edexcel

Mark Scheme (Results)
Summer 2012

International GCSE
Physics (4PH0) Paper 1P
Science Double Award (4SC0) Paper 1P

Edexcel Level 1/Level 2 Certificate Physics (KPHO) Paper 1P
Science (Double Award) (KSC0) Paper 1P

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please visit our website at www.edexcel.com.

Our website subject pages hold useful resources, support material and live feeds from our subject advisors giving you access to a portal of information. If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.
www.edexcel.com/contactus

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2012
Publications Code UG032798
All the material in this publication is copyright
© Pearson Education Ltd 2012

INTERNATIONAL GCSE PHYSICS PAPER 1P - SUMMER 2012

Question number	Answer	Notes	Marks
1 (a)	A-microwave(s) B-X-rays	REJ ECT 'micro' REJ ECT ' X ' ACCEPT capital or lower case X, with or without hyphen	2
(b) (i)	C		1
(ii)	D		1

Total 4 Marks

Question number	Answer	Notes	Marks
2 (a) (i)	total; internal; (reflection)	ACCEPT TIR for 2 marks 'total refraction' $=1$, 'internal refraction' $=1$ 'total internal refraction' $=1$ (list principle) 'reflection' alone $=0$	1 1
(ii)	Any ONE of (Angle of) reflection ; $\theta>$ critical angle; 450 / 45 degrees / 45	ANSWER may be given on the DIAGRAM REJECT single letter ' r ' REJECT $\theta=$ critical angle	1
(b)	Internal reflection at Y; Second internal reflection at lower right surface; Approximately correct reflections at both faces and emerging parallel (by eye);	IGNORE any diagram arrows	3

Question number	Answer	Notes	Marks
3	Any FOUR of Reaction time of driver (inc comment on drink/drugs / driver paying attention / driver distracted /driver tired); Condition of car's brakes/force applied to brakes; Condition of car's tyres; Condition of road surface (inc ice/water/mud /friction ideas); Stopping distance of car; Velocity / speed / behaviour of rabbit (across road); Distance of rabbit from car; Visibility factor (e.g. fog / dirty windscreen); ALLOW MAXIMUM of TWO from these Kinetic energy of car; Momentum of car; Velocity / speed of car; Mass / weight of car / number of passengers;	ACCEPT 'thinking distance / time' as an alternative to these points IGNORE 'condition of driver' ACCEPT 'braking distance (of the car)' as an alternative to these three 'condition' points IGNORE 'condition of car' i.e. momentum of car and velocity of car and mass of car only scores two of the marks available	4

Question number	Answer	Notes	Marks
4 (a) (i)	pressure = force \div area;	pressure $=$ force \div area area $=$ force \div pressure force $=$ pressure \times area Accept standard symbols (P, F, A) - upper or lower case acceptable for this item REJ ECT relationship 'triangle' on its own	1
(ii)	Substitution into correct equation / 8 times the force; Calculation; e.g. pressure $=8 \times 0.036 \div 0.0013=$ $220 \text { (Pa) }$	Correct final value $=2$ irrespective of working Final value of 27.7 or 28 scores 1 (since it is a correct calculation that has missed the x8 factor) ALLOW 222 (Pa), 221.5..... (Pa), 220 (Pa) for final value NO significant figure penalty	2
(b) (i)	(total) force is unchanged / the same; same mass/number/weight (of coins);	ACCEPT 'force is the same because the weight is the same' $=2$ 'force is the same because the mass is the same' $=2$	2
(ii)	Reduced / less; ONE of - (reduced) by a factor of 8; same mass/weight/force spread over a larger area; calculates the new pressure;	NOT ACCEPT ‘larger surface area’ alone	1 1

Question number	Answer	Notes	$\begin{array}{\|c} \hline \text { Mark } \\ \mathrm{s} \end{array}$
5 (a) (i)	```moment = force x (perpendicular) distance (from the pivot);```	```ACCEPT Moment = F x d or correct rearrangement REJECT moment = force x distance moved REJ ECT 'm' or 'M' for 'moment'```	1
(ii)	Substitution in correct equation; Calculation; Consistent Units; e.g. If calculated in metres $7 \times 0.04 ;$ 0.28 or 0.3 ; Nm; e.g. If calculated in centimetres 7×4; 28 or 30; Ncm;	Correct final value $=2$ irrespective of working ACCEPT newton metres, N.m REJ ECT ‘nm', 'NM', J, N/m ACCEPT newton centimetres, $\mathrm{N} . \mathrm{cm}$ REJ ECT 'ncm', 'NCM', J, N/cm	3
(b)	Length/distance to pivot of lever R less than lever A / closer to pivot; ORA So more (force) needed to cause the same moment; ORA (i.e. if force was the same, moment would be less)	ACCEPT Less than 0.04 m IGNORE 'less leverage’ ACCEPT appropriate use of equation / Force $=$ 14 N ACCEPT Overcoming friction for one mark IGNORE references to principle of moments (stated or implied) REJECT 'momentum' for 'moment'	2

Question number	Answer	Notes	Marks
6 (a) (i)	170×0.74 126 (m);	Correct final value $=2$ irrespective of working If final value is incorrect, award one mark for correct working OR ACCEPT 125.8 (m) for one mark	2
(ii)	Any two of Miscounted number of paces; Guessed / estimated pace length; Uneven pace length; Measuring the shadow, not the wheel; Given to the nearest metre; ground may not be flat; shadow is different at different times of the day; shadow may have changed during measuring; may not have walked in a straight line; may not have walked across the centre of the shadow;	ACCEPT any other reasonable point IGNORE ‘used no measuring equipment' IGNORE 'human error' alone	2
(iii)	Any one of Repeat and remove anomalies; check measurement of pace; use of tape measure / metre rule / trundle wheel / click wheel / step counter / GPS receiver;	ACCEPT other reasonable points 'Repeat' alone is insufficient IGNORE 'measure the actual London Eye' (doesn't improve the accuracy of this method)	1

Question number	Answer	Notes	Marks
6 (b) (i) cont	Suitable scale chosen (>50\% of grid used); Axes labelled with scales and units; Plotting to nearest half square (minus one for each plotting / scale error);; Line (curve) of best fit acceptable; Sample graph:	Units required on each axis On the time axis, accept ' $\min (s)$ ' but not ' m ' Two marks for plotting - lose one mark for each mistake to a maximum of losing two marks Judged by eye Not 'dot-to-dot', line should pass within one small square of each plotted point ACCEPT graph plotted with axes either way round	5

Question number	Answer	Notes	Marks
6 (b) (ii)	$120(\mathrm{~m})$	ACCEPT 120 ± 5 (m);	1
(b) (iii)	Yes (no mark) Because 122 m is within tolerance / error zone / uncertainty of altimeter reading / (altimeter is) correct to nearest 5m / reading may not have been at the very top;	Accept NO if back up by incorrect value for (b) (ii)	REJECT inconsistent answers (e.g. 'no' followed by reasoning that supports 'yes')

Total 12 Marks

Question number	Answer	Notes	Marks
7 (a)	Any 4 of: heat loss is reduced / traps heat; relating to the air being an insulator - air is a (good) insulator / air insulates / air is insulation / air is a bad conductor /air reduces conduction; relating to the blanket / fibres being an insulator blanket is a (good) insulator / blanket insulates / blanket is insulation / blanket is a bad conductor / blanket reduces conduction; relating to convection - air is trapped / blanket traps air / air movement reduced; convection (currents) reduced / convection (currents) stopped; relating to sweating - sweat cannot evaporate; (so) less cooling effect from sweating;	seen anywhere in the answer ACCEPT 'air stops conduction / air does not conduct' ACCEPT 'blanket', 'fibres', 'cloth', 'fabric', etc as the same thing - 'it' refers to the blanket ACCEPT 'blanket stops conduction / blanket does not conduct' ACCEPT 'air cannot move’ IGNORE 'keeps out cold air' NOT ACCEPT 'stops sweating'	4
(b)	Mark is for the reason and must match yes / no statement Any ONE of - Yes / right (Al / foil / heat) reflects; Al is a poor absorber/emitter (of radiation); No / wrong (Al / foil) is a (good) conductor / bad insulator;	IGNORE shiny ACCEPT answers that refer to the blanket if they imply a relevant point, e.g. 'no, because the blanket would conduct away less heat'	1

Question number	Answer	Notes	Mark \mathbf{s}
8 (a)	A (background radiation)		1
(b)	Any TWO of 1. Range / penetration of alpha radiation is low; 2. Radon (is a gas so) particles /atoms mobile OR americium (solid so) particles / atoms stay in place; 3. Radon can be inhaled / damage internal tissue OR radiation from americium stays within smoke detector / absorbed by the plastic;	WTTE throughout this part ACCEPT 'cannot penetrate skin' / 'travel a few cm in air' ACCEPT ‘all around us', 'more likely to come into contact', ACCEPT 'contained’, ‘stays in detector’ ACCEPT 'can be breathed in', 'can get inside body', 'can damage (internal) cells /organs' ACCEPT 'high up', 'far from people'	2
(c) (i)	A (86)		1
(ii)	B (134)		1
(d) (i)	Bq / becquerel(s);	ACCEPT approximate / phonetic spellings of becquerel / Becquerel / bekerel REJECT B, BQ, bQ, bq	1

| Question
 number | Answer | Notes |
| :---: | :--- | :--- | :--- |
| (ii) | Time for halving / time for 50\%
 decrease;
 of the (radio) activity / no of
 (radioactive) atoms / no of
 (radioactive) nuclei /emissions;
 s | |
| (iii) | $55 \pm 4(\mathrm{~s}) ; ;$ | ACCEPT Number of radon-220 nuclei |

Question number	Answer	Notes	Marks
9 (a)	C (longitudinal waves)		1
(b)	FIVE marking areas - Reference to speed $=$ distance travelled \div time taken; Measuring a time (of travel) for a known distance / measuring distance for a known time (of travel); Further appropriate detail for making a measurement; Idea of repeats / averaging / range of values; Realistic values for experiment to work suggested;	ACCEPT points made on a labelled diagram Need not be explicit, could be through description, e.g. 'and then divide the 100 m by the time measured' examples - 'stand a known distance away from a wall and time how long it takes for an echo to come back' 'put two microphones on a bench connected to a CRO to measure the time it takes for a sound to go from one microphone to the other' stand at opposite sides of a room and time how long it takes for sound to go across' examples - stating suitable equipment and some indication of how to use it, e.g. 'have your partner facing away from you and start the timer when you make a sound - when they hear the sound they turn round and you stop the timer' Details of ALL relevant measurements NOT required, just one example e.g. - realistic - 'have your partner stand 100 m away' 'stand 50 m from a wall...time echo' 'place two microphones 1m apart...'	5

	ALTERNATIVE APPROACH - reference to speed $=$ frequency x wavelength; indication of set up (e.g. signal generator and CRO); method to find wavelength (e.g. standing waves); method to find frequency (e.g. via timebase of CRO); additional relevant experimental detail;	e.g. - not realistic - 'have students stand 10 m apart and time when they hear the sound...' 'use timers to measure the sound across a classroom' If no indication of values given - e.g. ‘spread out on the school field' then this mark is NOT accessible	
(c) (i)	316 (± 2) (m/s)		1
(ii)	Speed of sound decreases with height; Idea of linear relationship / constant rate;	IGNORE 'inversely proportional' IGNORE '*(directly) proportional' ACCEPT 'negative correlation	2
(iii)	Yes / Right (no mark) Aeroplane does not need to fly so fast (to make a sonic boom); Speed of sound lower (higher up) (ORA);	ACCEPT correct reference to graph, e.g. figures; IGNORE references to not being able to hear the boom from that high up IGNORE repetition from the stem - 'so it is easier for the plane to make a sonic boom' IGNORE all references to pressure/resistance/drag/friction/plane travels faster/	2

| Question
 number | Answer | Notes | Marks |
| :--- | :--- | :--- | ---: | ---: |
| 10 | Bright light low resistance/Dim light high
 resistance;
 Idea of an inverse relationship between R and
 intensity;
 e.g. 'bright at lower resistance' ORA $=2$ marks
 Idea of non-linear relationship; | ACCEPT Correct answers shown on a labelled
 sketch graph (light / intensity / light intensity
 acceptable for one axis, resistance for the
 other) | 3 |

Question number	Answer	Notes	Marks
11 (a) (i)	Reference to a (magnetic) field / flux / field lines; Which changes in the coil / cuts the coil ORA ;	MUST refer to relative motion between coil / wire and (magnetic) field - references to moving magnet insufficient (and repeat of stem) 'wire cuts (magnetic) field' = 2 marks	2
(ii)	Faster/more energetic movement (shaking);	ACCEPT More turns on the coil (not bigger coil); ACCEPT Stronger magnet / magnetic field (not bigger magnet); REJECT 'more coils' / 'more loops' REJ ECT 'add another magnet'	1
(b) (i)	C (there is a current in the circuit)		1
(ii)	LED wastes less energy / produces less heat (than a filament lamp); ORA Useful energy output ; total energy input is larger for the LED / useful output is closer to total (energy) input; ORA		2

Question number	Answer	Notes	Marks
$\begin{array}{lll} \hline 12 & \text { (a) } & \begin{array}{l} \text { (i) } \\ \text { (ii) } \end{array} \end{array}$	light; kinetic;		2
(b) (i)	Power $=$ energy \div time	```power = energy : time energy = power x time time = energy \div power``` ONLY ACCEPT standard letters (P, E, t)	1
(ii)	Substitution into correct equation; Rearrangement; Calculation; e.g. $78=$ energy $\div 10$ 78×10 $780 \text { (J) }$	Correct final value gets all three marks irrespective of working. Substitution and rearrangement in either order. Rearrangement may be shown in (b)(i)	3
(c)	Useful energy calculated; Correct substitution in formula; e.g. $\begin{aligned} & 200-176 \text { OR } 24(\mathrm{~J}) \\ & 24 \div 200(\times 100=12 \%) \end{aligned}$ ALTERNATIVE METHOD energy wasted $=176 \div 200$ OR 88(\%); useful energy transfer $=100-88=(12 \%)$;	Second line of working scores 2 (since the use of 24 implies first line has been correctly carried out) Second line of working scores 2 (since the use of 88 implies first line has been correctly carried out)	2

Question number	Answer	Notes	Marks
13 (a)	A (chemical \rightarrow electrical \rightarrow kinetic)		1
(b) (i)	$\mathrm{KE}=1 / 2 \times \mathrm{m} \times \mathrm{v}^{2}$;		1
(ii)	substitution into correct equation; Calculation; $\begin{aligned} & \text { e.g. } 1 / 2 \times 600 \times 28^{2} \text {; } \\ & 240000(\mathrm{~J}) ; \end{aligned}$	correct answer = 2 marks ACCEPT 235200 (J);	2
(c) (i)	gpe $=$ mass $\times \mathrm{g} \times$ height;	ACCEPT GPE $=\mathrm{mgh}$ ACCEPT gravitational field strength/acceleration due to gravity for g	1
(ii)	substitution into correct equation; Calculation; e.g. $600 \times 10 \times 1000$ $6000000(\mathrm{~J})$ or $6000 \mathrm{k}(\mathrm{J})$ or $6 \mathrm{M}(\mathrm{J})$	correct answer $=2$ marks ALLOW 5880000 (from g = 9.8)	2
(iii)	EITHER Calculation of energy supplied (by fuel cells) $24 \mathrm{~kW} \times 180 \mathrm{~s} \text { OR } 4320000(\mathrm{~J}) ;$ Comparison with energy required $4320000<6000000 ;$ OR Calculation of power required $6000000 \mathrm{~J} \div 180 \mathrm{~s} \text { OR } 33.3 \mathrm{~kW} \text {; }$ Comparision with fuel cells $33.3 \text { kW > } 24 \mathrm{~kW} \text {; }$	ALLOW ECF if 6000000 not seen ALLOW ECF if 6000000 not seen	2

Question number	Answer	Notes	Marks
13 (c) (iv)	use of $P=I \times V$ for one cell ; e.g. 30×0.6 OR $18(W)$ calculation; e.g $24000 \div 18=1333(>1300)$ OR $1300 \times 18=23400(<24000)$ ALTERNATIVE Using $\mathrm{E}=\mathrm{IVt}$ for one cell; e.g. $30 \times 0.6 \times 180$ OR 3240(J) calculation; e.g. $4320000 \div 3240=1333(>1300)$ OR $1300 \times 3240=4212000(<4320000)$	First Marking Point can be credited if '18' or ' 30×0.6 ' seen in calculation	2

Question number	Answer	Notes	Marks
14 (a)	Substitution into correct equation; Calculation; $\begin{aligned} & \text { e.g. } 10000 \times 10=\mathrm{p}_{2} \times 270 \\ & \mathrm{p}_{2}=370(\mathrm{kPa}) \end{aligned}$	correct answer = 2 marks ACCEPT 370.37..... (kPa)	2
(b)	pressure decreases; Any two from: molecules slow down; less frequent collisions with walls / don't collide as much with walls; less hard /less force (on same area);	ACCEPT less kinetic energy / less momentum IGNORE collisions with each other ACCEPT smaller momentum change (in collisions)	3
(c) (i)	Pressure decreases; One of Fewer molecules (bombarding container); Less force from the molecules;		2
(ii)	Gas leaves (the liquid)/Expands/Foams the cream;	ACCEPT Cools;	1

Question number	Answer	Notes	Marks
15 (a) (i)	Terminal (velocity);		1
(ii)	upward force = downward force / forces balanced / no resultant force / resultant force $=0$; reference to $\mathrm{F}=\mathrm{ma} /$ reference to (Newton's) $1^{\text {st }}$ or $2^{\text {nd }}$ Law; no acceleration / acceleration $=0$;	IGNORE descriptions of reaching terminal velocity	3
(iii)	faster speed / higher velocity / fell more quickly; Any one of - smaller (surface) area; I nitially less resistive force / air resistance / drag; different time (to reach terminal velocity); less deceleration (before reaching terminal velocity);	NOT ACCEPT ‘no air resistance’ IGNORE upthrust	2
(b)	(Stopping distance) increased / further / longer; Suitable reason, e.g. Since less braking force / air resistance / drag / takes longer to decelerate / reduced deceleration / smaller resultant force;	IGNORE references to 'longer time' must be comparative, e.g. less / slower / longer	2

Question number	Answer	Notes	Marks
16 (a)	Any two of braking force; air resistance / drag; (road or tyre) friction;	ACCEPT Headwind/wind resistance in this case	2
(b) (i)	force $=$ mass \times acceleration;	ACCEPT mass $=$ force \div acceleration ACCEPT acceleration $=$ force \div mass ACCEPT standard symbols, $F=m \times a$	1
(ii)	Substitution in correct equation; Calculation; e.g. $1400 \times 5.5=7700(N)$ or $7.7 \mathrm{k}(\mathrm{N})$	correct answer $=2$ marks	2
(c)	Attempt at area under the graph (e.g. $1 / 2 \times$ base x height); $1 / 2 \times 4 \times 22$; Correct answer 44 (m); OR distance $=($ average $)$ speed \times time; 11×4; correct answer 44 (m)	correct answer = 3 marks first mark implied in correct substitution first mark implied in correct substitution	3
(d) (i)	(graph is a) curve(d line) /gradient changes / slope changes / (graph is) not a straight line / graph levels off;		1
(ii)	Any two of Increase in air resistance / drag / wind resistance; Increase in road resistance / (tyre) friction; Decrease in resultant force; Road becomes steeper / goes uphill;	IGNORE references to terminal velocity IGNORE 'more weight in the car' IGNORE 'driver changed gear' IGNORE 'driver turned corner'	2

Total 11 Marks

Further copies of this publication are available from
Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623467467
Fax 01623450481
Email publication.orders@edexcel.com
Order Code xxxxxxxx Summer 2012

Llywodraeth Cynulliad Cymru Welsh Assembly Government

For more information on Edexcel qualifications, please visit our website www.edexcel.com

Rewarding Learning

