Pearson Edexcel

Mark Scheme (Results)

Summer 2018

Pearson Edexcel International GCSE In Mathematics A (4MA1) Paper 1H

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2018
Publications Code 4MA1_1H_1806_MS
All the material in this publication is copyright
© Pearson Education Ltd 2018

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme.
Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.
- Types of mark
- M marks: method marks
- A marks: accuracy marks
- B marks: unconditional accuracy marks (independent of M marks)
- Abbreviations
- cao - correct answer only
- ft - follow through
- isw - ignore subsequent working
- SC - special case
- oe - or equivalent (and appropriate)
- dep - dependent
- indep - independent
- eeoo - each error or omission

- No working

If no working is shown then correct answers normally score full marks If no working is shown then incorrect (even though nearly correct) answers score no marks.

- With working

If there is a wrong answer indicated on the answer line always check the working in the body of the script (and on any diagrams), and award any marks appropriate from the mark scheme.
If it is clear from the working that the "correct" answer has been obtained from incorrect working, award 0 marks.
Any case of suspected misread loses A (and B) marks on that part, but can gain the M marks.
If working is crossed out and still legible, then it should be given any appropriate marks, as long as it has not been replaced by alternative work.
If there is a choice of methods shown, then no marks should be awarded, unless the answer on the answer line makes clear the method that has been used.
If there is no answer on the answer line then check the working for an obvious answer.

- I gnoring subsequent work

It is appropriate to ignore subsequent work when the additional work does not change the answer in a way that is inappropriate for the question: eg. Incorrect cancelling of a fraction that would otherwise be correct.
It is not appropriate to ignore subsequent work when the additional work essentially makes the answer incorrect eg algebra.
Transcription errors occur when candidates present a correct answer in working, and write it incorrectly on the answer line; mark the correct answer.

- Parts of questions

Unless allowed by the mark scheme, the marks allocated to one part of the question CANNOT be awarded in another.

International GCSE Maths 4MA1 1H

Apart from questions 3c, 11b and 20 (where the mark scheme states otherwise) the correct answer, unless clearly obtained from an incorrect method, should be taken to imply a correct method.

Question	Working	Answer	Mark	Notes
		$0<p \leq 1$	1	B1
b	$\begin{aligned} & 0.5 \times 19+1.5 \times 12+2.5 \times 5+3.5 \times 2+4.5 \times 2(=56) \\ & \text { or } \\ & 9.5+18+12.5+7+9(=56) \end{aligned}$ $" 56 " \div 40$	1.4	4	M2 for at least 4 correct products added (need not be evaluated) If not M2 then award M1 for consistent use of value within interval (including end points) for at least 4 products which must be added OR correct mid-points used for at least 4 products and not added M1 dep on at least M1 Allow division by their $\sum f$ provided addition or total under column seen A1 for 1.4 or $1 \frac{2}{5}$

Question	Working	Answer	Mark	Notes
2	$\begin{aligned} & 170 \div 2(=85) \text { or } 170 \div 2 \times 7(=595) \text { or } 7 \div 2(=3.5) \\ & 7 \times " 85 "+170(=765) \text { or } 9 \times \times 85 "(=765) \text { or } \\ & " 595 "+170(=765) \text { or } 170 \times " 3.5 "+170(=765) \\ & " 765 " \div 3(=255) \text { or } " 765 " \div 3 \times 5(=1275) \\ & " 255 " \times 2 \text { or " } 1275 "-" 765 " \text { or " } 1275 " \div 5 \times 2 \end{aligned}$	510	5	M1 M1 award of this mark implies the first M1 M1 dep on M2 M1 A1
	Alternative scheme			
2	$\begin{aligned} & (\text { girls }=) \frac{2}{9}(\text { of children }) \\ & (\text { girls }=) \frac{2}{9} \times \frac{3}{5}\left(=\frac{2}{15}\right)(\text { of total }) \\ & \text { or G }: \mathrm{C}: \mathrm{A}=\frac{2}{9} \times \frac{3}{5}: \frac{3}{5}: \frac{2}{5}\left(=\frac{2}{3}: 3: 2\right) \\ & " \frac{15}{2} " \times 170(=1275) \text { or } \mathrm{G}: \mathrm{A}=2: 6 \text { oe } \\ & " 1275 " \div 5 \times 2 \text { or } 3 \times 170 \end{aligned}$	510	5	M1 M1 award of this mark implies the first M1 M1 dep on M2 M1 A1

Question	Working	Answer	Mark	Notes
3 a		y^{14}	1	B1
b		$16 m^{12}$	2	B2 $\begin{aligned} & \text { if not B2 then } \\ & \text { B1 for } a m^{12} \text { or } 16 m^{b} \text { or } 2^{4} m^{12} \quad b \neq 0,12 \quad a \neq 1,16\end{aligned} l=$,
c	$\begin{aligned} & 5 x+15=3 x-4 \text { or } \\ & x+3=\frac{3 x}{5}-\frac{4}{5} \\ & \text { e.g. } 5 x-3 x=-4-15 \end{aligned}$	$-\frac{19}{2} \text { oe }$	3	M1 for removing bracket in a correct equation or dividing all terms by 5 in a correct equation M1 ft from $a x+b=c x+d$ for correctly isolating terms in x on one side of equation and constant terms on the other side A1 dep on at least M1
d (i) (ii)		$(x-4)(x+6)$ 4, - 6	2 1	```M1 for (x+a)(x+b) where either ab=-24 or }a+b=+ e.g (x-6)(x+4) A1 B1 cao or ft from any (x+p)(x+q)```
$4 \quad \mathrm{a}(\mathrm{i})$ (ii)		$\begin{gathered} 1,2,3,4,6,12 \\ 1,3,5,7,9,10,11 \end{gathered}$	1 1	B1 cao B1 cao
b		Yes with reason	1	B1 e.g. no numbers in both A and C or A and C do not intersect or A and C do not overlap or A and C are mutually exclusive
c		$\frac{10}{12}$ oe	2	M1 for 12-2 (=10) or $\frac{a}{12}$ with $a<12$ or 10 and 12 used with incorrect notation E.g. 10:12 A1 for $\frac{10}{12}$ oe or $0.83(3 \ldots)$ or \(83(.3 .)).

Question	Working	Answer	Mark	Notes
5 a		80000	1	B1
b	$\begin{aligned} & 0.5 \times 10^{5-8} \text { or } 0.0005 \text { or } 5 \times 10^{n} \text { or } \\ & 5.0 \times 10^{n} \end{aligned}$	5×10^{-4}	2	M1 A1 for 5×10^{-4} or 5.0×10^{-4} SC : B1 for $\frac{1}{2000}$ or $\frac{1}{2 \times 10^{3}}$
6	$9.7^{2}+3.5^{2}(=106.34)$ $\begin{aligned} & \sqrt{9.7^{2}+3.5^{2}} \text { or } \sqrt{106.34 "}(=10.3 \ldots) \\ & \pi \times \text { "10.3 } \ldots \text { " or } 2 \times \pi \times \frac{" 10.3 \ldots "}{2} \end{aligned}$	32.4	4	M1 M1 for the use of $M N$ and a correct angle $(70.1 \ldots$ or $70.2,19.8 \ldots)$ statement in a correct trig eg $\cos 70.2=\frac{3.5}{M N}$ M1 M1 for a complete method to find $M N$ eg $M N=\frac{3.5}{\cos 70.2}(=10.3 \ldots)$ M1 \quad dep on M2 A1 for answer in range $32.3-32.41$

Question	Working	Answer	Mark	Notes
$8 \quad \mathrm{a} \text { (i) }$		$\begin{gather*} 3 \times 7^{3} \\ 2^{3} \times 3^{5} \times 5 \times 7^{4} \tag{ii} \end{gather*}$	1 1	B1 for 3×7^{3} oe or 1029 B1 for $2^{3} \times 3^{5} \times 5 \times 7^{4}$ oe or 23337720
b		4, 2, 1	2	M1 for $r=1$ or for $p=4$ and $q=2$ or correct representation of C in terms of prime factors on a Venn diagram

Question	Working	Answer	Mark	Notes
10 a	Readings from graph at cf 20 and cf 60 eg. readings of 103 and 123	20.5	2	M1 A1 for answer in range 19-21
b	$\begin{aligned} & \text { Reading from graph from time }=120(=55) \\ & \text { or } 80-55(=25) \\ & 0.35 \times 80(=28) \text { or e.g. } \frac{80-" 55 "}{80} \times 100 \text { oe }(=31(.25)) \\ & \text { or } \\ & \frac{" 55 "}{80} \times 100 \text { oe }(=68(.75)) \end{aligned}$	No with correct figures	3	M1 accept reading in range $55-56$ M1 accept a value in the range $30-31.25$ or a value in the range $68-70$ for this mark unless clearly from incorrect working A1 eg. No with 28 and 25 or No with 31.25% (accept value in range $30 \%-31.25 \%$) or No with 68.75% and 65% (accept value in range $68 \%-70 \%$)
	Alternative scheme $0.65 \times 80(=52)$ Reading from graph from $\mathrm{cf}=52(=118)$ or Reading from graph from time $=120(=55)$	No with correct figures	3	M1 M1 accept reading in range $55-56$ A1 eg. No with 118 (minutes) or No with 52 and 55

Question	Working	Answer	Mark	Notes
$\mathbf{1 1 \quad \text { a }}$	$2 x^{2}-x+6 x-3$ or $2 x^{2}+5 x-3$ or $x^{2}+3 x-5 x-15$ or $x^{2}-2 x-15$ or $2 x^{2}-10 x-x+5$ or $2 x^{2}-11 x+5$	$2 x^{3}-5 x^{2}-28 x+15$	3	M1for expansion of any 2 of the 3 brackets (at least 3 of 4 terms correct)
	eg. $2 x^{3}+5 x^{2}-3 x-10 x^{2}-25 x+15$ or $2 x^{3}-4 x^{2}-30 x-x^{2}+2 x+15$ or $2 x^{3}-11 x^{2}+5 x+6 x^{2}-33 x+15$		M1(dep) ft for at least half of their terms correct in second expansion (the correct number of terms must be present)	
	Alternative scheme	A1		
	$2 x^{3}-10 x^{2}-x^{2}+5 x+6 x^{2}-30 x-3 x+15$	$2 x^{3}-5 x^{2}-28 x+15$	3	M2for a complete expansion with 8 terms present, at least 4 of which must be correct

Question	Working	Answer	Mark	Notes
11 b	$\frac{-6 \pm \sqrt{96}}{6} \text { or } \frac{-6 \pm \sqrt{6^{2}--60}}{6}$ Accept 9.79-9.8(0) in place of $\sqrt{96}$ NB: denominator must be 2×3 or 6 and there must be evidence for correct order of operations in the numerator	0.633, -2.63	3	M2 If not M2 then award M1 for $\frac{-6 \pm \sqrt{6^{2}-4 \times 3 \times-5}}{2 \times 3}$ condone one sign error in substitution; allow evaluation of individual terms e.g 36 in place of 6^{2} A1 dep on M1 for answers in range 0.63 to $0.633,-2.63$ to -2.633 Award M2A1 for correct answer with correct working that would gain at least M1
	Alternative scheme e.g $3\left((x+1)^{2}-1\right)-5(=0)$ or $(x+1)^{2}-1-\frac{5}{3}(=0)$ $(x=)-1 \pm \sqrt{\frac{5}{3}+1}$ oe	0.633, -2.63	3	M1 for completing the square M1 for correct method to isolate x A1 dep on M1 for answer in range 0.63 to $0.633,-2.63$ to -2.633 Award M2A1 for correct answer with correct working that would gain at least M1

Question	Working	Answer	Mark	Notes
12 (a)		3, 4	1	B1
(b)		see graph at end of mark scheme	3	B3 for correct region identified If not B 3 then award B2 for $x+y=4$ drawn (with no additional lines drawn) and a region identified that satisfies at least 3 of the 5 given inequalities If not B 2 then award B1 for line $x+y=4$ drawn NB. May shade wanted or unwanted regions; lines may be solid or dashed
$13 \quad \mathrm{a}(\mathrm{i})$ (ii)		54 $\frac{\text { angle }}{\text { angle }}$ at $\frac{\text { centre is twice }}{\text { circumference }}$	1 1	B1 cao B1 dep on B1 in (a)(i) accept alternative reasons eg. angle at circumference is half the angle at the centre
b (i) (ii)		27 alternate segment theorem	1 1	B1 ft from (a)(i) for $\frac{" 54 "}{2}$ B1 dep on B1 in (b)(i) accept alternative reason angle between tangent and radius is 90° If answer for (b)(i) is ft from (a)(i) then reason must be angle between tangent and radius is $\underline{90^{\circ}}$

Question	Working	Answer	Mark	Notes
14 a		-6.5 oe	1	B1
b	$4 y=3 x-5$ or $4 x=3 y-5$	$\frac{4 x+5}{3} \text { oe }$	2	M1 A1
c	$\begin{aligned} & \sqrt{19-3} \text { oe or } f(4) \text { or } \frac{3 \sqrt{19-3}-5}{4} \\ & \text { or } \frac{3 \sqrt{19-x}-5}{4} \text { oe } \end{aligned}$	1.75 oe	2	M1 A1 for 1.75 oe (and no other solution)
d		$x>19$	2	B2 for $(x)>19$ or an equivalent statement in words If not B2 then award B1 for $(x) \geq 19$

Question	Working	Answer	Mark	Notes
15 a	E.g. $\left(\frac{y^{8}}{256 x^{20}}\right)^{\frac{1}{4}}$ or $\left(\frac{4 x^{5}}{y^{2}}\right)^{-1}$ or $\frac{x^{-5}}{4 y^{-2}}$ or $\frac{\frac{1}{4} x^{-5}}{y^{-2}}$ or $k \frac{y^{a}}{x^{b}}$ or $\frac{k y^{a}}{x^{b}}$ with 2 of $k=\frac{1}{4}$ oe , $a=2, b=5$ or $\frac{y^{a}}{m x^{b}}$ with 2 of $m=4, a=2, b=5$	$\frac{y^{2}}{4 x^{5}}$	2	M1 for a correct first step leading to a correct partially simplified expression A1 for $\frac{y^{2}}{4 x^{5}}$ or $\frac{\frac{1}{4} y^{2}}{x^{5}}$ or $0.25 \frac{y^{2}}{x^{5}}$ or $0.25 y^{2} x^{-5}$
b	$\frac{1}{(3 x-5)(3 x+5)}-\frac{1}{2(3 x+5)}$ E.g. $\frac{2}{2(3 x-5)(3 x+5)}-\frac{1(3 x-5)}{2(3 x-5)(3 x+5)}$ or $\frac{6 x+10}{\left(9 x^{2}-25\right)(6 x+10)}-\frac{9 x^{2}-25}{\left(9 x^{2}-25\right)(6 x+10)}$	$\frac{7-3 x}{2(3 x-5)(3 x+5)}$	3	M1 indep for $(3 x+5)(3 x-5)$ M1 for two correct fractions with a common denominator if there is any expansion at this stage then it must be correct A1 accept equivalents eg. $\frac{7-3 x}{18 x^{2}-50}$
	Alternative scheme $\frac{6 x+10}{\left(9 x^{2}-25\right)(6 x+10)}-\frac{9 x^{2}-25}{\left(9 x^{2}-25\right)(6 x+10)}$	$\frac{7-3 x}{2(3 x-5)(3 x+5)}$	3	M1 for two correct fractions with a common denominator

| $\frac{(7-3 x)(3 x+5)}{\left(9 x^{2}-25\right)(6 x+10)}$ |
| :--- | :--- | :--- | :--- | :--- |$|$| M1Numerator expanded and then factorised
 correctly |
| :--- | :--- |
| A1accept equivalents |

Question	Working	Answer	Mark	Notes
16	$\begin{aligned} & 1-\frac{98}{125}\left(=\frac{27}{125}\right) \text { or } 0.216 \text { or } 125-98(=27) \\ & \sqrt[3]{1 \frac{27}{125}} "\left(=\frac{3}{5}\right) \text { or } \sqrt[3]{1 \frac{125}{27}} "\left(=\frac{5}{3}\right) \\ & 1-" \frac{3}{5} \text { " or } h-4 \frac{3}{5} " h \text { oe } \end{aligned}$	$\frac{2}{5} h \text { oe }$	4	M1 M1 for the length scale factor may be seen as a ratio E.g. 3:5 M1 A1 for $\frac{2}{5} h$ oe (may not be simplified)
	Alternative scheme $\frac{1}{3} \pi r^{2} h-\frac{1}{3} \pi(k r)^{2} k h=\frac{98}{125} \times \frac{1}{3} \pi r^{2} h$ oe $k=\frac{3}{5}$ $1-" \frac{3}{5}$ " or $h-4 \frac{3}{5} " h$ oe	$\frac{2}{5} h \mathrm{oe}$	4	M1 sets up an equation using scale factor M1 for the length scale factor M1 A1 for $\frac{2}{5} h$ oe (may not be simplified)

Question	Working	Answer	Mark	Notes
17 a	$\begin{aligned} & (\overrightarrow{B C}=)\binom{-2}{-7}+\binom{10}{11}\left(=\binom{8}{4}\right) \\ & \binom{5}{8}+"\binom{8}{4} \text { " or }\binom{10}{11}+"\binom{3}{1} " \end{aligned}$	$(13,12)$	3	M1 or coordinates $(5-2,8-7)(=(3,1))$ assigned to A (may be seen in vector form) or $(13, y)$ or $(x, 12)$ given as coordinates for C M1 for coordinates $(5-2+10,8-7+11)$ assigned to C A1
b	$\begin{aligned} & \text { e.g. }\binom{63}{211}-\binom{5}{8}\left(=\binom{58}{203}\right) \\ & \text { with } \\ & \text { e.g. " } 58 \text { " } \div 2(=29) \text { and " } 203 \text { " } \div 7(=29) \\ & \text { OR } \\ & \text { e.g. }\binom{63}{211}-\binom{3}{1}\left(=\binom{60}{210}\right) \\ & \text { with } \\ & \text { e.g. " } 60 \text { " } \div 2(=30) \text { and " } 210 \text { " } \div 7(=30) \end{aligned}$	Proof	2	M1 may work with A and E, in which case may need to ft for method mark from (a) A1 proof with justification eg. $\overrightarrow{B E}=29\binom{2}{7}$ (or $\overrightarrow{A E}=30\binom{2}{7}$) with $A B E$ is a straight line or $210 \div 60=3.5$ and $7 \div 2=3.5$ so $A B E$ is a straight line

Question	Working	Answer	Mark	Notes
$18 \quad \mathrm{a}(\mathrm{i})$		$\begin{gather*} (3,-1) \\ (-2,-0.5) \text { oe } \tag{ii} \end{gather*}$	1 1	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$
b		e.g. 2, 90, 1	3	B3 for all 3 correct values e.g. $2,90,1$ or $-2,270,1$ If not B 3 then B 2 for any 2 correct values NB. 2 values from 2, 90, 1 OR 2 values from $-2,270,1$ NB: accept a value of $(90+360 n)$ in place of 90 or $(270+360 n)$ in place of 270 where n is an integer (could be negative) If not B 2 then B 1 for any 1 correct value or the graph of $y=\sin x^{\circ}$ for $0 \leq x \leq 360$

Question	Working	Answer	Mark	Notes
19	$\begin{aligned} & \frac{1}{4} \times \frac{2}{5}\left(=\frac{2}{20}\right) \text { or } \frac{3}{4} \times \frac{3}{5}\left(=\frac{9}{20}\right) \\ & \text { or } \frac{1}{4} \times \frac{3}{5}\left(=\frac{3}{20}\right) \text { or } \frac{3}{4} \times \frac{2}{5}\left(=\frac{6}{20}\right) \end{aligned}$	$\frac{121}{400}$ oe	4	M1 for any one correct probability
	$\frac{1}{4} \times \frac{2}{5}+\frac{3}{4} \times \frac{3}{5}\left(=\frac{11}{20}\right) \text { or } \quad 1-\left(\frac{1}{4} \times \frac{3}{5}+\frac{3}{4} \times \frac{2}{5}\right)\left(=\frac{11}{20}\right)$ $" \frac{11}{20} " \times " \frac{11}{20} " \text { or }\left(" \frac{2}{20} "+" \frac{9}{20} "\right)^{2}$			M1 for a complete method M1
				A1 for $\frac{121}{400}$ oe or 0.3025 or 30.25%

20	$y=\frac{2}{3} x\left(+\frac{12}{3}\right)$ or $y=\frac{2 x+12}{3}$ or gradient $=\frac{2}{3}$ (gradient of perpendicular line $=$) $-\frac{3}{2}$ oe or $\frac{-1}{" \frac{2}{3} "}$ oe $37="-\frac{3}{2} " \times 4+c \text { or } c=43$ $y=-\frac{3}{2} x+43$	$3 x+2 y=86$	5	M1 M1 ft from their gradient M1 $\begin{array}{l}\text { (dep on previous M1) } \\ \text { and ft from their } \\ \text { gradient }\end{array}$ $\begin{array}{l}\text { M1 for } \\ y-37="-\frac{3}{2} "(x-4)\end{array}$ A1 $\begin{array}{l}\text { correct equation } \\ \text { (equation in any form) }\end{array}$ $\begin{array}{l}\text { A1 for } \\ y-37=-\frac{3}{2}(x-4)\end{array}$ A1 for $3 x+2 y=86$ oe for a simplified equation with integer coefficients e.g. $3 x=86-2 y$
	Alternative scheme $2 y=-3 x+c$ oe $2 \times 37=-3 \times 4+c$	$3 x+2 y=86$	5	M2 M1 A2 for $3 x+2 y=86$ oe for a simplified equation with integer coefficients e.g. $3 x=86-2 y$

