x^2 = 0$ oe		M1 (dep on M1) for equating their differentiated expression to zero
		E.g. $(x =) \frac{-2 \pm \sqrt{2^2 - 4 \times 6 \times -16}}{2 \times 6} \text{ oe}$ $(\text{accept} + \text{ in place of } \pm) \text{ or}$ E.g. $6\left[\left(x + \frac{1}{6}\right)^2 - \left(\frac{1}{6}\right)^2\right] - 16(=0) \text{ oe}$		M1 (dep on M1) for a complete method to solve their 3-term quadratic equation (allow one sign error and some simplification – allow as far as $\frac{-2 \pm \sqrt{4+384}}{12}$)
			1.47	A1 dep on M1 for answer in range $1.47 - 1.5$ from correct working (Must reject -1.80 to -1.81 if calculated)
				Total 8 marks

		$19.5 \le c_{\text{LB}} < 20$ and $3.55 \le d_{\text{LB}} < 3.6$
		$58.4 < a_{\rm UB} \le 58.45$ and
		where
		$\frac{2 \times a_{UB} - c_{LB}}{d_{LB}}$
	$\frac{2\times30.43}{3.55} (=27.4366)$	
	2×58.45-19.5	M1 for correct substitution into
		3.649 for 3.65
		20.49 for 20.5 or
	19.5 or 20.5 or 3.55 or 3.65	Accept 58.449 for 58.45 or
16	58.35 or 58.45 or	3 B1 for any correct bound

17	(a)	$6 \times 6 + 6 \times 2\sqrt{12} + 6 \times 2\sqrt{12} + (2 \times \sqrt{12})^2$		3	M1 for correct expansion of brackets showing four terms (need not be simplified)
		or $36+12\sqrt{12}+12\sqrt{12}+4\sqrt{12}\sqrt{12}$ or $36+12\sqrt{12}+12\sqrt{12}+(4\times 12)$			or for the use of $(a + b)^2 = a^2 + 2ab + b^2$
		or $36 + 24\sqrt{3} + 24\sqrt{3} + 48$ or $36 + 2 \times 24\sqrt{3} + 48$			or for showing or stating $\sqrt{12} = 2\sqrt{3}$ oe
		$ \begin{array}{c} 36 + 2 \times 24\sqrt{3} + 48 \\ \text{or} \\ 36 + 6 \times 2 \times 2\sqrt{12} + 48 \end{array} $			
		$84 + 48\sqrt{3}$			M1 (dep on M1)
			Shown		A1 for fully correct working leading to given expression

17	(b)	E.g.		3	M1 for one of
		$\left(\frac{3a^4}{t^5}\right)^{-2} \operatorname{or} \left(\frac{t^{15}}{27a^{12}}\right)^{\frac{2}{3}} \operatorname{or} \left(\frac{729a^{24}}{t^{30}}\right)^{-\frac{1}{3}}$			cube rooting or inverting or squaring
					or $\frac{ka^{-8}}{t^{-10}}$ where k is an integer $\neq 0$
		E.g.			M1 for two of
		$\left(\frac{9a^8}{t^{10}}\right)^{-1} \text{ or } \frac{3^{-2}a^{-8}}{t^{-10}} \text{ or } \frac{\frac{1}{9}a^{-8}}{t^{-10}} \text{ or } \left(\frac{t^5}{3a^4}\right)^2 \text{ or }$			cube rooting or inverting or squaring
		$\left(\frac{t^{30}}{729a^{24}}\right)^{\frac{1}{3}} \text{ or } \frac{a^{-8}}{9t^{-10}}$			or $\frac{t^{10}}{ka^8}$ where k is an integer $\neq 0$
			$\frac{t^{10}}{9a^8}$		A1 Allow $\frac{t^{10}a^{-8}}{9}$ or $\frac{1}{9}t^{10}a^{-8}$
					Total 6 marks

18	$\frac{4}{16} \times \frac{3}{15} \times \frac{2}{14} \left(= \frac{24}{3360} = \frac{1}{140} \right) \text{ oe or } \frac{7}{16} \times \frac{6}{15} \times \frac{5}{14} \left(= \frac{210}{3360} = \frac{1}{16} \right) \text{ oe or }$		4	M1 for finding <i>BBB</i> or <i>OOO</i> or <i>LLL</i>	M3 for $\frac{11}{16} \times \frac{10}{15} \times \frac{9}{14} \text{ oe}$
	$\frac{5}{16} \times \frac{4}{15} \times \frac{3}{14} \left(= \frac{60}{3360} = \frac{1}{56} \right) \text{oe}$				$\overline{16}^{1}\overline{15}^{1}\overline{14}^{0}$
	$\frac{4}{16} \times \frac{7}{15} \times \frac{6}{14} \left(= \frac{168}{3360} = \frac{1}{20} \right) \text{ oe or } \frac{4}{16} \times \frac{3}{15} \times \frac{7}{14} \left(= \frac{84}{3360} = \frac{1}{40} \right) \text{ oe}$			M1 for finding the following in any order	
	or $5 \times 4 \times 4 \left(- 80 - 1 \right)$ on or $5 \times 4 \times 7 \left(- 140 - 1 \right)$ on or			BOO or BBO	
	$\frac{5}{16} \times \frac{4}{15} \times \frac{4}{14} \left(= \frac{80}{3360} = \frac{1}{42} \right) \text{ oe or } \frac{5}{16} \times \frac{4}{15} \times \frac{7}{14} \left(= \frac{140}{3360} = \frac{1}{24} \right) \text{ oe or }$			or	
	$\frac{5}{16} \times \frac{4}{15} \times \frac{3}{14} \left(= \frac{60}{3360} = \frac{1}{56} \right) \text{ oe or } \frac{5}{16} \times \frac{7}{15} \times \frac{6}{14} \left(= \frac{210}{3360} = \frac{1}{16} \right) \text{ oe or }$			<i>LLB</i> or <i>LLO</i> or <i>LBB</i> or <i>LOO</i> or <i>LOB</i>	
	$\frac{5}{16} \times \frac{7}{15} \times \frac{4}{14} \left(= \frac{140}{3360} = \frac{1}{24} \right) \text{ oe}$			or	
	or $\frac{5}{16} \times \frac{4}{15} \times \frac{11}{14} \left(= \frac{220}{3360} = \frac{11}{168} \right) \text{ oe or } \frac{5}{16} \times \frac{11}{15} \times \frac{10}{14} \left(= \frac{550}{3360} = \frac{55}{336} \right) \text{ oe}$			<i>LLX</i> or <i>LXX</i> $(X = \text{not } L)$	
	$\frac{24}{3360} + 3 \times \frac{84}{3360} + \frac{210}{3360} + 3 \times \frac{168}{3360}$ oe or			M1 for a complete method	
	$1 - \left(\frac{60}{3360} + 3 \times \frac{80}{3360} + 3 \times \frac{140}{3360} + 3 \times \frac{60}{3360} + 3 \times \frac{210}{3360} + 6 \times \frac{140}{3360} \right) $ oe or				
	$1 - \left(\frac{60}{3360} + 3 \times \frac{220}{3360} + 3 \times \frac{550}{3360} \right) $ oe				
		$\frac{990}{3360}$		A1 for $\frac{990}{3360}$ or e.g. $\frac{33}{112}$ or (0.29(464)
					Total 4 marks

19	$(AH =)\sqrt{6^2 + 5^2 + 9^2} (=\sqrt{142})$ or		4	M1 for working out AH or FH or GE
	$(FH = GE =) \sqrt{5^2 + 9^2} (= \sqrt{106})$			
	E.g. $\sin AHF = \frac{6}{\sqrt{142}} \text{ or } \tan AHF = \frac{6}{\sqrt{106}} \text{ or }$			M1 for a correct method for finding angle <i>AHF</i> or finding angle <i>FAH</i> Allow
	$\cos AHF = \frac{\sqrt{106}}{\sqrt{142}}, \text{ or}$ $\sin FAH = \frac{\sqrt{106}}{\sqrt{142}}, \text{ or } \cos FAH = \frac{6}{\sqrt{142}}, \text{ or}$ $\tan FAH = \frac{\sqrt{106}}{6}$			$\cos AHF = \left(\frac{\sqrt{142}}{2 \times \sqrt{142}} + \sqrt{106} + \sqrt{106}}{2 \times \sqrt{142}}\right) \text{ oe or}$ $\sin AHF = \frac{\sin 90}{\sqrt{142}} \times 6 \text{ oe}$
	E.g.			M1 for a complete method
	$\sin^{-1}\left(\frac{6}{\sqrt{142'}}\right)$ or $\tan^{-1}\left(\frac{6}{\sqrt{106}'}\right)$			Allow
	or $\cos^{-1}\left(\frac{\sqrt{106}}{\sqrt{142}}\right)$ or			$\cos^{-1}\left(\frac{\sqrt{142}}{2\times\sqrt{142}} + \sqrt{106}\right)^{2} - 6^{2}}{2\times\sqrt{142}}\right)$ oe or
	$90 - \sin^{-1}\left(\frac{\sqrt{106}}{\sqrt{142}}\right)$ or $90 - \cos^{-1}\left(\frac{6}{\sqrt{142}}\right)$			$\sin^{-1}\left(\frac{\sin 90}{\sqrt{142}}\times 6\right)$ oe
	or $90 - \tan^{-1}\left(\frac{\sqrt{106}}{6}\right)$			
		30.2		A1 for 30.2 – 30.3
				Total 4 marks

20	graph drawn in shape of a quadratic with a minimum in any quadrant $x = 1$, $y = 4 (1 - 1)^2 - a$ $x = 1 \pm \sqrt{\frac{a}{4}}$ oe or $y = 4 - a$		4	M1 for a quadratic with a minimumM1 for finding the turning point (may be seen marked on the graph as $(1, -a)$)M1 for finding one of the intercepts (or award for any one correct coordinate shown on graph) $(0, 4-a)$ or $(1+\frac{\sqrt{a}}{2}, 0)$ or $(1-\frac{\sqrt{a}}{2}, 0)$ Note: The 0's can be ignored (as shown in the diagram)
	1 $1-\frac{\sqrt{a}}{2}$ $1+\frac{\sqrt{a}}{2}$ $4=a$ $-a$	Correct graph		 A1 for a fully correct graph quadratic shape with minimum in the fourth quadrant and marked as (1, -a) oe <i>x</i>-axis intercepts marked as (1+√a/2,0) oe on the positive <i>x</i>-axis and (1-√a/2,0) oe on the negative <i>x</i>-axis <i>y</i>-axis intercept marked as (0, 4 - a) oe Note: The 0's can be ignored (as shown in the diagram)
				Total 4 marks

21	$(fg(x) =) (x + 3)^2 - 2(x + 3) oe$	5	M1 for substituting $g(x)$ into $f(x)$
	$(fg(x) =) x^2 + 4x + 3$		A1 Allow $y^2 + 4y + 3$
	$(x+2)^2 - 4 + 3$ or $(x+2)^2 - 1$		M1 ft (dep on M1) for correctly completing the square
			on their 3 term quadratic
	or		
			or
	$x^{2} + 4x + (3 - y) = 0$ or		
	$y^2 + 4y + (3 - x) = 0$		Correctly setting up an equation
	y + y + (3 - x) = 0		
	$(x+2)^2 = y+1$ or $(y+2)^2 = x+1$		M1 ft (dep on M2) for a correct rearrangement for their
			completed the square quadratic
	or		
			or
	$-4 \pm \sqrt{16 - 4(3 - y)}$		correctly substituting into the quadratic formula
	$x = \frac{-4 \pm \sqrt{16 - 4(3 - y)}}{2}$ or $x = -2 \pm \sqrt{1 + y}$		
	2		
			Allow same equations with x and y swapped
		$-2 + \sqrt{x+1}$	A1 oe
			Total 5 marks

22	gradient of $JK = -0.5$ or $m \times 2 = -1$	6	6 M1 for finding the gradient of <i>JK</i> using $m_1 \times m_2 = -1$
	$\frac{k-15}{6-j} = -\frac{1}{2} \text{ or } 2k-j = 24 \text{ or } j = 2k-24 \text{ or } k = \frac{j+24}{2} \text{ oe}$		M1 for expressing the gradient of JK in terms of j and k or a correct equivalent equation
	$(j-6)^2 + (k-15)^2 = 80$ oe		M1 for finding equation of JK in terms of j and k
	or $\left(\frac{j+6}{2}, \frac{k+15}{2}\right)$ oe		or for finding the midpoint of <i>M</i>
	or $(j+4)^2 + 196 = 100 + (k-1)^2$ oe		or for equating length <i>HJ</i> with length <i>HK</i>
	eg $3k^2 - 78k + 495 = 0$ oe or $5j^2 - 60j - 140 = 0$ oe or $5k^2 - 150k + 1045 = 0$ oe or $3j^2 - 12j - 36 = 0$ oe		M1 (dep on M3) writing a correct quadratic expression in the form $ax^2 + bx + c (= 0)$ (allow $ax^2 + bx = c$)
	or gradient <i>HM</i> : eg $\frac{\frac{k+15}{2}-1}{\frac{j+6}{2}+4} = 2$ or $k = 2j + 15$ or $j = \frac{k-15}{2}$ o	e	or A correct equation for the gradient of <i>HM</i> in terms of <i>j</i> and <i>k</i> or a correct equivalent equation
	or gradient <i>HM</i> : eg $\frac{\frac{k+15}{2}-1}{\frac{j+6}{2}+4} = 2$ or $k = 2j + 15$ or $j = \frac{k-15}{2}$ o eg $(k-15)(k-11)(=0)$ or $\frac{78 \pm \sqrt{(-78)^2 - 4 \times 3 \times 495}}{2 \times 3}$ or or $\frac{12 \pm \sqrt{(-12)^2 - 4 \times 3 \times -36}}{2 \times 3}$ or		M1 (dep on M3) for a complete method to solve their 3- term quadratic equation (allow one sign error in the use of the quadratic formula) or a correct method to eliminate either <i>j</i> or <i>k</i>
	or $(k-13)^2 - 169 + 165 (= 0)$ or $(j-2)^2 - 4 - 12 (= 0)$		eg $2k - 24 = \frac{k - 15}{2}$ oe or $\frac{j + 24}{2} = 2j + 15$ oe
		j = -2, k = 11	A1 Total 6 marks

22	$\left(\frac{j+6}{2},\frac{k+15}{2}\right)$ oe			6	M1 for finding the midpoint of <i>M</i>
ALT	$\frac{\frac{k+15}{2}-1}{\frac{j+6}{2}+4} = 2 \text{ or } k-2j = 15 \text{ or } k = 2j+15 \text{ or}$ $j = \frac{k-15}{2} \text{ oe}$				M1 for expressing the gradient of JK in terms of j and k or a correct equivalent equation
	$(j-6)^2 + (k-15)^2 = 80$ oe or $(j+4)^2 + 196 = 100 + (k-1)^2$ oe				M1 for finding the length of JK in terms of j and k or for equating length HJ with length HK
	E.g. $5j^2 - 12j - 44 = 0$ or $3j^2 + 48j + 84 = 0$ oe	E.g. $5k^2 - 174k + 1309 = 0$ or $3k^2 + 6k - 429 = 0$ oe			M1 (dep on M3) writing the correct quadratic expression in form $ax^2 + bx + c (= 0)$ allow $ax^2 + bx = c$
	$(5j-22)(j+2)(=0)$ or $\frac{12\pm\sqrt{(-12)^2-4\times5\times-44}}{2\times5}$ or $(, 8)^2 = (4+28)(-0)$	E.g. (5k - 119)(k - 11)(= 0) or $\frac{174 \pm \sqrt{(-174)^2 - 4 \times 5 \times 1309}}{2 \times 5}$ or $(k + 1)^2 - 1 - 143(= 0)$			M1 (dep on M3) for a complete method to solve their 3-term quadratic equation (allow one sign error in the use of the quadratic formula)
	<i>j</i> =-				A1
					Total 6 marks

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London, WC2R 0RL, United Kingdom