Mark Scheme (Results)

January 2018
Pearson Edexcel International GCSE Mathematics A (4MA0)
Foundation Paper 4HR

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please visit our website at www.edexcel.com.

Our website subject pages hold useful resources, support material and live feeds from our subject advisors giving you access to a portal of information. If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.
www.edexcel.com/contactus

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

January 2018
Publications Code 4MA0_4HR_1801_MS
All the material in this publication is copyright
© Pearson Education Ltd 2018

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme.
Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Types of mark

- M marks: method marks
- A marks: accuracy marks
- B marks: unconditional accuracy marks (independent of M marks)

Abbreviations

- cao - correct answer only
- ft - follow through
- isw - ignore subsequent working
- SC - special case
- oe - or equivalent (and appropriate)
- dep - dependent
- indep - independent
- eeoo - each error or omission

- No working

If no working is shown then correct answers normally score full marks
If no working is shown then incorrect (even though nearly correct) answers score no marks.

- With working

If there is a wrong answer indicated on the answer line always check the working in the body of the script (and on any diagrams), and award any marks appropriate from the mark scheme.
If it is clear from the working that the "correct" answer has been obtained from incorrect working, award 0 marks.
Any case of suspected misread loses A (and B) marks on that part, but can gain the M marks. If working is crossed out and still legible, then it should be given any appropriate marks, as long as it has not been replaced by alternative work.
If there is a choice of methods shown, then no marks should be awarded, unless the answer on the answer line makes clear the method that has been used.
If there is no answer on the answer line then check the working for an obvious answer.

- Ignoring subsequent work

It is appropriate to ignore subsequent work when the additional work does not change the answer in a way that is inappropriate for the question: eg. Incorrect cancelling of a fraction that would otherwise be correct.
It is not appropriate to ignore subsequent work when the additional work essentially makes the answer incorrect eg algebra.
Transcription errors occur when candidates present a correct answer in working, and write it incorrectly on the answer line; mark the correct answer.

- Parts of questions

Unless allowed by the mark scheme, the marks allocated to one part of the question CANNOT be awarded in another.

International GCSE Maths: Apart from Questions16b, 17b, 18 and 19, where the mark scheme states otherwise, the correct answer, unless clearly obtained by an incorrect method, should be taken to imply a correct method.

3	$\frac{1+7}{2}$ or $\frac{3+8}{2}$	$(4,5.5)$	2	M1 A1	Or for correct x coordinate of 4 or for correct y coordinate of 5.5 oe or $(5.5,4)$ oe
					Total 2 marks

5 (a)		Translation 4 to the right and 1 down		B2 For translation and 4 to the right and down B1 for translation or 4 to the right and 1 down Accept $\binom{4}{-1}$ NB: No marks for multiple transformations
(b)			Triangle in correct position	

| 6 (a) | $0 \times 1,1 \times 8,2 \times 12,3 \times 15,4 \times 4$ or $0,8,24,45,16,93$ |
| :---: | :--- | :--- | :--- | :--- |

7 (a)		$a(4 b+7 a-1)$		
(b)	$4>11+8 p$ or $-8 p>11-4$ or $-8 p>7$ or $8 p<4-11$ or $8 p<-7$		B2 for factors which, when expanded and simplified, give three terms, at least one of which is correct.	

8	Eg $\sin 20=\frac{B C}{8.4}$ or $\frac{B C}{\sin 20}=\frac{8.4}{\sin 90}$ or $\frac{\sin 20}{B C}=\frac{\sin 90}{8.4}$ $8.4 \sin 20 \text { or } \frac{8.4}{\sin 90} \times \sin 20 \text { or } 8.4 \cos 70$	2.87	3	M1 M1 A1	Or for $A C$ or angle B evaluated correctly AND then used in a correct method to find $B C$ $\operatorname{Eg} B C^{2}+(7.89(34 \ldots))^{2}=8.4^{2}$ or $E g \tan 20=\frac{B C}{7.89(34 \ldots)}$ For a complete method Accept $2.87(296 \ldots)$ rounded or truncated to at least 3 SF
					Total 3 marks

9 (i)		1, 2, 23, 31, 46, 62, 713, 1426	3	B3	Accept factor written as products. If not B3 then B2 for three of 1, 46, 62, 713, 1426 If not B 2 then B1 for one of $46,62,713$ or four of $1,2,23,31,1426$
(ii)		23×31	1	B1	
					Total 4 marks

10 (a)		324000000	1	B1
(b)		United Kingdom	1	B1
(c)		3.089×10^{9}	2	M1 Sight of digits 3089 A1 Accept 3.09×10^{9}
(d)	$\operatorname{Eg} 1.87 \times 10^{7}: 1.32 \times 10^{9}$ or $1.87: 132$ or 187: 13200 or $1: \frac{1200}{17}$ or $1: 70.5(882 \ldots)$	71	2	M1 For a correct ratio or $\frac{1.32 \times 10^{9}}{1.87 \times 10^{7}}$ oe A1 oe eg 7.1×10^{1} Accept 1:71 M1A0 for answer of 70.5(882...)
				Total 6 marks

11 (a)		$8 a^{5} b^{9}$	2	M1 A1	For two correct from $8, a^{5}$ or b^{9} written as a product.
(b)	Eg $\frac{1}{c^{2 / 4}}$ or $c^{2 / 4}$ or $\left(c^{k}\right)^{4}=\frac{1}{c^{2}}$ or $c^{4 k}=\frac{1}{c^{2}}$ or $4 k=-2$	$-\frac{1}{2} \mathrm{oe}$	2	$\overline{\mathrm{M} 1}$	For a correct first step $\operatorname{Eg}-\frac{2}{4}$
(c)		$\frac{2(x+2)}{3}$	2		For $\frac{4(x+2)}{6}$ or $\frac{4 x+8}{6}$ or $\frac{2(x+2)^{2}}{3(x+2)}$ Accept $\frac{2 x+4}{3}$ or $\frac{2}{3}(x+2)$ or $\frac{2}{3} x+\frac{4}{3}$
(d)	$3\left(x^{2}-25 y^{2}\right)$	$3(x+5 y)(x-5 y)$	2	M1	For 3($\left.x^{2}-25 y^{2}\right)$ or $\begin{aligned} & (3 x-15 y)(x+5 y) \text { or } \\ & (x-5 y)(3 x+15 y) \text { or } \\ & (\sqrt{3} x+\sqrt{75} y)(\sqrt{3} x-\sqrt{75} y) \text { oe } \end{aligned}$
					Total 8 marks

$12 \quad \text { (a) }$		Fully correct tree diagram	3	B B	For $\frac{7}{20}$ on lower LH branch Correct binary structure with 4 branches needed on RHS For fully correct tree diagram with all probabilities $\left(\frac{7}{20}, \frac{12}{19}, \frac{7}{19}, \frac{13}{19}\right.$ and $\frac{6}{19}$) and labels.
(b)	$\frac{13}{20} \times \frac{12}{19}$	$\frac{156}{380}$	2		ft from their tree diagram in (a) oe $\text { eg } \frac{78}{190} \text { or } \frac{39}{95}$ Accept 0.41 ($0526 \ldots$.) rounded or truncated to at least 2dp.
(c)	$\frac{13}{20} \times \frac{12}{19} \times \frac{7}{18}$ or $\frac{91}{570}$ or $0.15(9649 \ldots)$ oe $\begin{aligned} & \frac{13}{20} \times \frac{12}{19} \times \frac{7}{18}+\frac{13}{20} \times \frac{7}{19} \times \frac{12}{18}+\frac{7}{20} \times \frac{13}{19} \times \frac{12}{18} \\ & \text { or } 3 \times \frac{13}{20} \times \frac{12}{19} \times \frac{7}{18} \end{aligned}$	$\frac{91}{190}$	3	M	Ft from (a) Ft from (a) Dep. For full correct method oe Accept 0.47 (894...) rounded or truncated to at least 2 dp . ft method marks if probabilities <1

	With Replacement		M1		
$\frac{13}{20} \times \frac{13}{20} \times \frac{7}{20}$ or $\frac{1183}{8000}$ or $0.14(7875)$					
$3 \times \frac{13}{20} \times \frac{13}{20} \times \frac{7}{20}$ or $\frac{3549}{8000}$ or $0.44(3625)$				\quad M1	Total 8 marks
:---					

$\mathbf{1 3}$ (a)		4.06	1	B1	Accept $4-4.1$
	(b)		1 or $k=-8.5(1 \mathrm{~d} . \mathrm{p})$.		B1 B1

| 14 (a) | $P=k Q^{2}$ or $P \alpha k Q^{2}$
 $\operatorname{Eg} 180=k \times 12^{2}$ or $180 \alpha k \times 12^{2}$ | | M1
 M1
 Allow $Q^{2}=k P$ or $Q^{2} \alpha k P$
 For a correct substitution into a
 correct equation
 Implies first M1
 Award M2 if $k=1.25$ oe stated
 unambiguously in (a) or (b)
 oe
 Only award if P is the subject.
 M2A1 for $P=k Q^{2}$ on answer line
 if $k=1.25$ oe seen in part (a) or
 (b) |
| :---: | :--- | :--- | :--- | :--- |
| (b) | | $P=1.25 Q^{2}$ | |

\begin{tabular}{|c|c|c|c|c|c|}
\hline 15 (a) \& $$
\begin{aligned}
& \left(B D^{2}=\right) 8^{2}+(6+5)^{2}-2 \times 8 \times(6+5) \times \cos 25 \\
& \left(B D^{2}=\right) 64+121-159(.510 \ldots) \text { or } 25.4(898 \ldots) \text { or } \\
& (B D=) \sqrt{64+121-159(.510 \ldots)}
\end{aligned}
$$ \& 5.05 \& 3 \& M1
M1

A1 \& | For the correct use of Cosine rule |
| :--- |
| For correct order of operations |
| Accept 5.04(8745...) rounded or truncated to at least 3SF |

\hline (b) \& $$
\begin{aligned}
& \operatorname{Eg} A C \times 8=(6+5) \times 6 \text { or }(A C=) \frac{(6+5) \times 6}{8} \text { or } \frac{11 \times 6}{8} \text { oe } \\
& (8+B C) \times 8=(6+5) \times 6 \text { oe }
\end{aligned}
$$ \& 8.25 oe \& 2 \& M1

A1 \& For a correct equation involving $A C$ or $B C$

$$
\operatorname{Eg} \frac{66}{8} \text { or } \frac{33}{4}
$$

\hline \& \& \& \& \& Total 5 marks

\hline
\end{tabular}

$16 \quad \text { (a) }$		$6 x^{2}-18 x$	2	M1 A1	For $6 x^{2}$ or $2 \times 3 \times x^{2}$ oe or $-18 x$ or $-2 \times 9 \times x$ oe
(b)	$\begin{aligned} & 6 x^{2}-18 x=0 \\ & 6 x(x-3)=0 \\ & x=3(\text { or } x=0) \\ & (y=) 2 \times 3^{3}-9 \times 3^{2}+31 \text { or } 4 \\ & \text { Gradient }=\frac{4}{3} \end{aligned}$	$\frac{4}{3} \mathrm{oe}$	4	M1 A1 M1 A1	ft their part $(\mathrm{a})=0$ if quadratic For $x=3$ Dep on M1 For substituting 3 in $2 x^{3}-9 x^{2}+31$
					Total 6 marks

17 (a)(i)		$6 \mathbf{a}+4 \mathbf{b}+2 \mathbf{c}$	1	B1	oe
(a)(ii)		$3 \mathbf{a}+2 \mathbf{b}$	1	B1	oe
(b)	$\begin{aligned} & \operatorname{Eg}(\overrightarrow{U X}=)-\frac{3}{4}(6 \mathbf{a}+4 \mathbf{b}+2 \mathbf{c})+6 \mathbf{a}+4 \mathbf{b}+1.5 \mathbf{c} \text { or } \\ & (\overrightarrow{U X}=)-4.5 \mathbf{a}-3 \mathbf{b}-1.5 \mathbf{c}+6 \mathbf{a}+4 \mathbf{b}+1.5 \mathbf{c} \text { or } \\ & (\overrightarrow{U X}=) \frac{1}{4}(6 \mathbf{a}+4 \mathbf{b}+2 \mathbf{c}-2 \mathbf{c}) \\ & (\overrightarrow{U X}=) 1.5 \mathbf{a}+\mathbf{b} \end{aligned}$	$\overrightarrow{U X}=\frac{1}{2} \overrightarrow{V W}$ oe and conclusion	3	M1 A1 A1	For a correct expression for $\overrightarrow{U X}$ For $(\overrightarrow{U X}=) 1.5 \mathbf{a}+\mathbf{b}$ NB: A correct simplified expression for $\overrightarrow{U X}$ and $\overrightarrow{V W}$ must be given.
(c)	$6^{2}+(-5)^{2}$ or $6^{2}+5^{2}$ or 61	$\sqrt{61}$	2	$\begin{gathered} \hline \mathrm{M} 1 \\ \mathrm{~A} 1 \end{gathered}$	Note: M1A0 for 7.81(024...) rounded or truncated to at least 3SF
					Total 7 mark

\(\left.$$
\begin{array}{|c|l|l|l|l|}\hline 18 & \begin{array}{l}17.5,17.4 \dot{9}, 16.5,63.5 \text { or } 64.5 \text { or } 64.4 \dot{9} \\
\frac{\text { LB }-2 \times \text { UB }}{2}\end{array}
$$ \& \& \& B1

\& \& \& For any correct LB or UB

M1 \& 63.5 \leq LB<64

17<UB \leq 17.5\end{array}\right]\)| From correct working |
| :--- |

19	$\operatorname{Eg} x^{2}-105+x^{2}-65+470-30 x+510-30 x=$ 360 or $2 x^{2}-60 x+810=360$ Eg $2 x^{2}-60 x+450(=0)$ or $2 x^{2}-60 x=-450$ or $x^{2}-30 x+225(=0)$ $\operatorname{Eg}(x-15)(x-15)(=0)$ or $\frac{30 \pm \sqrt{(-30)^{2}-4 \times 1 \times 225}}{2 \times 1}$ $x=15$	160 and 20 or 120 and 60 with conclusion	6	M1 ${ }_{\text {M1 }}$	For a correct equation For a correct three term quadratic For $(x-15)(x-15)(=0)$ or $2(x-15)(x-15)(=0)$ or $(2 x-30)(x-15)(=0)$ or $\frac{30 \pm \sqrt{(-30)^{2}-4 \times 1 \times 225}}{2 \times 1}$ oe (may be partially evaluated; Condone lack of brackets) Dep on first 2 method marks For substitution of $x=15$ into $x^{2}-65$ and $470-30 x$ or $x^{2}-105$ and $510-30 x$

\begin{tabular}{|c|c|c|c|c|c|}
\hline \& $$
\begin{aligned}
& \text { Alternative } \\
& \text { Eg } x^{2}-65+470-30 x=180 \text { or } x^{2}-105+510-30 x=180 \\
& x^{2}-30 x+225(=0) \text { or } x^{2}-30 x=-225 \\
& (x-15)(x-15)(=0) \text { or } \frac{30 \pm \sqrt{(-30)^{2}-4 \times 1 \times 225}}{2 \times 1} \\
& x=15
\end{aligned}
$$ \& $$
\begin{array}{r}
160 \text { and } 20 \text { or } \\
120 \text { and } 60 \\
\text { with conclusion }
\end{array}
$$ \& \& M1
M1
M1

A1
M1

M1 \& | For a correct equation |
| :--- |
| For a correct three term quadratic |
| For $(x-15)(x-15)(=0)$ or $\frac{30 \pm \sqrt{(-30)^{2}-4 \times 1 \times 225}}{2 \times 1}$ oe |
| (may be partially evaluated; Condone lack of brackets) |
| Dep on first 2 method marks For a substitution of $x=15$ into the other pairs of co-interior angles. |
| cso |

\hline \& \& \& \& \& Total 6 n

\hline
\end{tabular}

