Mark Scheme (Results)
June 2011

International GCSE
Physics (4PH0) Paper 1P
Science Double Award (4SC0) Paper 1P

Edexcel is one of the leading examining and awarding bodies in the UK and throughout the world. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers.

Through a network of UK and overseas offices, Edexcel's centres receive the support they need to help them deliver their education and training programmes to learners.

For further information, please call our GCE line on 0844576 0025, our GCSE team on 0844576 0027, or visit our website at www. edexcel.com.

If you have any subject specific questions about the content of this Examiners' Report that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

Ask The Expert can be accessed online at the following link:
http://www.edexcel.com/Aboutus/contact-us/
Alternatively, you can contact our Science Advisor directly by sending an email to Science specialist on Sciencesubjectadvisor@EdexcelExperts.co.uk.
You can also telephone 08445760037 to speak to a member of our subject advisor team.
(If you are calling from outside the UK please dial + 44 1204770696 and state that you would like to speak to the Science subject specialist).

June 2011
Publications Code UG028562
All the material in this publication is copyright
© Edexcel Ltd 2011

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

INTERNATIONAL GCSE PHYSICS 4PHO/ 1P - SUMMER 2011

ecf - error carried forward
dop - dependent on previous
ora - or reverse argument
owtte - or words to that effect

Question number	Answer	Notes	Marks
$1 \text { (a) (i) }$ (ii) (iii)	gravitational elastic kinetic		1 1 1
(b) (i) (ii)	bounces lower / less / smaller / shorter / not as high (each bounce) (transferred away to) thermal energy	ACCEPT: refs to diagram e.g. "loops / dotted lines less tall" ACCEPT: distance between bounces gets smaller ACCEPT: heat / sound REJECT: other forms of energy e.g. light / chemical ACCEPT: refs to where the energy goes e.g. "to the air", "to the ground", "to the surroundings" IGNORE: friction	11

Question number	Answer	Notes	Marks
2 (a)	A - visible (light)	REJECT: rainbow REJECT: ‘light' alone ACCEPT: X / X - radiation	1
(b)	C X-rays		1
(c)	B		1
(d)	B		1

| 2 (e) | For first chosen region of the spectrum
 corresponding hazard;
 corresponding risk reduction;
 For second chosen region of the spectrum
 corresponding hazard;
 corresponding risk reduction;
 NB No mark for naming the type of radiation | e.g. microwaves -
 heating of tissue / perceived risk of cancer
 close oven door / hands-free cell phone /
 monitor
 exposure
 e.g. infra red -
 risk of skin burning / cell damage
 avoid hot places / reflective clothing / avoid
 exposure
 (to sun)
 e.g. visible light
 eye damage
 sun glasses / avoid exposure (to sun)
 e.g. ultraviolet -
 risk of \{skin / eye\} damage / blindness
 IGNORE: sunburn
 skin cream / sunglasses / avoid exposure (to
 sun)
 e.g. x-rays -
 risk of cancer / cell damage
 (lead) shielding / monitor exposure e.g. film
 badge /
 avoid exposure
 e.g. gamma -
 risk of cancer / cell damage
 (lead) shielding / monitor exposure e.g. film
 badge /
 avoid exposure |
| :--- | :--- | :--- | :--- |

Question number	Answer	Notes	Marks
3 (a)	16.5 ± 0.2 cm;	ACCEPT: $2^{\text {nd }} \mathrm{dp}$ if in this range ACCEPT: centimetres / cms ACCEPT: $165 \mathrm{~mm} \pm 2$ for 2 marks ACCEPT: $0.165 \mathrm{~m} \pm 0.002$ for 2 marks	1 1
(b)	Any two of: line up (end of) pencil with zero / any other scale mark; avoid parallax / look straight down / take reading at right angles OWTTE; use 0.5 cm scale / other side of ruler ;	REJECT: line up with end of ruler IGNORE: put pencil on top of ruler REJECT: use mm scale IGNORE: repeat readings / average	2

Question number	Answer	Notes	Marks
4 (a)	Any two of: current (in the coil) ; \{in / produces $\}$ a magnetic field; (resultant) force / interaction of magnetic fields ;	IGNORE: electrical to kinetic energy / induced current IGNORE: unqualified refs to LHR IGNORE: refs to push / pull	2
(b)	Any two of: increase current / more cells (in battery) ; stronger magnet(s) ; more turns (on coil) ;	ACCEPT: stronger current / more (battery) voltage REJECT: ‘larger’ batteries REJECT: 'bigger' magnet IGNORE: magnets closer together REJECT: more coils	2
(c)	Any two of: coil / wire cuts through (magnetic) field ; induced voltage / current ; current in lamp / complete circuit ; correct refs to an energy transfer e.g. kinetic to electrical (to light) ;	ACCEPT: coil moves / breaks field ACCEPT: ‘electromagnetic induction’ ACCEPT: generated / produced OWTTE IGNORE: "lights lamp"	2

Question number	Answer	Accept	Reject	Marks
5 (a) (i) (ii)	moment $=$ force \times distance Substitution $\quad 4.2 \times 0.25$; Calculation 1.05 (Nm);	Correct equivalent e.g. moment $=\mathrm{Fxd}$ If (i) is blank, but correct equation written in (ii), then credit. Correct answer gets both marks ACCEPT: 1.1 (N m)	m for moment equation "triangles"	1
(b)	(Moment of) weight of lid; Acts in same direction as closing force / anticlockwise;	Pull / force of gravity Acts downwards Reverse argument related to opening lid IGNORE: any reference to energy	Bald "gravity" for weight	2

Question number	Answer		Notes	Marks
6 (a)	statement the image in a plane mirror is virtual light from the object passes through the image in a plane mirror light waves are longitudinal the angle of incidence equals the angle of reflection the incident ray is at right angles to the reflected ray	tick \checkmark	Three ticks - max 1 mark Four or more ticks - no mark	2
(b) (i) (ii)				2 1

Question number	Answer	Notes	Marks
6 (c) (i) (ii)	First suitable line extended; Second suitable line extended; Image indicated correctly at crossing point of suitable lines ; e.g.: EITHER Appropriate additional drawing; e.g. extend perpendicular / second sighting line check line passes through image; OR Measure distance(s) (to mirror); Object distance $=$ image distance; OR pin placed in image position; method of no parallax named or described;	Suitable lines include: sighting pin line line from object perpendicular to mirror candidates own sighting line from another position I mage may be indicated with any clear mark or label Any additional drawing should be complementary to 6(c)(i) answer	1 1 1 1 2

Question number	Answer	Accept	Reject	Marks
7 (a)	B		1	
(b)	Any two of Energy transfer from supply / electrical energy; Energy transfer to thermal energy (heat) / particle vibration; There is a current (in the heating element); Heating effect of resistance /a resistor;	Electrical \rightarrow thermal /heat for 2 marks IGNORE: electricity		2
(c) (i)	Power = current x voltage;			

Question number	Answer	Accept	Reject	Marks
8 (a) (i)	(average) speed = distance / time;	Or equivalent distance $=$ speed \times time, time $=$ distance \div speed, or correct symbols e.g. $v=d / t$ If (i) is blank, but correct equation written in (ii), then credit.		1
(ii)	Substitution $9000 / 900 ;$ Calculation $10 ;$ Unit $\mathrm{m} / \mathrm{s} ;$	ACCEPT: e.g. $9 / 15=0.6 \mathrm{~km} /$ minute $9 / 0.25=36 \mathrm{~km} /$ hour 9000/15 $=600 \mathrm{~m} / \mathrm{min}$ $9 / 900=0.01 \mathrm{~km} / \mathrm{s}$ i.e. any unit that is consistent with the number		2 1
(iii)	Any two from: speed not constant ; OWTTE slow at (some) points / stations ; fast at (other) points / between stations ;	ACCEPT: this idea implied e.g slower (1) at stations (1)		2

\begin{tabular}{|c|c|c|c|c|}
\hline \begin{tabular}{l}
8 (b) (i) \\
(ii)
\end{tabular} \& \begin{tabular}{l}
use of acceleration \(=\) change in velocity \(/\) time (taken) \\
OR \\
attempt at use of gradient ; \\
Area under graph (clear evidence of attempt);
\[
\begin{aligned}
\& (1 / 2 \times 30 \times 100)+(30 \times 100)+(1 / 2 \times 30 \times \\
\& 100) ; \\
\& 6000(\mathrm{~m}) ;
\end{aligned}
\]
\end{tabular} \& \begin{tabular}{l}
Or equivalent - \\
Change in vel \(=\operatorname{accn} x\) time \\
Time \(=\) change in vel \(\div\) accn \\
Bald answer gets 3 marks \\
ACCEPT: trapezium method
\[
1 / 2 \times(300+100) \times 30
\] \\
ACCEPT: answers where the unit is consistent with the number. \\
Bald answer gets all three marks
\end{tabular} \& \& 1

1
1
3

\hline
\end{tabular}

Question number	Answer	Notes	Marks
9 (a) (i) (ii) (iii)	(gravitational potential) energy $=m \times g \times h$; equal / the same / =	ACCEPT: $\mathrm{E}=$ mass x gravity x height REJECT: $\mathrm{E}=\mathrm{W} \times \mathrm{h}$ If (i) is blank, but correct equation written in (ii), then credit. ACCEPT: 882 (J) ACCEPT: equivalent REJECT: proportional IGNORE: 900 J	1 2 1
(b)	Up to five marks in all - up to two for each mechanism Conduction air / gas is a poor conductor / insulator ; air molecules are (relatively) far apart ; fibres are insulating; Convection air / gas (between fibres) cannot move ; thus no / reduced convection currents ; Radiation aluminium foil / shiny surface is a poor radiator ; thermal energy / heat/ / radiation is reflected (back inside) ; aluminium foil / shiny surface is poor absorber ;	IGNORE: conductor of electricity ACCEPT: particles cannot transfer energy as they don't collide often ACCEPT: emitter	5

Question number	Answer	Notes	Marks
$10 \text { (a) (i) }$ (ii)	thermistor labelled correctly correct voltmeter symbol ; connected in parallel with thermistor ;	ACCEPT: ringed thermistor REJECT: connected in parallel with battery	1 2
(b) (i) (ii)	voltage $=$ current \times resistance Substitution $\quad 12=0.002 \times R$; Calculation $\quad R=12 / 0.002=6000(\Omega)$;	Or equivalent resistance $=$ voltage \div current $V=I \times R$ If (i) is blank, but correct equation written in (ii), then credit. $12=2 \times R=6(\Omega)$ gets 1 mark Bald answer 2 marks $6 \mathrm{k} \Omega$ gets 2 marks	1
(iii)	Suitable size chosen ($>50 \%$ of grid used); Axes labelled with quantities and units (either way around); Plotting to nearest half square (minus one for each plotting error);; Curved line of best fit acceptable;	ACCEPT: ${ }^{\circ}$ OR C REJ ECT: joining the dots Bar chart for 4 max	5
(iv)	current increases with temperature ; non-linear relationship OWTTE ;	ACCEPT: positive correlation	2
(v)	Any two of student is wrong; because current increases with temp (for constant voltage) ; so resistance decrease with temp ;	"student is correct" scores 0 marks Because it is an ntc thermistor for 1 mark ACCEPT: relevant use of figures for resistance from graph/table	2

Question number	Answer	Notes	Marks
11 (a)	```Mass of cylinder + unit = 325; Mass of cylinder = 106; Mass of liquid in cylinder = 219; Volume of liquid = 176; Mass unit: g ; Volume unit: cm}\mp@subsup{}{}{3}/\textrm{ml}\mathrm{ ;```	ACCEPT: ecf on M1 and M2 ACCEPT: either unit used appropriately at least once	6
(b)	Any two from: equation; correct substitution made or correct mass indicated; density $=$ between 1.24 and 1.25 ; density unit ($\mathrm{g} / \mathrm{cm}^{3} \mathrm{OR} \mathrm{g} / \mathrm{ml}$);	ecf from 11(a) Correct and consistent alternative e.g. 1240 $\mathrm{kg} / \mathrm{m}^{3}$ $1.24 \mathrm{~kg} / \mathrm{dm}^{3}$	2
(c)	Any two from: more sensitive equipment ; check balance zero ; calibrate any equipment ; avoid parallax when reading measuring cylinder / bottom of meniscus ; use larger volume of liquid;	ACCEPT: measure to more $\mathrm{dp} /$ use burette IGNORE: repeat experiment IGNORE: refs to "use more accurate..."	2

Question number	Answer	Notes	Marks
12	M1	pressure greater in the full cup / less in the half- full cup ; M2 M3 reference to equation / $\mathrm{p}=\mathrm{W} \div \mathrm{A} / \mathrm{p}=\mathrm{h} \times \rho \times \mathrm{g}$ M4	(depth / mass / weight of liquid / force different in each cup ; density / $\mathrm{g} /$ area the same for each cup ; IGNORE: amount of coffee different

Question number	Answer	Notes	Marks
$13 \quad \text { (a) (i) }$	$\begin{align*} & 77 \\ & 115 \tag{ii} \end{align*}$		1 1
(b)	(nuclei with) same number of protons / same atomic number / same element; different numbers of \{neutrons / nucleons\} / different mass number;	ACCEPT: atoms / elements for nuclei REJECT: molecules / substances for nuclei IGNORE: electrons	2
(c)	$\begin{aligned} & \text { 192; } \\ & \text { 78; } \end{aligned}$		2
(d)	alpha not penetrating enough (of the tumour) / ionises before reaching whole tumour ; gamma too penetrating / travels straight through /too weakly ionising / OWTTE ; beta will penetrate the tumour but no further / stays in tumour and doesn't affect horse / ionises within tumour (but no further) / OWTTE ;	IGNORE: doesn't penetrate skin IGNORE: bald 'weak' or 'strong' IGNORE: general properties of alpha, beta and gamma	3
(e) (i) (ii)	C activity decreases over time ; relate activity to situation e.g. C remains sufficiently active (over the treatment) / A and B not effective over period of treatment / A and B would need source to be replaced / D continues to be radioactive / cause damage (after treatment) ;	ACCEPT: calculation of period of activity IGNORE: bald 'weak' or 'strong'	1 2

Question number	Answer	Notes	Marks
$\mathbf{1 4}$ (a)	two protons labelled ; two neutrons labelled ;	ACCEPT: a proton and a neutron for 1 mark ACCEPT: correct labels inside circles	2
(b) (i)	Any two of: to avoid / reduce absorption / ionisation / loss of energy of alpha particles ; to avoid / reduce chance of collisions between air molecules and alpha particles ; to allow sufficient range for alpha particles / would stop in few cm of air / does not reach foil ;	ACCEPT: ideas of alpha particle absorption, collision and range expressed in other words	IGNORE: speed of alpha particles
(ii)Any two of: electrostatic (force); repulsion ; between like charges;	ACCEPT: electric (force) IGNORE: magnetic / poles	2	

| 14 (b) (iii) | Any five of:
 Undeflected alpha particles show -
 there are gaps between nuclei/atoms mostly
 empty space;
 Deflections show -
 a repulsive force operates;
 (if electrostatic force) then nuclei have same
 charge as alpha particles (or both positive charge);
 (only some) deflected so nuclei are a small target;
 Large deflections show -
 nuclei have enough mass for alphas to bounce
 back;
 $\frac{\text { mass of a nucleus is more than the mass of an }}{\text { alpha particle; }}$high density related to mass and small size; | ACCEPT: |
| :--- | :--- | :--- | :--- | :--- |

Further copies of this publication are available from
International Regional Offices at www.edexcel.com/international

For more information on Edexcel qualifications, please visit www.edexcel.com

Alternatively, you can contact Customer Services at www.edexcel.com/ask or on + 441204770696

