edexcel

Mark Scheme (Results)

January 2013

International GCSE
Physics (4PH0) Paper 1P
Science Double Award (4SC0) Paper 1P

Edexcel Level 1/Level 2 Certificate Physics (KPHO) Paper 1P
Science (Double Award) (KSC0) Paper 1P

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk for our BTEC qualifications.
Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

If you have any subject specific questions about this specification that require the help of a subject specialist, you can speak directly to the subject team at Pearson.
Their contact details can be found on this link: www.edexcel.com/teachingservices.

You can also use our online Ask the Expert service at www.edexcel.com/ask. You will need an Edexcel username and password to access this service.

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

J anuary 2013
Publications Code UG034793
All the material in this publication is copyright
© Pearson Education Ltd 2013

Question number	Answer	Notes	Marks
1 (a)	C-14		1
	B-8		1
	A-6		1
(b)	A - An electron		1
(c)	A-1.5g		1
(d)	Atoms/nuclei with same number of protons / same atomic number / same element; Different numbers of neutrons / different mass number / different atomic mass;	ALLOW 'different mass' for second mark if it's clear they are comparing atoms within the same element rather than different elements IGNORE references to electrons if possible, but if candidates makes an incorrect reference to electrons then list principle applies for that mark (e.g 'same number of protons but different number of neutrons and electrons' $=$ 1)	1 1
		Total	7

Question number	Answer	Notes	Marks
2 (a) (i)	Equal to (ii) Any Two of - Rays continued and reflected correctly from mirror;	Projected back behind mirror (to reasonably the right place) Line perpendicular to the mirror joining object and image positions (roughly equal distances in front and behind); after reflection to be $\mathrm{i}=\mathrm{r}$ rays should diverge Judged by eye ACCEPT (for the second mark) projection back to image even if reflected rays not drawn in front of the mirror	2 Rays do not need to have arrows Dotted lines no required behind mirror Image does not have to be labelled Accept dotted lines in front of mirror if meaning is clear Use of ruler not essential, but candidates will find it difficult to draw a convincing diagram freehand
(iii)	'rays do not actually meet at the image'		

Question Number	Answer	Notes	Marks
2 (b) (i)	Added to diagram - Reflection inside fibre; At least three (with reasonable angles);	(ii)Must be more (optically) dense to less (optically) dense change; Angle of incidence > critical angle; (iii) Any ONE sensible point - e.g. Less prone to noise; less prone to heating; send more information (per second); more data (per second);IGNORE angle of incidence $=$ critical angle DO NOT ALLOW angle of incidence greater than 42^{0}	1
	IGNORE references to cost IGNORE references to speed		

| Question
 Number | Answer | Notes | |
| :---: | :---: | :--- | :--- | :---: |
| 3 (c) (i) | Voltage = current x resistance; | ALLOW standard symbols, $\mathrm{V}=\mathrm{I} \times \mathrm{R}$
 ALLOW correct rearrangements
 DO NOT ALLOW equation given as unit
 symbols
 ALLOW correct answer if it follows an
 equation given in unit symbols
 IGNORE s.f. BUT must be correctly
 rounded from $6.4285 \ldots$ | 1 |

Question Number	Answer	Notes	Marks
3 (d) (i)	Sample graph - scale; at least half the paper axes labelled including units;	20 1.3 40 2.5 60 3.8 80 5.0 100 (6.4) Points to plot IF AXES REVERSED, LOSE THE AXES MARK Ignore ($100 \mathrm{~cm}, 6.4$) ALLOW as length increases resistance increases ALLOW conclusions in terms of resistance per metre etc	5

Question number	Answer	Notes	Marks
5 (a)	Kalpana (no mark) ANY TWO - Density compares masses to volumes / reference to equation; So as mass increases, volume increases; In proportion;	If Christine is chosen, score $=0$ for part (a)	2
(b) (i)	A / clearly identified;	ALLOW 'the one measuring in ml ' (identifies A in picture)	1
	smallest scale divisions / measures to 0.2 (ml);	MUST have chosen A DO NOT ALLOW 'it measures in ml'	1
(ii)	any ONE suitable, e.g. incorrect scale / calibration; misreading scale / parallax / not at eye level; meniscus makes it difficult to read; might not be level / flat; reading may be between divisions;	DO NOT ALLOW 'hard to measure'	1

Question Number	Answer	Notes	Marks
5 (c) (i) (ii) (d) (i) (ii)	```density = mass / volume; substitution into correct equation: evaluation: unit: e.g. 54/23 2.3 g/cm compare with / look it up in; a book / data table / internet; any ONE suitable, e.g. (many) rock types with similar / same values; uncertainty in value / inaccurate measurements; data tables incomplete;```	ALLOW standard symbols (ALLOW d for density) VALUE MUST be 2 s.f. to be given evaluation mark 2300 if unit is $\mathrm{kg} / \mathrm{m}^{3}$ IGNORE human error ALLOW 'rock may not be pure'	1 1 1 1 1 1 1
		Total	12

Question number	Answer	Notes	Marks
6 (a)	(nuclear) fission;	DO NOT ALLOW fusion	1
(b)	Nucleus splits;		3
	Releasing neutrons;	PENALISE ONCE if 'atom' used for 'nucleus'	
	Which (hit / are absorbed by) different (uranium) nuclei;		
(c)		DO NOT ALLOW 'movement' for kinetic	
	Kinetic (energy of particles)		1
	Of (fission) products / (daughter) nuclei / neutrons		1
(d) (i)	Slow down neutrons;	DO NOT ALLOW 'movement' for kinetic	1
(ii)	Kinetic/ heat/thermal; Kinetic;	ALLOW 'electric' for 'electrical’	4
	Kinetic/ electrical; Electrical;		
		Total	11

Question number	Answer	Notes	Marks
8 (a) (i)	Gradient of graph / attempt;		1
	Answer;		1
	Unit;		1
	e.g.		
	1.6	ALLOW value truncated or correctly rounded	
	$\mathrm{m} / \mathrm{s}^{2}$	from 1.587301587... (no sf penalty)	
(ii)	Area under graph / attempt;		1
	Answer;		1
	e.g.		
	$\begin{aligned} & 1 / 2 \times 1.26 \times 2 \\ & 1.26(\mathrm{~m}) \end{aligned}$		
(b)	Moon has less mass (than Earth) / Moon has lower	IGNORE 'Moon is smaller'	1
	density (than Earth) / ORA for either;		
(c)	ANY FOUR of		4
	Feather is lighter / has less mass / weighs less;	IGNORE surface area	
	reaches terminal velocity / drag = weight;		
	earlier / sooner / before hammer;		
	(because) smaller (drag) force needed; (so) average velocity of feather is lower / falls slower;		
		Total	10

Question number	Answer	Notes	Marks
9 (a) (i) (ii)	Current - 2(.0) (A); Voltage - 12(.0) (V); Using $\mathrm{E}=\mathrm{V} \times \mathrm{I} \times \mathrm{t}$ (formula given on sheet) Time conversion; Substitution; Answer; e.g. 20 minutes $=20 \times 60$ seconds $=1200$ seconds $E=12 \times 2 \times 1200$ 28800 (J)	ecf from a i If time conversion not done / incorrect then ALLOW $\mathrm{E}=\mathrm{V} \times \mathrm{I} \times 20$ with subs of V and I for 1 mark ALTERNATIVE APPROACH (using power) Calculate power of heater $=\mathrm{V} \times \mathrm{I}$; Calculate $30000 \div(20 \times 60)$; to show comparability;	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$

Question number	Answer	Notes	Marks
9 (b) (i) (ii) (iii) (iv) (c) (i) (ii) (iii)	Efficiency = useful energy output / total energy input; Substitution into correct equation; Calculation; e.g. $\begin{aligned} & 22000 / 30000 \\ & =0.73 \end{aligned}$ Calculation of useful energy doesn't allow for energy lost; Insulate the block (to reduce energy loss); Energy raising temperature of the heater / Time for energy to transfer between heater and thermometer; Heat transfers through block by conduction; input (energy) greater than output (energy); ANY TWO of Energy lost to surroundings; by radiation; at higher rate; most of the heat supplied is lost / energy input and output nearly equal;	ALLOW values calculated using their answer to (a) (ii) e.g. $22000 / 28800=0.76$ ALLOW percentages	1 1 1 1 1 1 1 1 2
		Total	15

Question number	Answer	Notes	Marks
10 (a)	ANY THREE of particles in constant motion / particles have kinetic energy; in random directions; colliding with walls; causing a force on the walls; Pressure = force /area;	Answers need to refer to particles / molecules rather than 'the gas is...' ALLOW 'Hitting the walls' / 'bouncing off the walls' ALLOW 'push' / 'pushing'	3
(b) (i)	(pressure would) increase;		1
(ii)	(higher temp) increases (average) speed / kinetic energy of particles; So collide with walls more often / at higher speed;	IGNORE references to 'heating the particles' ALLOW 'hit harder'	$\begin{aligned} & 1 \\ & 1 \end{aligned}$
(c)	Use of $p_{1} V_{1}=p_{2} V_{2}$ (equation given)/substitution; $2000\left(\mathrm{~cm}^{3}\right)$;	2000 alone scores 2	2
		Total	8

Question Number	Answer	Notes	Marks
11 (c)	Any TWO from (Windy) - (extra) drag / air resistance / friction; more energy wasted (overcoming friction); (Wet) - less friction / no friction / slippier / less traction / less grip; less energy transferred to car (at launch);	ANSWERS SHOULD REFER TO THE SITUATIONS GIVEN	2
			Total

Further copies of this publication are available from Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623467467
Fax 01623450481
Email publication.orders@edexcel.com
Order Code UG034793 January 2013

For more information on Edexcel qualifications, please visit our website

