Pearson Edexcel

Mark Scheme (Results)

January 2020

Pearson Edexcel International GCSE in Physics (4PH1)
Paper 1P

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

January 2020
Publications Code 4PH1_1P_msc_20200305
All the material in this publication is copyright
© Pearson Education Ltd 2020

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Question number	Answer	Notes	Marks
1	north; steel; hard; north; soft;	this order only	5

Total for Question 1 = 5 marks

\begin{tabular}{|c|c|c|c|}
\hline Question number \& Answer \& Notes \& Marks \\
\hline \begin{tabular}{l}
\[
2
\] \\
(a) \\
(i) \\
(ii) \\
(iii)
\end{tabular} \& \begin{tabular}{l}
downward arrow labelled weight; \\
downward arrow is equal in length to upthrust arrow; \\
(a quantity with) magnitude; \\
and direction; \\
any correct vector; \\
e.g. velocity, displacement, acceleration, momentum etc.
\end{tabular} \& \begin{tabular}{l}
ignore starting point of arrow \\
allow 'gravitational force', 'force due to gravity' reject 'gravity' judge by eye \\
allow size, amount ignore quantity, measurement \\
ignore force, any named force e.g. weight, upthrust etc
\end{tabular} \& 2

2
1

\hline | (b) (i) |
| :--- |
| (ii) |
| (iii) | \& | pressure (difference) $=$ height \times density $\times g$; |
| :--- |
| substitution; |
| evaluation of pressure difference in Pa OR kPa to at least 3s.f.; addition of surface pressure (100 kPa) to give answer; |
| e.g. $\begin{aligned} & p=15.8 \times 1030 \times 10 \\ & p=162740 \mathrm{~Pa} O R 162.74 \mathrm{kPa} \\ & p=162.74+100(=260 \mathrm{kPa}) \end{aligned}$ |
| any two from: |
| MP1. idea that \{weight of ship / downwards force\} is greater; |
| MP2. larger pressure difference (when deeper in water); |
| MP3. larger upthrust force (needed to keep forces balanced); | \& | allow standard symbols and rearrangements e.g. $\mathrm{p}=\mathrm{h} \times \rho \times \mathrm{g}$ allow d for density ignore "gravity" for g |
| :--- |
| allow $g=9.8,9.81$ |
| - 1 for POT error unless due to physics error reject this mark if inconsistent units used allow final answer in Pa or kPa |
| allow 262740 (Pa) |
| allow ship is heavier, ship has more mass allow larger pressure (on bottom of ship) | \& 1

3

2

\hline
\end{tabular}

Question number	Answer	Notes	Marks
3 (a)	A (current); B is incorrect because power is the rate of ener C is incorrect because resistance is the ratio of D is incorrect because voltage is the energy tran	transferred oltage and current ferred per unit charge passed	1
(b)	D (voltage); A is incorrect because current is the rate of flow B is incorrect because power is the rate of ener C is incorrect because resistance is the ratio of	of charge transferred oltage and current	1
(c) (i) (ii) (iii) (iv)	```correct voltmeter symbol used; voltmeter drawn in parallel with S; 0.20 (A); 0.60 (A); voltage = current }\times\mathrm{ resistance; substitution; evaluation; e.g. V = I }\times (V =) 0.40 × 11 (V =) 4.4 (V)``` idea that voltage across battery is the same as voltage across R; (because) battery and R are connected in parallel / no other resistive components on loop with battery and R;	condone drawn in parallel with R or the battery this order only allow 0.2 (A) this order only allow 0.6 (A) formula should be seen or implied by calculation allow standard symbols and rearrangements ignore C, c for current allow numerical value given e.g. 'voltage of battery = 4.4V'	2 2 3 2
(d)	idea that resistance (of thermistor) changes; when temperature increases, resistance decreases; (therefore) current increases when temperature increases;	allow even if relationship is the wrong way round ORA ORA	3

Question number	Answer	Notes	Marks
4 (a) (i) (ii)	weight $=$ mass \times gravitational field strength; substitution or rearrangement; evaluation; e.g. $\begin{aligned} & 520=\text { mass } \times 10 \text { OR mass }=W / g \\ & (\text { mass }=) 52(\mathrm{~kg}) \end{aligned}$	allow rearrangements and standard symbols e.g. $\mathrm{W}=$ $m \times g$ ignore 'gravity' for g allow $g=9.8,9.81$ allow 53.1, 53.0, 53	1 2
(b) (i) (ii) (iii)	evidence of counting squares to find area; number of squares in range 37-42; evaluation of area of one square; evaluation of total area; e.g. dots seen in each square in diagram number of squares $=39$ area of one square $=(2 \times 2)=4 \mathrm{~cm}^{2}$ total area $=(4 \times 39)=156 \mathrm{~cm}^{2}$ pressure = force / area; dimensionally correct substitution; evidence of doubling area or halving pressure to account for both feet; evaluation with matching unit; e.g. (pressure =) $520 / 156$ area $=156 \times 2$ OR pressure $=3.2 \div 2$ (pressure =) $1.7 \mathrm{~N} / \mathrm{cm}^{2}$	allow attempt to find area by splitting into rectangles / triangles allow if 2×2 seen in working allow ecf from incorrect number of squares allow 148-168 allow standard symbols and rearrangements e.g. $p=F / A$ allow ecf from (b)(i) allow $\mathrm{N} / \mathrm{cm}^{2}$, $\mathrm{N} / \mathrm{m}^{2}$ or Pa if no marks awarded for calculation allow 1 mark if valid unit for pressure given allow 1.5-1.8 $\mathrm{N} / \mathrm{cm}^{2}$ allow $15000-18000 \mathrm{~N} / \mathrm{m}^{2}$	4

Total for Question 4 = 11 marks

\begin{tabular}{|c|c|c|c|}
\hline Question number \& Answer \& Notes \& Marks \\
\hline \begin{tabular}{l}
5 (a) (i) \\
(ii) \\
(iii)
\end{tabular} \& \begin{tabular}{l}
\[
\begin{aligned}
\& \text { B, D, F; } \\
\& \text { use of speed = distance / time; } \\
\& \text { correctly read time or distance from graph; } \\
\& \text { conversion from minutes to seconds or km to } \mathrm{m} \text {; } \\
\& \text { correct evaluation; } \\
\& \text { e.g. } \\
\& \begin{array}{l}
\mathrm{v}=\mathrm{s} / \mathrm{t} \\
\text { distance }=2.6 \mathrm{~km} \text { or time }=2 \text { minutes } \\
\text { distance }=2600 \mathrm{~m} \text { or time }=120 \mathrm{~s} \\
(\mathrm{v}=) 22(\mathrm{~m} / \mathrm{s})
\end{array}
\end{aligned}
\] \\
idea that speed of bus is greater in section A; (because) line is steeper / gradient is larger / eq;
\end{tabular} \& \begin{tabular}{l}
all required for the mark reject if additional sections listed \\
seen anywhere allow symbols allow attempt to find gradient of line \\
allow \(s=d / t\) \\
allow 21.7, 21.6... (m/s) \\
\(0.0216 . . ., 1300=3\) marks \\
\(1.3=2\) marks
\end{tabular} \& 1
4
4

2

\hline (b) \& | single horizontal line drawn; |
| :--- |
| horizontal line drawn at $0.5 \mathrm{~km} /$ minute for some period of time in journey; | \& judge by eye line must extend the entire length of the time axis \& 2

\hline
\end{tabular}

Total for Question $5=9$ marks

Question number	Answer	Notes	Marks
6	any six from: MP1. cup slows down/stops energy transfer to surroundings; relating to conduction: MP2. vacuum contains no particles; MP3. reducing/stopping conduction (through the sides); MP4. plastic (lid) is a poor conductor / good insulator; relating to convection: MP5. air is trapped by the lid; MP6. reducing/stopping convection (from the surface); relating to radiation: MP7. (inner) shiny surface is poor absorber of infrared / radiation; MP8. (outer) shiny surface is poor emitter of infrared / radiation; MP9. energy transfer by radiation reduced/stopped;	allow idea that energy is trapped ignore 'heat is trapped' allow reducing/stopping evaporation allow idea that inner surface reflects heat	6

Question number	Answer	Notes	Marks
7 (a)	24 (kPa);		1
(b)	any three from: MP1. reading increases / pressure increases; MP2. reading doubles / pressure doubles/ reading is 48 kPa ; MP3. (because) air particles collide with walls more often; MP4. (because) pressure \times volume is constant;	scores first 2 marks allow quoted formula allow (because) pressure is inversely proportional to volume	3
(c) (i) (ii)	\{speed / velocity / KE\} of particles decreases; pressure decreases; particles collide with walls less often; particles collide with less force;	allow less frequent collisions ignore 'motion / movement decreases' allow particles colliding less hard	1 3

Total for Question 7 = 8 marks

Question number	Answer	Notes	Marks
8 (a) (i) (ii)	```acceleration = change in velocity / time; substitution; rearrangement; evaluation; e.g. 1.2 = (35-26)/t t = 9 / 1.2 (t =) 7.5 (s)```	allow rearrangements and standard symbols e.g. $a=v-u / t$, $\mathrm{a}=\Delta \mathrm{v} / \mathrm{t}, \mathrm{a}=\Delta \mathrm{v} / \Delta \mathrm{t}$	1 3
(b)	any four from: MP1. frequency increases; MP2. due to Doppler effect; MP3. idea that car behaves as the source of the (reflected) waves; MP4. (reflected) wavefronts closer together; MP5. (reflected) wavelength decreased; MP6. speed (of waves) stays constant;	allow "waves become bunched up" allow quotation of $v=f \times \lambda$	4

Total for Question $8=8$ marks

Question number	Answer	Notes	Marks
9 (a)	Geiger-Muller tube / GM tube;	allow Geiger counter, Geiger meter, GM detector	1
(b)	(absorbing) material;	allow absorber	1
(c)	any two from: MP1. idea that thickness also affects the count/results; MP2. idea that thickness is a control variable; MP3. idea of making experiment valid;	allow fair test for valid	2
(d)	measure count over longer time / take more repeats / measure background count;	allow quoted time longer than 3 seconds	1
(e) (i) (ii) (iii)	suitable linear scale chosen (>50\% of grid used); axes labelled with quantities and unit; all bar plotting correct to nearest half square; B (absorbing material is not a continuous variab A is incorrect because absorbing material is not C is incorrect because line graphs are drawn for D is incorrect because count rate is a continuou idea that the lower the count, the better the absorber; lead is the best absorber;	ignore orientation do not accept multiples of 30 for scale); continuous variable continuous variables variable ignore student is right/wrong allow RA allow that plastic is the worst absorber	3

Question number	Answer	Notes	Marks
10 (a) (i) (ii) (iii) (iv) (v)	light \{refracts, bends, changes direction, changes speed, changes wavelength $=1$ mark; light \{refracts/bends towards normal, slows down, wavelength decreases $\}=2$ marks;; normal; $\sin (c)=1 / n ;$ substitution; rearrangement; evaluation; e.g. $\begin{aligned} & \sin (c)=1 / 1.6 \\ & (c=) \sin ^{-1}(0.625) \\ & (c=) 39\left({ }^{\circ}\right) \end{aligned}$ TIR at the glass/air boundary; angle of incidence $=$ angle of reflection;	allow in words and rearrangements allow 38.68... allow ecf from (iv) that would suggest refraction e.g. if answer to (iv) is greater than 50° judge by eye	2 1 1 3 2
(b)	light ray is refracted out into the air; refracting away from the normal;	ray does not need to show deviation reject if ray emerges to the left of the normal	2

Total for Question $10=11$ marks

Question number	Answer	Notes	Marks
11 (a)	activity shown to decrease over time; descending curve getting shallower starting at (0,160); line passes through two other valid points; - $(6,80)$ - $(12,40)$ - $(18,20)$ - $(24,10)$		3
(b) (i) (ii)	idea that it decays very quickly / activity will be zero by the time it is injected / there will be no technetium-99m left; any one from: - idea that gamma can penetrate out of the body; - idea that gamma can be detected outside the body; any one from: - idea that half-life is long enough to complete the procedure; - idea that activity will fall to safe level in a day / quickly;	ignore 'it has a short halflife' marks must be from separate lists allow idea that technetium will not be in body for very long	1 2
(c)	harmful effect of gamma radiation given; idea that patient will have procedure very rarely / only when necessary (so risk is low); idea that doctor will administer procedure regularly (so risk is higher) / doctor limits time exposure to patient (to reduce risk);	e.g. - cancer - cell damage - cell mutation allow suggestion that risk to patients is higher as they receive greater dose allow idea that doctor increases distance from patient (to reduce risk)	3

Question number	Answer	Notes	Marks
12 (a)	comet drawn in orbit around the Sun; orbital path is elliptical;	judge by eye allow partially drawn ellipse Sun need not be at a focus of the ellipse, but should not be at the centre of the ellipse	2
(b)	```attempted use of orbital speed formula; valid substitution into orbital speed formula; correct evaluation of time period for either planet; attempt to divide T for Saturn by T for Mars; correct final evaluation of ratio; e.g. \(\mathrm{v}=2 \times \pi \times \mathrm{r} / \mathrm{T}\) \(24.1=2 \times \pi \times 2.28 \times 10^{8} / \mathrm{T}\) \(\mathrm{T}_{\text {Mars }}=5.94 \times 10^{7}(\mathrm{~s}) \quad \mathrm{OR} \mathrm{T}_{\text {saturn }}=9.26 \times 10^{8}(\mathrm{~s})\) \(\mathrm{n}=\mathrm{T}_{\text {Saturn }} / \mathrm{T}_{\text {Mars }}\) 15.6```	allow for either planet seen anywhere in working $\begin{aligned} & 9.70=2 \times \pi \times 1.43 \times 10^{9} / \mathrm{T} \\ & 5.944 \ldots 9.2628 \ldots \end{aligned}$ allow range of 15-16	5

Total for Question $12=7$ marks

