

Mark Scheme (Results)

Summer 2018

Pearson Edexcel International GCSE In Mathematics A (4MA1) Paper 1H

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.edexcel.com or get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2018
Publications Code 4MA1_1H_1806_MS
All the material in this publication is copyright
© Pearson Education Ltd 2018

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded.
 Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme.
 - Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.
- Types of mark
- o M marks: method marks
- o A marks: accuracy marks
- o B marks: unconditional accuracy marks (independent of M marks)
- Abbreviations
- o cao correct answer only
- o ft follow through
- o isw ignore subsequent working
- o SC special case
- o oe or equivalent (and appropriate)
- o dep dependent
- o indep independent
- o eeoo each error or omission

No working

If no working is shown then correct answers normally score full marks If no working is shown then incorrect (even though nearly correct) answers score no marks.

With working

If there is a wrong answer indicated on the answer line always check the working in the body of the script (and on any diagrams), and award any marks appropriate from the mark scheme.

If it is clear from the working that the "correct" answer has been obtained from incorrect working, award 0 marks.

Any case of suspected misread loses A (and B) marks on that part, but can gain the M marks.

If working is crossed out and still legible, then it should be given any appropriate marks, as long as it has not been replaced by alternative work.

If there is a choice of methods shown, then no marks should be awarded, unless the answer on the answer line makes clear the method that has been used.

If there is no answer on the answer line then check the working for an obvious answer.

• Ignoring subsequent work

It is appropriate to ignore subsequent work when the additional work does not change the answer in a way that is inappropriate for the question: eg. Incorrect cancelling of a fraction that would otherwise be correct.

It is not appropriate to ignore subsequent work when the additional work essentially makes the answer incorrect eg algebra.

Transcription errors occur when candidates present a correct answer in working, and write it incorrectly on the answer line; mark the correct answer.

• Parts of questions

Unless allowed by the mark scheme, the marks allocated to one part of the question CANNOT be awarded in another.

International GCSE Maths 4MA1 1H

Apart from questions 3c, 11b and 20 (where the mark scheme states otherwise) the correct answer, unless clearly obtained from an incorrect method, should be taken to imply a correct method.

Question	Working	Answer	Mark	Notes
1 a		0	1	B1
b	0.5 × 19 + 1.5 × 12 + 2.5 × 5 + 3.5 × 2 + 4.5 × 2 (=56) or 9.5 + 18 + 12.5 + 7 + 9 (=56)	1.4	4	M2 for at least 4 correct products added (need not be evaluated) If not M2 then award M1 for consistent use of value within interval (including end points) for at least 4 products which must be added OR correct mid-points used for at least 4 products and not added
	"56" ÷ 40			M1 dep on at least M1 Allow division by their $\sum f$ provided addition or total under column seen A1 for 1.4 or $1\frac{2}{5}$

Question	Working	Answer	Mark	Notes
2	$170 \div 2 (=85)$ or $170 \div 2 \times 7 (=595)$ or $7 \div 2 (=3.5)$	510	5	M1
	7 × "85" + 170 (=765) or 9 × "85" (=765) or "595" + 170 (=765) or 170 × "3.5" + 170 (=765)			M1 award of this mark implies the first M1
	"765" \div 3 (=255) or "765" \div 3 × 5 (=1275)			M1 dep on M2
	"255" \times 2 or "1275" $-$ "765" or "1275" \div 5 \times 2			M1
				A1
	Alternative scheme			
2	(girls =) $\frac{2}{9}$ (of children)	510	5	M1
	$(girls =) \frac{2}{9} \times \frac{3}{5} \left(= \frac{2}{15} \right) $ (of total)			M1 award of this mark implies the first M1
	or G: C: $A = \frac{2}{9} \times \frac{3}{5} : \frac{3}{5} : \frac{2}{5} \left(= \frac{2}{3} : 3 : 2 \right)$			
	" $\frac{15}{2}$ "×170 (=1275) or G: A = 2:6 oe			M1 dep on M2
	"1275" \div 5 × 2 or 3 × 170			M1
				A1

Qu	estion	Working	Answer	Mark		Notes
3	a		y ¹⁴	1	B1	
	b		$16m^{12}$	2	B2	if not B2 then
						B1 for am^{12} or $16m^b$ or 2^4m^{12} $b \neq 0$, 12 $a \neq 1$, 16
	c	5x + 15 = 3x - 4 or	$-\frac{19}{2}$ oe	3	M1	for removing bracket in a correct equation or dividing all
		$x + 3 = \frac{3x}{5} - \frac{4}{5}$	2			terms by 5 in a correct equation
		$\begin{array}{c c} 5 & 5 \\ e.g. 5x - 3x = -4 - 15 \end{array}$			N/1	for financiary to the same of the state of the same in
		e.g. $3x - 3x - 4 - 13$			M1	ft from $ax + b = cx + d$ for correctly isolating terms in x on one side of equation and constant terms on the other side
						one side of equation and constant terms on the other side
					A1	dep on at least M1
	d (i)		(x-4)(x+6)	2	M1	for $(x+a)(x+b)$ where either $ab = -24$ or $a+b=+2$
						e.g $(x-6)(x+4)$
					A1	
	(::)		4 6	1	D1	6 francos () ()
1	(ii)		4, - 6 1, 2, 3, 4, 6, 12	1	B1	cao or ft from any $(x+p)(x+q)$
4	a (i)		1, 2, 3, 4, 6, 12	1	B1	cao
	(ii)		1, 3, 5, 7, 9, 10, 11	1	B1	cao
	(11)		1, 3, 3, 7, 7, 10, 11	1	Di	cao
	b		Yes with reason	1	B1	e.g. no numbers in both A and C or A and C do not
						intersect or A and C do not overlap or A and C are
						mutually exclusive
	С		$\frac{10}{12}$ oe	2	M1	for $12 - 2$ (=10) or $\frac{a}{12}$ with $a < 12$ or
			12			12
						10 and 12 used with incorrect notation E.g. 10:12
					A1	for $\frac{10}{12}$ oe or 0.83(3) or 83(.3)%
						12

Que	estion	Working	Answer	Mark		Notes
5	a		80 000	1	B1	
	b	$0.5 \times 10^{5-8}$ or 0.0005 or 5×10^n or 5.0×10^n	5 × 10 ⁻⁴	2	M1	
					A1 fo	or 5×10^{-4} or 5.0×10^{-4}
					SC	C: B1 for $\frac{1}{2000}$ or $\frac{1}{2 \times 10^3}$
6		$9.7^2 + 3.5^2 (=106.34)$	32.4	4	M1	M1 for the use of MN and a correct angle (70.1 or 70.2, 19.8) in a correct trig statement eg $\cos 70.2 = \frac{3.5}{MN}$
		$\sqrt{9.7^2 + 3.5^2}$ or $\sqrt{"106.34"}$ (=10.3)			M1	M1 for a complete method to find MN eg MN= $\frac{3.5}{\cos 70.2}$ (=10.3)
		$\pi \times "10.3"$ or $2 \times \pi \times "10.3"$			M1 de	ep on M2
		2			A1 fo	or answer in range 32.3 – 32.41

Question	Working	Answer	Mark		Notes	S	
7 a	$\frac{4}{100}$ × 160 000 oe (=6400)	141 558	3	M1		M2 for $160\ 000 \times 0.96^3$ or $160\ 000 \times 0.96^4$ (=135\ 895.44))	
	$\frac{4}{100} \times (160\ 000\ -\text{``6400''})\ (=6144)$ $\frac{4}{100} \times (160\ 000\ -\text{``6400''} -\text{``6144''})\ (=5898.24)$ $160\ 000\ -\text{``6400''} -\text{``6144''} -\text{``5898.24''}$			me	r a complete ethod (condone 4 ears rather than 3)	If not M2 then award M1 for 160 000 \times 0.96 (=153 600) or 160 000 \times 0.96 ² (=147 456)	
					ccept $(1-0.04)$ in place	•	
				SC B1 or or	for 141 557.76 - 141 558 SC If no other marks gained, award B1 for 160 000 × 0.12 oe (=19 200) or 160 000 × 0.88 oe (=140 800) or an answer of 140 800 or an answer of in the range 179 978 – 179 978		
b	E.g. 252 000 ÷ 1.05	240 000	3	the x	not M2 en M1 for × 1.05 = 252 000 or B: An answer of 239	252 000 ÷ 105 oe 400 scores M0 M0 A0	

Question	Working	Answer	Mark	Notes		
8 a (i)		3×7^3	1	B1	for 3×7^3 oe or 1029	
(ii)		$2^3 \times 3^5 \times 5 \times 7^4$	1	B1	for $2^3 \times 3^5 \times 5 \times 7^4$ oe or 23 337 720	
b	A 34 72 8 7 28 7 28 C	4, 2, 1	2	M1	for $r = 1$ or for $p = 4$ and $q = 2$ or correct representation of C in terms of prime factors on a Venn diagram	

Question	Working	Answer	Mark	Notes
9	E.g. $\tan 72 = \frac{12.8}{a}$ or $\tan(90-72) = \frac{o}{12.8}$ or $\sin 72 = \frac{12.8}{h}$ or $\cos(90-72) = \frac{12.8}{h}$	110	5	M1 substitutes correctly into a trig ratio (including the Sine rule)
	E.g.(shortest side) = $\frac{12.8}{\tan 72}$ or $12.8\tan(90-72)$ or $4.15(89)$ or 4.16 or $(\text{hypotenuse} =) \frac{12.8}{\sin 72}$ or $\frac{12.8}{\cos(90-72)}$ or $13.4(58)$ or 13.5			M1 for a complete method to find one side of the triangle
	One of (shortest side =) $\frac{12.8}{\tan 72}$ or $12.8\tan(90-72)$ or $4.15(89)$ or 4.16 or $\sqrt{"13.4"^2-12.8^2}$ AND One of (hypotenuse =) $\frac{12.8}{\sin 72}$ or $\frac{12.8}{\cos(90-72)}$ or $\frac{13.4(58)}{\sqrt{12.8^2 + "4.15"^2}}$			M1 for a complete method to find both missing sides of triangle NB Could use Pythagoras's theorem with side found – must be a complete correct method
	5 × ("13.4(58)" – "4.15(89)") + 5 × 12.8 or 5 × ("13.4" + "4.15" + 12.8) – 10 × "4.15"			M1 for method to use found lengths to find perimeter
				A1 for answer in range 110 - 111

0 4	XX71 *	A	N.T. 1		N.A.
Question	Working	Answer	Mark		Notes
10 a	Readings from graph at cf 20 and cf 60 eg. readings of 103 and 123	20.5	2	M1	. 10 21
				A1	for answer in range 19 – 21
b	Reading from graph from time = 120 (=55) or 80 – 55 (=25)	No with correct figures	3	M1	accept reading in range 55 – 56
	0.35 × 80 (=28) or e.g. $\frac{80 - 55}{80} \times 100$ oe (=31(.25)) or $\frac{55}{80} \times 100$ oe (= 68(.75))			M1	accept a value in the range $30 - 31.25$ or a value in the range $68 - 70$ for this mark unless clearly from incorrect working
				A1	eg. No with 28 and 25 or No with 31.25% (accept value in range 30% – 31.25%) or No with 68.75% and 65% (accept value in range 68% – 70%)
	Alternative scheme $0.65 \times 80 \ (=52)$ Reading from graph from cf = 52 (=118) or	No with correct figures	3	M1 M1	
	Reading from graph from time = 120 (=55)			A1	eg. No with 118 (minutes) or No with 52 and 55

Question	Working	A navyon	Mark		Notes
Question	8	Answer	Mark		
11 a	$2x^2 - x + 6x - 3$ or $2x^2 + 5x - 3$ or	$2x^3 - 5x^2 - 28x + 15$	3	M1	for expansion of any 2 of the 3
	$x^2 + 3x - 5x - 15$ or $x^2 - 2x - 15$ or				brackets (at least 3 of 4 terms
	$2x^2 - 10x - x + 5$ or $2x^2 - 11x + 5$				
	$2x^{2} - 10x - x + 3$ or $2x^{2} - 11x + 3$				correct)
	eg.			M1	(dep) ft for at least half of their
	$2x^3 + 5x^2 - 3x - 10x^2 - 25x + 15$ or				terms correct in second expansion
	$2x^3 - 4x^2 - 30x - x^2 + 2x + 15$ or				*
					(the correct number of terms must
	$2x^3 - 11x^2 + 5x + 6x^2 - 33x + 15$				be present)
					-
				A1	
	A.T			Λ1	
	Alternative scheme				
	$2x^3 - 10x^2 - x^2 + 5x + 6x^2 - 30x - 3x + 15$	$2x^3 - 5x^2 - 28x + 15$	3	M2	for a complete expansion with 8
					terms present, at least 4 of which
					1 ,
					must be correct
				A1	
	1		l		

Question	Working	Answer	Mark	Notes
11 b	$-6 \pm \sqrt{96}$ $-6 \pm \sqrt{6^260}$	0.633, -2.63	3	M2 If not M2 then award M1 for
	$\frac{-6 \pm \sqrt{96}}{6}$ or $\frac{-6 \pm \sqrt{6^260}}{6}$			$\underline{-6\pm\sqrt{6^2-4\times3\times-5}}$
	Accept $9.79 - 9.8(0)$ in place of $\sqrt{96}$			2×3
	Treespessive stool in place of 450			condone one sign error in
	NB: denominator must be 2×3 or 6 and there must be			substitution; allow evaluation of individual
	evidence for correct order of operations in the numerator			terms e.g 36 in place of 6 ²
				A1 dep on M1 for answers in range
				0.63 to 0.633 , -2.63 to -2.633
				Award M2A1 for correct answer with correct working that would
				gain at least M1
	Alternative scheme		_	
	e.g $3((x+1)^2-1)-5 = 0$ or	0.633, -2.63	3	M1 for completing the square
	e.g $3((x+1)^2 - 1) - 5 = 0$ or $(x+1)^2 - 1 - \frac{5}{3} = 0$			
	$(x=) -1 \pm \sqrt{\frac{5}{3} + 1}$ oe			M1 for correct method to isolate <i>x</i>
	$(x=)^{-1\pm}\sqrt{\frac{1}{3}}$ oe			WIT for correct method to isolate x
				A1 dep on M1 for answer in range
				0.63 to 0.633, -2.63 to -2.633 Award M2A1 for correct answer
				with correct working that would
				gain at least M1

Que	stion	Working	Answer	Mark	Notes
12	(a)		3, 4	1	B1
	(b)		see graph at end of mark scheme	3	B3 for correct region identified If not B3 then award B2 for $x + y = 4$ drawn (with no additional lines drawn) and a region identified that satisfies at least 3 of the 5 given inequalities
					If not B2 then award B1 for line $x + y = 4$ drawn NB. May shade wanted or unwanted regions; lines may be solid or dashed
13	a (i)		54	1	B1 cao
	(ii)		angle at centre is twice angle at circumference	1	B1 dep on B1 in (a)(i) accept alternative reasons eg. angle at circumference is half the angle at the centre
	b (i)		27	1	B1 ft from (a)(i) for "54"
	(ii)		alternate segment theorem	1	B1 dep on B1 in (b)(i) accept alternative reason angle between <u>tangent</u> and <u>radius</u> is <u>90°</u> If answer for (b)(i) is ft from (a)(i) then reason must be angle between <u>tangent</u> and <u>radius</u> is <u>90°</u>

Que	estion	Working	Answer	Mark	Notes
14	a		-6.5 oe	1	B1
	b	4y = 3x - 5 or $4x = 3y - 5$	$\frac{4x+5}{3}$ oe	2	M1
					A1
	С	$\sqrt{19-3}$ oe or f(4) or $\frac{3\sqrt{19-3}-5}{4}$ or $\frac{3\sqrt{19-x}-5}{4}$ oe	1.75 oe	2	M1 A1 for 1.75oe (and no other solution)
	d		x > 19	2	B2 for $(x) > 19$ or an equivalent statement in words If not B2 then award B1 for $(x) \ge 19$

Question	Working	Answer	Mark	Notes
15 a	E.g. $\left(\frac{y^8}{256x^{20}}\right)^{\frac{1}{4}}$ or $\left(\frac{4x^5}{y^2}\right)^{-1}$ or $\frac{x^{-5}}{4y^{-2}}$ or $\frac{\frac{1}{4}x^{-5}}{y^{-2}}$	$\frac{y^2}{4x^5}$	2	M1 for a correct first step leading to a correct partially simplified expression
	or $k \frac{y^a}{x^b}$ or $\frac{ky^a}{x^b}$ with 2 of $k = \frac{1}{4}$ oe, $a = 2, b = 5$			
	or $\frac{y^a}{mx^b}$ with 2 of $m = 4$, $a = 2$, $b = 5$			
				A1 for $\frac{y^2}{4x^5}$ or $\frac{\frac{1}{4}y^2}{x^5}$ or $0.25\frac{y^2}{x^5}$ or $0.25y^2x^{-5}$
ь	$\frac{1}{(3x-5)(3x+5)} - \frac{1}{2(3x+5)}$	$\frac{7-3x}{2(3x-5)(3x+5)}$	3	M1 indep for $(3x + 5)(3x - 5)$
	E.g. $\frac{2}{2(3x-5)(3x+5)} - \frac{1(3x-5)}{2(3x-5)(3x+5)}$ or $\frac{6x+10}{(9x^2-25)(6x+10)} - \frac{9x^2-25}{(9x^2-25)(6x+10)}$			M1 for two correct fractions with a common denominator if there is any expansion at this stage then it must be correct
				A1 accept equivalents eg. $\frac{7-3x}{18x^2-50}$
	Alternative scheme $\frac{6x+10}{(9x^2-25)(6x+10)} - \frac{9x^2-25}{(9x^2-25)(6x+10)}$	$\frac{7 - 3x}{2(3x - 5)(3x + 5)}$	3	M1 for two correct fractions with a common denominator

$\frac{(7-3x)(3x+5)}{(9x^2-25)(6x+10)}$	M1	Numerator expanded and then factorised correctly
	A1	accept equivalents

Question	Working	Answer	Mark	Notes
16	$1 - \frac{98}{125} \left(= \frac{27}{125} \right)$ or 0.216 or 125 – 98 (=27)	$\frac{2}{5}h$ oe	4	M1
	$\sqrt[3]{\frac{27}{125}}$ " $\left(=\frac{3}{5}\right)$ or $\sqrt[3]{\frac{125}{27}}$ " $\left(=\frac{5}{3}\right)$			M1 for the length scale factor may be seen as a ratio E.g. 3:5
	$1-\frac{3}{5}$ or $h-\frac{3}{5}h$ oe			M1
				A1 for $\frac{2}{5}h$ oe (may not be simplified)
	Alternative scheme			
	$\frac{1}{3}\pi r^2 h - \frac{1}{3}\pi (kr)^2 kh = \frac{98}{125} \times \frac{1}{3}\pi r^2 h \text{ oe}$	$\frac{2}{5}h$ oe	4	M1 sets up an equation using scale factor
	$k = \frac{3}{5}$			M1 for the length scale factor
	$1-\frac{3}{5}$ or $h-\frac{3}{5}h$ oe			M1
				A1 for $\frac{2}{5}h$ oe (may not be simplified)

Question	Working	Answer	Mark		Notes
17 a	$\left(\overrightarrow{BC} = \right) \begin{pmatrix} -2 \\ -7 \end{pmatrix} + \begin{pmatrix} 10 \\ 11 \end{pmatrix} \left(= \begin{pmatrix} 8 \\ 4 \end{pmatrix} \right)$	(13, 12)	3	M1	or coordinates $(5-2, 8-7)$ (= $(3, 1)$) assigned to <i>A</i> (may be seen in vector form) or (13, y) or $(x, 12)$ given as coordinates for <i>C</i>
	$ \begin{pmatrix} 5 \\ 8 \end{pmatrix} + " \begin{pmatrix} 8 \\ 4 \end{pmatrix}" \text{ or } \begin{pmatrix} 10 \\ 11 \end{pmatrix} + " \begin{pmatrix} 3 \\ 1 \end{pmatrix}" $			M1	for coordinates $(5-2+10, 8-7+11)$ assigned to C
				A1	
ь	e.g. $\binom{63}{211} - \binom{5}{8} \left(= \binom{58}{203} \right)$ with e.g. "58" ÷ 2 (=29) and "203" ÷ 7 (=29) OR	Proof	2	M1	may work with A and E, in which case may need to ft for method mark from (a)
	e.g. $\binom{63}{211} - \binom{3}{1} \left(= \binom{60}{210} \right)$ with e.g. "60" ÷ 2 (=30) and "210" ÷ 7 (=30)				
	e.g. 60 · 2 (-30) and 210 · 7 (-30)			A1	proof with justification eg. $\overrightarrow{BE} = 29 \binom{2}{7}$ (or
					$\overrightarrow{AE} = 30 \binom{2}{7}$) with ABE is a straight line or $210 \div 60 = 3.5$ and $7 \div 2 = 3.5$ so ABE is a straight line

Question	Working	Answer	Mark		Notes
18 a (i)		(3, -1)	1	B1	
(ii)		(-2, -0.5) oe	1	В1	
Ь		e.g. 2, 90, 1	3	В3	for all 3 correct values e.g. 2, 90, 1 or -2 , 270, 1 If not B3 then B2 for any 2 correct values NB. 2 values from 2, 90, 1 OR 2 values from -2 , 270, 1 NB: accept a value of $(90 + 360n)$ in place of 90 or $(270 + 360n)$ in place of 270 where n is an integer (could be negative) If not B2 then B1 for any 1 correct value or the graph of $y = \sin x^{\circ}$ for $0 \le x \le 360$

Question	Working	Answer	Mark	Notes
19	$\frac{1}{4} \times \frac{2}{5} \left(= \frac{2}{20} \right)$ or $\frac{3}{4} \times \frac{3}{5} \left(= \frac{9}{20} \right)$	$\frac{121}{400}$ oe	4	M1 for any one correct probability
	or $\frac{1}{4} \times \frac{3}{5} \left(= \frac{3}{20} \right)$ or $\frac{3}{4} \times \frac{2}{5} \left(= \frac{6}{20} \right)$			
	$ \frac{1}{4} \times \frac{2}{5} + \frac{3}{4} \times \frac{3}{5} \left(= \frac{11}{20} \right) \text{or} 1 - \left(\frac{1}{4} \times \frac{3}{5} + \frac{3}{4} \times \frac{2}{5} \right) \left(= \frac{11}{20} \right) $			M1 for a complete method
	$\left\ \frac{11}{20} \times \frac{11}{20} \right\ \text{ or } \left(\frac{2}{20} + \frac{9}{20} \right)^2$			M1
				A1 for $\frac{121}{400}$ oe or 0.3025 or 30.25%

20	$y = \frac{2}{3}x\left(+\frac{12}{3}\right)$ or $y = \frac{2x+12}{3}$ or gradient $=\frac{2}{3}$	3x + 2y = 86	5	M1			
	(gradient of perpendicular line =) $-\frac{3}{2}$ oe			M1	ft from their gradient		
	or $\frac{-1}{\frac{2}{3}}$ oe						
	$37 = "-\frac{3}{2}" \times 4 + c$ or $c = 43$			M1	(dep on previous M1) and ft from their gradient	M1 for $y-37 = "-\frac{3}{2}"(x-4)$	
	$y = -\frac{3}{2}x + 43$			A1	correct equation (equation in any form)	A1 for $y-37 = -\frac{3}{2}(x-4)$	
				A1	for $3x + 2y = 86$ oe for a simplified equation with integer coefficients e.g. $3x = 86 - 2y$		
	Alternative scheme $2y = -3x + c$ oe	3x + 2y = 86	5	M2			
	$2 \times 37 = -3 \times 4 + c$			M1			
				A2	for $3x + 2y = 86$ oe for a simplified equation with integer coefficients e.g. $3x = 86 - 2y$		

www.igexams.cor	Υ
-----------------	---

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London, WC2R ORL, United Kingdom