Pearson Edexcel

Mark Scheme (Results)

January 2020

Pearson Edexcel International GCSE
In Mathematics A (4MA1)
Paper 1H

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

January 2020
Publications Code 4MA1_1H_2001_MS
All the material in this publication is copyright
© Pearson Education Ltd 2020

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme.
Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.
- Types of mark
o M marks: method marks
o A marks: accuracy marks
o B marks: unconditional accuracy marks (independent of M marks)

- Abbreviations

o cao - correct answer only
o ft - follow through
o isw - ignore subsequent working
o SC-special case
o oe - or equivalent (and appropriate)
o dep-dependent
o indep - independent
o awrt - answer which rounds to
o eeoo-each error or omission

- No working

If no working is shown then correct answers normally score full marks If no working is shown then incorrect (even though nearly correct) answers score no marks.

- With working

If there is a wrong answer indicated on the answer line always check the working in the body of the script (and on any diagrams), and award any marks appropriate from the mark scheme.
If it is clear from the working that the "correct" answer has been obtained from incorrect working, award 0 marks.
If a candidate misreads a number from the question. Eg. Uses 252 instead of 255 ; method marks may be awarded provided the question has not been simplified. Examiners should send any instance of a suspected misread to review. If there is a choice of methods shown, mark the method that leads to the answer on the answer line; where no answer is given on the answer line, award the lowest mark from the methods shown.
If there is no answer on the answer line then check the working for an obvious answer.

- Ignoring subsequent work

It is appropriate to ignore subsequent work when the additional work does not change the answer in a way that is inappropriate for the question: eg. Incorrect cancelling of a fraction that would otherwise be correct.
It is not appropriate to ignore subsequent work when the additional work essentially makes the answer incorrect eg algebra.
Transcription errors occur when candidates present a correct answer in working, and write it incorrectly on the answer line; mark the correct answer.

- Parts of questions

Unless allowed by the mark scheme, the marks allocated to one part of the question CANNOT be awarded to another.
$\left.\begin{array}{|l|l|l|l|l|}\hline \text { Question } & \text { Working } & \text { Answer } & \text { Mark } & \text { Notes } \\ \hline \begin{array}{l}\text { Apart from questions (where the mark scheme states otherwise) } \\ \text { should be taken to imply a correct method }\end{array} \\ \hline \mathbf{1} & \text { (a) } & \frac{5+13}{2} \text { or } \frac{-4+1}{2} & & 2\end{array} \begin{array}{l}\text { M1 for a correct method to find one coordinate or for one } \\ \text { coordinate correct or for }(-1.5,9)\end{array}\right]$

2	$28,56,84,112 \ldots$ and $105,210,315$, 420... or $2,2,7$ and $3,5,7$ or or $\frac{28 \times 105}{7}$ or $2,2,3,5,7$ oe		2	M1 for any correct valid method e.g. for starting to list at least four multiples of each number or $2,2,7$ and $3,5,7$ seen (may be in a factor tree and ignore 1) or a fully correct Venn diagram
		420		A1 cao
				Total 2 marks

4	(a)		$3<w \leq 4$	1	B1
	(b)	$\begin{aligned} & (12 \times 2.5)+(16 \times 3.5)+(9 \times 4.5)+ \\ & (2 \times 5.5)+(1 \times 6.5) \\ & \text { or } \\ & 30+56+40.5+11+6.5(=144) \end{aligned}$		4	M2 for at least 4 correct products added (need not be evaluated) or If not M2 then award M1 for consistent use of value within interval (including end points) for at least 4 products which must be added or correct midpoints used for at least 4 products and not added
		$\begin{aligned} & {[(12 \times 2.5)+(16 \times 3.5)+(9 \times 4.5)+} \\ & (2 \times 5.5)+(1 \times 6.5)] \div 40 \\ & \text { or } \\ & \\ & ' 144^{\prime} \div 40 \end{aligned}$			M1 (dep on at least M1) Allow division by their Σf provided addition or total under column seen
			3.6		A1 oe
	(c)	$\frac{2}{40}+\frac{1}{40}$		2	M1 for $\frac{a}{40}$ where $0<a<40$ or $\frac{3}{b}$ where $b>3$ where a and b are integers
			$\frac{3}{40}$		A1 0.075 oe
					Total 7 marks

5	$120 \div(3+5)(=15)$		6	M1	$\begin{aligned} & \text { M2 for } \\ & \frac{3}{8} \times 120(=45) \text { or } \\ & \frac{5}{8} \times 120(=75) \text { oe } \end{aligned}$	
	$\begin{aligned} & \prime 15 \prime \times 3(=45) \text { or } \\ & \prime 15 \prime \times 5(=75) \end{aligned}$			M1		
	$\begin{aligned} & ‘ 45 ’ \div 3(=15) \text { or } \\ & \\ & ‘ 45 \prime \div 3 \times 2(=30) \\ & \hline \end{aligned}$			M1		
	${ }^{\prime} 75 \prime \times \frac{16}{25}(=48) \text { or }{ }^{\prime} 75 \prime \times \frac{9}{25}(=27)$			M1		
	E.g. $\left({ }^{\prime} 45^{\prime} \div 3 \times 2\right)+\left({ }^{\prime} 75^{\prime} \times \frac{9}{25}\right)$ oe or ${ }^{\prime} 27^{\prime}+{ }^{\prime} 30$ ' or $\left(‘ 75^{\prime}-‘ 48^{\prime}\right)+\left({ }^{\prime} 45^{\prime}-‘ 15^{\prime}\right)$			M1 for a complete method		
		57		A1		
						Total 6 marks

$\mathbf{6}$	(a)		0.00078	1	B1
	(b)	22500000 oe e.g. 22.5×10^{6} or $2.25 \times 10^{n} \quad n \neq 7$	2	M1	
			2.25×10^{7}		A1
					Total 3 marks

7	(a)	$m^{2}-8 m+5 m-40$	2	M1 for any 3 correct terms or for 4 out of 4 correct terms ignoring signs for $m^{2}-3 m$ for $\ldots-3 m-40$	
	(b)				

$\mathbf{8}$			Trapezium with vertices at $(6,3)(8,3)$ $(8,6)(4,6)$		B2 If not B2 then award B1 for shape of correct size and orientation or
					3 or 4 points plotted correctly

11	$\begin{aligned} & 6000 \times 1.015^{2}(=6181.35) \text { or } \\ & 6000+(0.015 \times 6000)+(0.015 \times(6000+ \\ & ‘ 90 '))(=6181.35) \text { or } \\ & (1.015)^{2}(=1.030225) \text { or } \\ & \frac{6311.16}{6000}(=1.05186) \end{aligned}$		3	M1 for working out the total amount after two years or working out the compound interest multiplier after two years or working out the compound interest multiplier after three years
	$\begin{aligned} & 6311.16 \div ' 6181.35 ’(=1.021)(\times 100) \text { or } \\ & \frac{6311.16-' 6181.35 '}{\prime 6181.35 '}(=1.021)(\times 100) \text { or } \\ & ‘ 1.05186^{\prime} \div ‘ 1.030225^{\prime}(=1.021)(\times 100) \end{aligned}$			M1 (dep on M1) for a complete method to find the compound interest multiplier ($\times 100$)
		2.1		A1 awrt 2.1
				Total 3 marks

$\mathbf{1 2}$	(a)	E.g. $56-38$		2	M1 for subtracting readings from 60 and 20 oe
			18		A1 for answer in the range $17-19$
	(b)	$[40.5,43]$		3	B1
		${ }^{\prime} 42^{\prime} \div 0.6$ oe			M1 for complete method to find the number of men
			70		A1
					Total 5 marks

$\mathbf{1 3}$		$0.14=\frac{56}{w^{2}}$ oe or $56 \div 0.14(=400)$		4
	$\sqrt{\frac{56}{0.14}}$ or $\sqrt{\prime 400^{\prime}}(=20)$		M1 for using the given formula correctly	
				M1 for a method to find w
		$20^{\prime} \times{ }^{\prime} 20^{\prime} \times{ }^{\prime} 20^{\prime}$ oe	8000	
			A1 (dep on M2) for a method to find the volume of the cube	

$\mathbf{1 4}$	(a)$(0.5 \times) 9.3 \times 14.7 \times \sin 106$ or $(9.3 \times \cos 16) \times 14.7$ or $(9.3 \times \sin 74) \times 14.7$		2	M1 for applying the area of a triangle formula using correct values (to find half of the area of the parallelogram) or for a correct method to find the area of the parallelogram	
	(b)	$\left(G E^{2}=\right) 9.3^{2}+14.7^{2}-2 \times 9.3 \times 14.7 \times \cos 106$		3	A1 awrt 131
	$377(.9 \ldots)$ or 378 or $86.49+216.09+75.3 \ldots$ or the correct use of the cosine rule $302.58+75.3 \ldots$.			M1 (dep on M1)for the correct order of operations	
			19.4		A1 for $19.4-19.5$
				Total 5 marks	

15	(a)	$\begin{aligned} & (2 x+5)(x+1)=2 x^{2}+2 x+5 x+5 \\ & \left(=2 x^{2}+7 x+5\right) \text { or } \\ & (x+1)(3-x)=-x^{2}+3 x-x+3 \\ & \left(=-x^{2}+2 x+3\right) \text { or } \\ & (3-x)(2 x+5)=-2 x^{2}+6 x-5 x+15 \\ & \left(=-2 x^{2}+x+15\right) \end{aligned}$		3	M1 for multiplying out two brackets correctly at least 3 terms correct	M2 for at least 4 terms correct out of a maximum of 8 terms$6 x^{2}-2 x^{3}+6 x-2 x^{2}+15 x-5 x^{2}+15-5 x$
		E.g. $\begin{aligned} & {\left[\left(2 x^{2}+7 x+5\right)(3-x)=\right]} \\ & -2 x^{3}-7 x^{2}-5 x+6 x^{2}+21 x+15 \text { or } \\ & {\left[\left(-x^{2}+2 x+3\right)(2 x+5)=\right]} \\ & -2 x^{3}-5 x^{2}+10 x+4 x^{2}+6 x+15 \text { or } \\ & {\left[\left(-2 x^{2}+x+15\right)(x+1)=\right]} \\ & -2 x^{3}-2 x^{2}+15 x+x^{2}+x+15 \end{aligned}$			M1 for at least 3 terms correct out of a maximum of 6 terms or for at least 4 terms correct out of a maximum of 8 terms	
			Shown		A1	

\(\left.\begin{array}{|l|l|l|l|l|l|}\hline \mathbf{1 5} \& (b) \& \left(\frac{\mathrm{d} V}{\mathrm{~d} x}=\right) 16-2 x+\left(3 \times-2 x^{2}\right) \mathrm{oe} \& \& 5 \& M1 for the correct differentiation of at least 2 correct terms from

16 or-2 x or\left(3 \times-2 x^{2}\right)\end{array}\right]\)| A1 for a correct differentiated expression |
| :--- |
| $\left(\frac{\mathrm{d} V}{\mathrm{~d} x}=\right) 16-2 x-6 x^{2}$ oe |

16	$\begin{aligned} & 58.35 \text { or } 58.45 \text { or } \\ & 19.5 \text { or } 20.5 \text { or } \\ & 3.55 \text { or } 3.65 \end{aligned}$		3	B1 for any correct bound Accept 58.449 for 58.45 or $20.4 \dot{9}$ for 20.5 or $3.64 \dot{9}$ for 3.65	
	$\frac{2 \times 58.45-19.5}{3.55}(=27.4366 \ldots)$			M1 for correct substitution into $\frac{2 \times a_{U B}-c_{L B}}{d_{L B}}$ where $\begin{aligned} & 58.4<a_{\mathrm{UB}} \leq 58.45 \text { and } \\ & 19.5 \leq c_{\mathrm{LB}}<20 \text { and } \\ & 3.55 \leq d_{\mathrm{LB}}<3.6 \end{aligned}$	
		27.44		A1 from correct working allow 27.4-27.5	
					Total 3 marks

| 17 | (a) | $6 \times 6+6 \times 2 \sqrt{12}+6 \times 2 \sqrt{12}+(2 \times \sqrt{12})^{2}$
 or
 $36+12 \sqrt{12}+12 \sqrt{12}+4 \sqrt{12} \sqrt{12}$
 or
 $36+12 \sqrt{12}+12 \sqrt{12}+(4 \times 12)$
 or
 $36+24 \sqrt{3}+24 \sqrt{3}+48$
 or
 $36+2 \times 24 \sqrt{3}+48$
 or
 $36+6 \times 2 \times 2 \sqrt{12}+48$ | 3
 M1 for correct expansion of brackets showing four terms (need not
 be simplified) |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $84+48 \sqrt{3}$ or | | or
 for the use of $(a+b)^{2}=a^{2}+2 a b+b^{2}$ | |

17	(b)	E.g. $\left(\frac{3 a^{4}}{t^{5}}\right)^{-2}$ or $\left(\frac{t^{15}}{27 a^{12}}\right)^{\frac{2}{3}}$ or $\left(\frac{729 a^{24}}{t^{30}}\right)^{-\frac{1}{3}}$		3	M1 for one of cube rooting or inverting or squaring or $\frac{k a^{-8}}{t^{-10}}$ where k is an integer $\neq 0$
	E.g. $\left(\frac{9 a^{8}}{t^{10}}\right)^{-1}$ or $\frac{3^{-2} a^{-8}}{t^{-10}}$ or $\frac{1}{9} a^{-8}$ $\left(\frac{t^{30}}{t^{-10}}\right.$${\text { or }\left(\frac{t^{5}}{3 a^{4}}\right)^{\frac{1}{3}} \text { or } \text { or } \frac{a^{-8}}{9 t^{-10}}}$		M1 for two of cube rooting or inverting or squaring or $\frac{t^{10}}{k a^{8}}$ where k is an integer $\neq 0$		
		$\frac{t^{10}}{9 a^{8}}$		A1 Allow $\frac{t^{10} a^{-8}}{9}$ or $\frac{1}{9} t^{10} a^{-8}$	

18	$\frac{4}{16} \times \frac{3}{15} \times \frac{2}{14}\left(=\frac{24}{3360}=\frac{1}{140}\right)$ oe or $\frac{7}{16} \times \frac{6}{15} \times \frac{5}{14}\left(=\frac{210}{3360}=\frac{1}{16}\right)$ oe or $\frac{5}{16} \times \frac{4}{15} \times \frac{3}{14}\left(=\frac{60}{3360}=\frac{1}{56}\right)$ oe		4	M1 for finding BBB or $O O O$ or $L L L$	M3 for$\frac{11}{16} \times \frac{10}{15} \times \frac{9}{14} \text { oe }$
	$\frac{4}{16} \times \frac{7}{15} \times \frac{6}{14}\left(=\frac{168}{3360}=\frac{1}{20}\right)$ oe or $\frac{4}{16} \times \frac{3}{15} \times \frac{7}{14}\left(=\frac{84}{3360}=\frac{1}{40}\right)$ oe or $\frac{5}{16} \times \frac{4}{15} \times \frac{4}{14}\left(=\frac{80}{3360}=\frac{1}{42}\right)$ oe or $\frac{5}{16} \times \frac{4}{15} \times \frac{7}{14}\left(=\frac{140}{3360}=\frac{1}{24}\right)$ oe or $\frac{5}{16} \times \frac{4}{15} \times \frac{3}{14}\left(=\frac{60}{3360}=\frac{1}{56}\right)$ oe or $\frac{5}{16} \times \frac{7}{15} \times \frac{6}{14}\left(=\frac{210}{3360}=\frac{1}{16}\right)$ oe or $\frac{5}{16} \times \frac{7}{15} \times \frac{4}{14}\left(=\frac{140}{3360}=\frac{1}{24}\right)$ oe or $\frac{5}{16} \times \frac{4}{15} \times \frac{11}{14}\left(=\frac{220}{3360}=\frac{11}{168}\right)$ oe or $\frac{5}{16} \times \frac{11}{15} \times \frac{10}{14}\left(=\frac{550}{3360}=\frac{55}{336}\right)$ oe			M1 for finding the following in any order $B O O$ or $B B O$ or $L L B$ or $L L O$ or $L B B$ or $L O O$ or $L O B$ or $L L X$ or $L X X \quad(X=\operatorname{not} L)$	
	' $\frac{24}{3360} '+3 \times \prime^{\frac{84}{3360}} '+'^{\prime 210} 3360 '+3 \times \prime^{\prime} \frac{168}{3360}$ 'oe or $1-\left(\frac{60}{3360} '+3 \times{ }^{\prime} \frac{80}{3360} '+3 \times '^{\prime} \frac{140}{3360} '+3 \times{ }^{\prime} \frac{60}{3360} ' 3 \times{ }^{\prime} \frac{210}{3360} ' 6 \times{ }^{\prime} \frac{140}{3360} '\right)$ oe or $1-\left(\prime^{3360}+3 \times ' \frac{220}{3360} '+3 \times '^{350}{ }^{3360}\right)$ oe			M1 for a complete method	
		$\frac{990}{3360}$		A1 for $\frac{990}{3360}$ oe e.g. $\frac{33}{112}$ or $0.29(464 \ldots)$	

19	$\begin{aligned} & (A H=) \sqrt{6^{2}+5^{2}+9^{2}}(=\sqrt{142}) \text { or } \\ & (F H=G E=) \sqrt{5^{2}+9^{2}} \quad(=\sqrt{106}) \end{aligned}$		4	M1 for working out $A H$ or $F H$ or $G E$
	E.g.			M1 for a correct method for finding angle AHF or finding angle FAH Allow $\begin{aligned} & \cos A H F=\left(\frac{\prime \sqrt{142}{ }^{\prime 2}+{ }^{\prime} \sqrt{106}^{\prime 2}-6^{2}}{2 \times^{\prime} \sqrt{142} \times^{\prime} \sqrt{106}^{\prime}}\right) \text { oe or } \\ & \sin A H F=\frac{\sin 90}{\prime^{142}} \times 6 \mathrm{oe} \end{aligned}$
	E.g. $\sin ^{-1}\left(\frac{6}{\prime \sqrt{142}}\right) \text { or } \tan ^{-1}\left(\frac{6}{\prime \sqrt{106}} '\right)$ or $\cos ^{-1}\left(\frac{\prime \sqrt{106}}{\prime} \prime^{\prime \sqrt{142}} '\right)$ or $90-\sin ^{-1}\left(\frac{\prime \sqrt{106}}{\prime} \prime^{\prime \sqrt{142}}{ }^{\prime}\right)$ or $90-\cos ^{-1}\left(\frac{6}{\prime \sqrt{142}}{ }^{\prime}\right)$ or $90-\tan ^{-1}\left(\frac{\prime \sqrt{106}}{}{ }^{\prime}\right)$			M1 for a complete method Allow $\begin{aligned} & \cos ^{-1}\left(\frac{\sqrt{142}^{\prime 2}+'{ }^{106}{ }^{\prime 2}-6^{2}}{2 \times^{\prime} \sqrt{142}{ }^{\prime} \times^{\prime} \sqrt{106}}\right) \text { oe or } \\ & \sin ^{-1}\left(\frac{\sin 90}{\prime^{142}} \times 6\right) \text { oe } \end{aligned}$
		30.2		A1 for 30.2-30.3
				Total 4 marks

20	graph drawn in shape of a quadratic with a minimum in any quadrant		4	M1 for a quadratic with a minimum
	$x=1, y=4(1-1)^{2}-a$			M1 for finding the turning point (may be seen marked on the graph as $(1,-a)$)
	$x=1 \pm \sqrt{\frac{a}{4}} \text { oe or } y=4-a$			M1 for finding one of the intercepts (or award for any one correct coordinate shown on graph) $(0,4-a) \text { or }\left(1+\frac{\sqrt{a}}{2}, 0\right) \text { or }\left(1-\frac{\sqrt{a}}{2}, 0\right)$ Note: The 0 's can be ignored (as shown in the diagram)
		Correct graph		A1 for a fully correct graph - quadratic shape with minimum in the fourth quadrant and marked as $(1,-a)$ oe - x-axis intercepts marked as $\left(1+\frac{\sqrt{a}}{2}, 0\right)$ oe on the positive x-axis and $\left(1-\frac{\sqrt{a}}{2}, 0\right)$ oe on the negative x-axis - y-axis intercept marked as $(0,4-a)$ oe Note: The 0's can be ignored (as shown in the diagram)
				Total 4 marks

21	$(\mathrm{fg}(x)=)(x+3)^{2}-2(x+3)$ oe		5	M1 for substituting $\mathrm{g}(x)$ into $\mathrm{f}(x)$
	$(\mathrm{fg}(x)=) x^{2}+4 x+3$			A1 Allow $y^{2}+4 y+3$
	$(x+2)^{2}-4+3 \text { or }(x+2)^{2}-1$ or $\begin{aligned} & x^{2}+4 x+(3-y)=0 \text { or } \\ & y^{2}+4 y+(3-x)=0 \end{aligned}$			M1 ft (dep on M1) for correctly completing the square on their 3 term quadratic or Correctly setting up an equation
	$(x+2)^{2}=y+1 \text { or }(y+2)^{2}=x+1$ or $x=\frac{-4 \pm \sqrt{16-4(3-y)}}{2} \text { or } x=-2 \pm \sqrt{1+y}$			M1 ft (dep on M2) for a correct rearrangement for their completed the square quadratic or correctly substituting into the quadratic formula Allow same equations with x and y swapped
		$-2+\sqrt{x+1}$		A1 oe
				Total 5 marks

