Pearson Edexcel

Mark Scheme (Results)

January 2019

Pearson Edexcel International GCSE In Mathematics A (4MA1) Higher Tier Paper 2H

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

January 2019
Publications Code 4MA1_2H_1901_MS
All the material in this publication is copyright
© Pearson Education Ltd 2019

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme.
Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

- Types of mark

- M marks: method marks
- A marks: accuracy marks
- B marks: unconditional accuracy marks (independent of M marks)
- Abbreviations
- cao - correct answer only
- ft - follow through
- isw - ignore subsequent working
- SC - special case
- oe - or equivalent (and appropriate)
- dep-dependent
- indep - independent
- eeoo - each error or omission

- No working

If no working is shown then correct answers normally score full marks
If no working is shown then incorrect (even though nearly correct) answers score no marks.

- With working

If there is a wrong answer indicated on the answer line always check the working in the body of the script (and on any diagrams), and award any marks appropriate from the mark scheme.
If it is clear from the working that the "correct" answer has been obtained from incorrect working, award 0 marks.
If a candidate misreads a number from the question. Eg. Uses 252 instead of 255; method marks may be awarded provided the question has not been simplified. Examiners should send any instance of a suspected misread to review.If there is a choice of methods shown, then no marks should be awarded, unless the answer on the answer line makes clear the method that has been used.
If there is no answer on the answer line then check the working for an obvious answer.

- Ignoring subsequent work

It is appropriate to ignore subsequent work when the additional work does not change the answer in a way that is inappropriate for the question: eg. Incorrect cancelling of a fraction that would otherwise be correct.
It is not appropriate to ignore subsequent work when the additional work essentially makes the answer incorrect eg algebra.

Transcription errors occur when candidates present a correct answer in working, and write it incorrectly on the answer line; mark the correct answer.

- Parts of questions

Unless allowed by the mark scheme, the marks allocated to one part of the question CANNOT be awarded in another

Question	Working	Answer	Mark	Notes		
1	$\begin{aligned} & 73 \div 200(=0.365) \text { or } 73 \times 100(=7300) \text { or } \\ & 1 \mathrm{~cm}=2 \mathrm{~m} \text { oe } \\ & " 0.365 " \times 100 \text { or " } 7300 " \div 200 \\ & 73 \div 2 \end{aligned}$	36.5	3	M1 M1	Allow their incorrectly converted $73 \mathrm{~m} \div 200$	M2 for $100 \div \frac{200}{73}$ oe
				A1		
2		$4 n+3$	2	B2oe	e.g. $7+4(\mathrm{n}-1)$ or $4 \mathrm{n}+(7-4)$ etc allow $T_{n}=4 n+3$ or $x=4 n+3$ etc If not B2 then award B1 for answer of $4 n+k(k \neq 3) \text { or } n=4 n+3$	
3	$\begin{aligned} & 90 \div(2+13)(=6) \text { or } \frac{12+x}{90+x}=\frac{1}{3} \\ & " 6 " \times 2(=12) \text { or" } 6 " \times 13(=78) \text { or } \\ & 3(12+x)=90+x \\ & (" 78 " \div 2)-" 12 " \text { or } 2 x=54 \\ & \text { or "78" } \times 3 / 2-" 78 "-" 12 " \text { "oe } \end{aligned}$	27	4	M1 M1 M1 A1	M2 for $\frac{2}{15} \times 90(=12) \text { or } \frac{13}{15} \times 90$ ep on a correct method for 12 "	$=78)$ " "78" and

Question	Working	Answer	Mark	Notes
4		Fully correct Venn diagram	4	B4 fully correct Venn diagram with labels A and B (If not B4 then B 3 for 3 correct regions, B2 for 2 correct regions B1 for 1 correct region)
5	```123-67(=56) or \(2 x=123-67\) or \(2 x+y=\) 67 or \(4 x+y=123\) oe (\(x=\) length of tile, \(y=\) width of tile) e.g. " 56 " \(\div 2(=28)\) \(67-56(=11)\) or \(67-2 \times " 28^{\prime \prime}(=11)\) or \(123-4 \times " 28 "(=11)\) \((67-2 \times " 11 ") \times\left(123-2 \times " 11^{\prime \prime}\right)\) \((45 \times 101)\) or \(123 \times 67-12 \times\) " 28 " \(\times\) " 11 " (8241-3696)```	4545	5	M1 M1 for method to find length or width M1 for method to find other dimension M1 dep on M2

Question	Working	Answer	Mark	Notes
9	$\begin{aligned} \text { e.g. } 4 x+5 y & =4 \\ 4 x-2 y & =18 \end{aligned}$ with the operation of subtraction $\begin{gathered} 4 x+5 y=4 \\ 10 x-5 y=45 \end{gathered}$ With the operation of adding $y=2 x-9 \text { and } 4 x+5(2 x-9)=4$	$x=3.5 \text { oe, } y=-2$	3	M1 for correct method to eliminate one variable multiplying one or both equations so the coefficient of x or y is the same in both with the intention to add or subtract to eliminate one variable(condone one arithmetic error) or isolating x or y in one equation and substituting into the other equation M1 (dep) for substitution of found variable into one equation or correct method to eliminate second variable A1 Dep on M1
10	$3 \div 2(=1.5)$ or eg $\frac{4-1}{2(-0)}$ or $c=1$ $\begin{aligned} & y=" 1.5 " x+c \text { or } y=m x+1 \\ & \text { or eg } y-4=m(x-2) \end{aligned}$	$y=1.5 x+1$ oe	3	M1 for correct method to find gradient - may see this on grid. For $c=1$, could be $(L=) m x+1$ oe or for $1.5 x+c$ M1 for use of $y=m x+c$ with either m or c or for $(L=) 1.5 x+1$ A1 oe eg $y-4=\frac{3}{2}(x-2)$

Question	Working	Answer	Mark	Notes		
$\mathbf{1 1}$	$\begin{array}{l}\text { Basic comparisons from information: eg } \\ \text { The median is greater for Science/less for Maths } \\ \text { The IQR (or range) is higher for Science/less for } \\ \text { Maths } \\ \text { The median is 2.5 marks higher for Science } \\ \text { The IQR (or range) is 7 marks more for Science } \\ \text { Comparisons in context: eg } \\ \text { On the whole students have higher marks in } \\ \text { Science } \\ \text { The spread of results is greater for Science } \\ \text { Results are more consistent for Maths }\end{array}$	$\begin{array}{l}\text { Two } \\ \text { comparisons } \\ \text { one for IQR } \\ \text { and one for } \\ \text { median }\end{array}$	2	$\begin{array}{l}\text { B2 }\end{array}$		
$\begin{array}{l}\text { For 2 comparisons in context } \\ \text { or } \\ 1 \text { basic comparison and 1 comparison in context }\end{array}$						
(B1 for 1 or 2 basic statements or for 1					$\}$	statement in context)
:---						

Question	Working	Answer	Mark		Notes
12 (a) (b)		${ }_{27} x^{6} y^{15}$	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	B1	If not B2 then B1 for any two correct terms in a product
(c)	$2\left(e^{2}-9\right)$ or $(2 e-6)(e+3)$ or $(e-3)(2 e+6)$			M1	
		$2(e-3)(e+3)$	2	A1	
(d)	$\begin{aligned} & m^{2}=\frac{6 a+r}{5 r} \\ & m^{2} \times 5 r=6 a+r \\ & 5 r m^{2}-r=6 a \end{aligned}$			M1	
				M1 M1	
		$r=\frac{6 a}{5 m^{2}-1}$	4	A1	or for $r=\frac{-6 a}{1-5 m^{2}}$ oe
					NB: to award A1 we must see $r=\frac{6 a}{5 m^{2}-1}$ in working if $\frac{6 a}{5 m^{2}-1}$
					alone is given as answer

Question	Working	Answer	Mark		Notes
13	$\begin{aligned} & 4 \times 5+13 \times 6+16 \times 7+8 x+6 \times 9 \\ & (20+78+112+8 x+54) \text { or } \\ & 264+8 x \\ & (4+13+16+6+x) \times 7(=7(39+x)=273+7 x) \text { or } \\ & (4+13+16+6) \times 7(=273) \text { oe or } \frac{" 264+8 x "}{" 39+x^{\prime \prime}} \\ & \frac{" 264+8 x "}{" 39+x "}=7 \text { oe eg" } 264+8 x "="(39+x) " \times 7 \\ & \text { or " } 273 "-" 264 " \end{aligned}$			M1	at least 3 products correct with intention to add
				M1	for use of mean
				M1	
		9	4	A1	

Question	Working	Answer	Mark		Notes
14	$\begin{aligned} & 0.35 \times 0.35 \text { or } 0.35 \times 0.65 \text { or } 0.65 \times 0.35 \text { or } \\ & 0.65 \times 0.65 \\ & 0.35 \times 0.35+0.35 \times 0.65+0.65 \times 0.35 \text { or } \\ & 1-0.65 \times 0.65 \end{aligned}$	$\begin{aligned} & 0.65 \\ & 0.35,0.65 \\ & 0.35,0.65 \end{aligned}$	2	B2oe	for all correct If not B2 then award B1 for 0.65 in any of the 3 possible positions NB all values may be given as fractions
(b)				M1	ft from (a)
				M1	ft from (a)
		0.5775	3	A1	oe e.g. $\frac{231}{400}, 0.58$ or 58% or better

Question	Working	Answer	Mark	Notes
15 (a)	e.g. $\frac{1}{2} \times(x+5+3 x-2) \times(2 x-3)$ or $0.5(4 x+3)(2 x-3)$ oe			M1 correct algebraic expression for area
	eg. $\frac{1}{2} \times\left(8 x^{2}-12 x+6 x-9\right)=133$ or $8 x^{2}-12 x+6 x-9=266$			M1 for correct equation with brackets expanded
		shown	3	A1 for completion to given equation dep on M2
	$\begin{aligned} & \frac{--6 \pm \sqrt{36--8800}}{2 \times 8} \text { or } \frac{6 \pm \sqrt{36+8800}}{16} \text { or } \frac{6 \pm \sqrt{8836}}{16} \\ & \text { or }(4 x-25)(2 x+11)(=0) \end{aligned}$			M2 If not M2 then award M1 for $--6 \pm \sqrt{(-6)^{2}-4 \times 8 \times-275}$
				2×8 Condone one sign error in substitution; allow evaluation of individual terms e.g. 36 in place of $(-6)^{2}$ [allow -6^{2} or 6^{2} in place of $(-6)^{2}$, throughout allow + rather than \pm] or $(4 x \pm 25)(2 x \pm 11)(=0)$
				(if student gains M1 and shows both answers the $2^{\text {nd }} \mathrm{M} 1$ can be awarded)
				ft from an incorrect 3 term quadratic equation
		6.25 oe	3	A1 dep on M1 and 6.25 oe alone given as final answer

Question	Working	Answer	Mark	Notes
16	$\begin{aligned} & \text { e.g. } \sqrt[3]{\frac{960}{405}}\left(=\frac{4}{3}\right)(=1.3 \ldots) \text { or } \sqrt[3]{\frac{405}{960}}\left(=\frac{3}{4}\right)(=0.75) \\ & \left(\frac{3}{4}\right)^{2} \times 928 \text { or } 928 \div\left(\frac{4}{3}\right)^{2} \text { oe } \end{aligned}$	522	3	M1 for a correct linear scale factor M1 for a complete method A1
17 (c)	$\begin{aligned} & \mathrm{g}(-1.5)=1 \div(1-2 \times-1.5)(=0.25) \text { or } \\ & \operatorname{fg}(x)=4-3 \times\left(\frac{1}{1-2 x}\right) \text { oe } \end{aligned}$	$\begin{gather*} -11 \tag{a}\\ 0.5 \mathrm{oe} \tag{b} \end{gather*}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	B1 B1 M1 $\mathrm{g}(-1.5)$ must be the correct calculation alone.
18	$\begin{aligned} & 7.5 \text { or } 8.5 \text { or } 4.65 \text { or } 4.55 \\ & 25 \text { or } 15 \\ & \frac{4.55}{25-7.5} \end{aligned}$	0.26 oe	4	$\begin{array}{ll} \hline \text { M1 } & \\ \text { M1 } & \\ \text { M1 } & \text { for } \frac{\mathrm{LB}_{1}}{\mathrm{UB}-\mathrm{LB}_{2}} \text { with } 4.55 \leq \mathrm{LB}_{1} \\ & <4.6 \text { and } \\ & \begin{array}{l} 20<\mathrm{UB} \leq 25 \text { and } 7.5 \leq \mathrm{LB}_{2}< \\ \text { A1 } \end{array} \\ \text { for } 0.26 \text { from correct working } \end{array}$

Q20 contd	Alternative method where students assume $C D A=2 x$ and must work to show that $B C Q=x$				
	$\begin{aligned} & \text { eg angle } \mathrm{ABC}=180-2 x \\ & \text { Angle } C A B=\text { angle } A C B= \\ & {[180-(180-2 \mathrm{x})] \div 2=x} \\ & B C Q=C A B=x \end{aligned}$			M1 M1 M1 B1 A1	Dep on M1 for any one appropriate circle theorem reason For complete proof with reasons e.g. opposite angles of cyclic quadrilateral sum to 180° angles in triangle sum to 180° isosceles triangle alternate segment theorem
21	$\begin{aligned} & y=\frac{6}{4} x(+33) \text { or }(\text { gradient }=) \frac{6}{4} \text { oe } \\ & m \times \frac{6}{4}=-1 \text { or }(\text { gradient of } \mathbf{M}=)-\frac{2}{3} \text { oe } \\ & \frac{k-6}{-4-5}="-\frac{2}{3} " \end{aligned}$	12	4	M1 M1 M1 dep A1	or complete method to find equation of line $(3 y=-2 x+28)$ and then substitution of $x=-4$

Question	Working	Answer	Mark		Notes
23	$\text { e.g. } \overrightarrow{A B}=\overrightarrow{A D}+\overrightarrow{D B}$ or $\binom{2}{-3}+\binom{-1}{7}$			M1	for a correct vector equation for $\overrightarrow{A B}$
	$\overrightarrow{A B}=\binom{1}{4}$			A1	
	$\overrightarrow{D C}=3 \times\binom{ 1}{4}\left(=\binom{3}{12}\right)$			M1	
	$\overrightarrow{B C}=\binom{1}{-7}+\binom{3}{12}\left(=\binom{4}{5}\right)$ oe or			M1	
	$\overrightarrow{B C}=\binom{-1}{-4}+\binom{2}{-3}+\binom{3}{12}\left(=\binom{4}{5}\right)$ oe				
		$\sqrt{41}$ cao	5	A1	No isw

