

Mark Scheme (Results)
Summer 2013

International GCSE
Physics (4PH0) Paper 1P
Science Double Award (4SC0) Paper 1P

Edexcel Level 1/Level 2 Certificate Physics (KPHO) Paper 1P Science (Double Award) (KSCO) Paper 1P

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk for our BTEC qualifications.
Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

If you have any subject specific questions about this specification that require the help of a subject specialist, you can speak directly to the subject team at Pearson.
Their contact details can be found on this link: www.edexcel.com/teachingservices.

You can also use our online Ask the Expert service at www.edexcel.com/ask. You will need an Edexcel username and password to access this service.

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2013
Publications Code UG037251
All the material in this publication is copyright
© Pearson Education Ltd 2013

Question number	Answer	Notes	Marks
$\begin{array}{lll} \hline 1 & \text { (a) } & \text { (i) } \end{array}$	B-1 joule per second ($1 \mathrm{~J} / \mathrm{s}$) C-1 newton per square metre ($1 \mathrm{~N} / \mathrm{m}^{2}$)		$\begin{align*} & 1 \\ & 1 \tag{ii} \end{align*}$
(b) (i) (ii)	A - the direction of a magnetic field A - has uniform strength		1 1
		Total	4

Question number	Answer	Notes	Marks
2 (a)	longest wavelength \longrightarrow shortest wavelength infrared visible (light) ultraviolet	All three must be correct for the mark Allow IR for infrared Allow visible (without light) Allow UV for ultraviolet	1
(b)	Any two of: Radio (waves); Microwave(s); x-rays; Gamma (rays);	Allow T-rays $\gamma \text { - rays or } \gamma$	2
(c) (i)	Any two of 1. killing bacteria e.g. in water purification OR in hand driers in toilets OR sterilisation of equipment; 2. medical uses e.g. setting dental fillings OR detection of bacteria OR treatment of (named) skin diseases; 3. security markings e.g. for checking banknotes; 4. fluorescent lamp e.g. tanning machines, black-light, detecting blood / other body fluids; 5. data reading e.g. blu-ray devices	Must be specific, ignore vague answers such as 'used in a hospital', 'for CSI' Allow other sensible suggestions for each MP	2

Question number	Answer	Notes	Marks		
2 (ii)	Any two of	Must be specific, do not allow vague answers such as 'causes burns'			
'danger to skin'					
1. cell damage e.g. (skin) cancer,					
cell mutation;					
2. Sunburn/skin aging;					
3. eye damage e.g. cataracts,					
blindness;				\quad	'burns skin'
:---	:---				

Question number	Answer	Notes	Marks
$3 \text { (a) (i) }$ (ii)	1. at least one arrow showing direction from N to S (right to left); 2. one horizontal line between shaded faces; 3. minimum of 3 horizontal lines evenly spaced (by eye); e.g. 1. a method to show shape; e.g. use compass(es) Use of iron filings/ powder 2. Use of (plotting) compass to show direction; 3. a further method detail; e.g. mark card /move compass/multiple compasses idea of another line or lines added sprinkle (iron filings evenly on card) tap card (to distribute iron filings)	Reject contradictory arrows For MP2,3 ignore any lines outside the rectangle between the shaded faces allow field lines that almost touch the faces I gnore Position of card /Cling film I gnore pour/place/ drop /spill	3

Question number	Answer	Notes	Marks
(b)	any two of 1. (Fleming's) Left Hand (Motor) rule OR (current generates) magnetic field around the rod;	allow LHM rule/LH rule/motor rule/ motor effect	2
	2. Idea that there is a force (on rod); 3. (translational) movement of rod; 4. Correct direction given, i.e. out of the paper;	Ignore upwards rod is magnetic	
		Total	$\mathbf{8}$

Question number	Answer	Notes	Marks
4 (a)	Student is right / wrong = no mark Any two of 1. Balance might not be levelled; 2. zero error; 3. mass could be worn; 4. mass could be mislabelled; 5. value could be within acceptable accuracy of the mass (e.g. $\pm 2 \mathrm{~g}$); 6. battery of scales is running down/eq;	Ignore idea of anomaly accept tare, reset error rusty inaccurate marking it rounds to 500 g	2
(b)	Any two of MP1 - Measure/find volume; MP2 - Using a displacement method; MP3 - A sensible experimental precaution e.g. tied to thread OR awareness of meniscus OR repeat readings OR average; PLUS Any one of MP4 - Formula to use (density = mass \div volume); MP5 - A correct density unit mentioned (e.g. $\mathrm{kg} / \mathrm{m}^{3}$);	For MP2 Ignore calculation of volume geometry	3
		Total	5

Question number	Answer	Notes	Marks
5	Any 5 of 1. determine / measure distance; 2. determine / measure time; 3. Appropriate measuring instrument for distance OR time; 4. Use a suitable distance /count laps (of known length); 5. repeat experiment/calculate average; 6. Speed $=$ distance $/$ time $O R$ finding the gradient ; 7. Suitable experimental precaution, e.g. reaction time considered, consistent height on track, time from a predetermined consistent point;	Allow idea of published track length use of split times e.g. 1 lap or circuit I gnore 'human error'	5
		Total	5

\begin{tabular}{|c|c|c|c|}
\hline Question number \& Answer \& Notes \& Marks \\
\hline 6 (a) \& D - the Sun \& \& 1 \\
\hline \begin{tabular}{l}
(b) (i) \\
(ii)
\end{tabular} \& \begin{tabular}{l}
Substitution; Calculation;
\[
\begin{aligned}
\text { speed } \& =\frac{2 \times \pi \times 250000000}{690} \\
\& =2300000(\mathrm{~km} / \text { day })(\text { correct to } 2 \mathrm{SF})
\end{aligned}
\] \\
Any two of \\
1. Idea of different speeds; \\
2. idea of different orbits /radii; \\
3. Idea of variable relative motion, e.g. both on the same side of the Sun and then on opposite sides of the Sun; \\
4. Appropriate calculation e.g. difference or sum of radii, attempt to calculate speed of Earth; \\
e.g. Diagram showing understanding of MP2 and MP3 \\
Earth Sun Mars \\
Mars Earth Sun
\end{tabular} \& \begin{tabular}{l}
If answer given to more than 2SF, then allow range of \(2275000 \rightarrow 2280000\) \\
max 1 for POT error in bald answer \\
Accept appropriate labelled diagrams Allow for one mark: elliptical if no other mark scored e, g, orbit of Mars is more elliptical than Earth's \\
ignore \\
Mars labelled inside Earth's orbit
\end{tabular} \& 2

2

\hline
\end{tabular}

Question number	Answer	Notes	Marks
6 (c) (i)		'show that' question, working must be shown for full marks REVERSE CALCS: maximum mark $=2$ (correct calc plus a comparison statement e.g. $283333 \equiv 300$ 000 $180000000 \equiv 170000000)$ Allow (without the subject of the equation) for 2 marks, 170000 000	3

Question number	Answer	Notes	Marks
6 (c) (ii)	Any two of 1. IDEA of HOW THE LOW SPEED AFFECTS DRIVING; low speed reduces stopping distance low speed helps to avoid obstacle 2. IDEA of THE EFFECT OF LOW SPEED ON COLLISION; momentum /low speed / low (kinetic) energy reduces damage if in collision 3. IDEA of WHAT THE TIME DELAY DOES; time delay affecting reaction time / stopping distance / steering 4. IDEA of WHAT THE TIME (DELAY) IS; it takes a long time to get the signal (the communication delay is) $\approx \mathbf{1 2 0 0}$ (s) (we see images which are) 600s delayed light and radio waves travel at the same speed in a vacuum	Allow idea that rover could travel up to 48 m between commands RA ignore better photos/detail of the planet /eq	2
		Total	10

Question number	Answer	Notes WWW.igexa	nSMadkn
7 (a)	Symbol can be in any orientation, e.g.	the line through the rectangle must be correct I gnore the size I gnore the rest of the circuit e.g. $=0$ as the line through is incorrect Allow without the connection leads \square $=1$	1
(b) (i) (ii)	$\text { Voltage = current } \times \text { resistance; }$ Convert milliamps to amps OR kilo-ohms to ohms; Substitution into correct equation \& rearrangement; Calculation to greater than 1SF; $2.6 \mathrm{~mA}=0.0026 \mathrm{~A}$ $\begin{aligned} (R) & =\frac{13.2}{0.0026} \\ & =5077(\Omega) \end{aligned}$	Allow $\mathrm{V}=\mathrm{IR}$ Allow rearrangements ignore a bald 'triangle' 'show that' question, working must be shown for full mark Allow 5080, 5076 (truncation) 5.080 with working is worth 2 marks 5.08 with no working is worth 1 mark	1 3

Question number	Answer	Notes	Marks
7 (c)	Any five of ABOUT A 1. Resistance of A decreases with temperature; 2. For A, \{largest slope / rate of change\} is at lower temperature ORA \{smallest slope /rate of change\} is at higher temperature; 3. A is a thermistor (ntc); ABOUT B 4. Resistance of B increases with temperature; 5. For B, \{largest slope / rate of change\} is at higher temperature(s) ORA \{smallest slope / rate of change\} is at lower temperature; 6. For B , resistance is constant below $50^{\circ} \mathrm{C}$; ABOUT BOTH 7. More results for $B /$ fewer results for A; 8. stated both relationships are non-linear; 9. Range of (temperature/resistance) values for both is similar; 10.data comparison e.g. both have the same resistance at $80^{\circ} \mathrm{C}$;	Accept - (MP1) for A, when the temperature is low, the resistance is high, ORA - (MP4) for B, when the temperature is low, the resistance is low, ORA Allow component B is a ptc thermistor ORA Up to $60^{\circ} \mathrm{C}$ I gnore: inversely proportional positive/ negative correlation Do not take implication of MP8 when MP $1,2,4,5$ is given	5
		Total	10

Question number	Answer	Notes	Marks
8 (a) (i) (ii) (iii)	work done $=$ force \times distance moved ; Substitution into correct equation; Calculation; 170×110 $19000 \text { (J) }$ exactly same as their answer to (ii);	Accept W = F x d Allow rearrangements do not accept eqn in units only Accept $\mathbf{1 8} \mathbf{7 0 0}$ (J)	1 2 2 1

Question number	Answer	Notes	Marks
8 (b) (i) (ii)	$\mathrm{KE}=1 / 2 \mathrm{mv} v^{2}$ addition of masses before OR addition of energies after; Substitution into correct equation; Calculation; $\begin{aligned} & 1650+950=2600 \quad(\text { OR } 436425+251275=687700) \\ & 1 / 2 \times 2600 \times 23^{2} \\ & 688000 \end{aligned}$	Accept word equation Accept for 1 mark - either 436000 or 251000 accept for 2 marks - both 436000 and 251000 Accept for 3 marks- 687700	
(c)	Any three of 1. idea that mass and acceleration are inversely related; 2. Idea that (total) mass is less; 3. Idea of less (air) resistance / friction; 4. Idea of less work done/less energy used; 5. Idea of amount work related to amount of (chemical) energy from fuel;	allow $\mathrm{F}=\mathrm{m} \times$ a mentioned weight for mass drag doesn't have to use energy to pull the caravan	3
		Total	11

Question number	Answer	Notes	Marks
9 (a)	Any two of 1. ruler has a mm scale ; 2. idea of inappropriate precision; 3. paper is (very) thin;	ignore vague statements e.g. the ruler is too big allow scale is too big paper is thinner than $1 \mathbf{m m}$	2
(b) (i) (ii)	C 0.1 mm Any two of 1. parallax error; 2. gap left between ruler and paper; 3. ruler not perpendicular; 4. zero error;	allow - misreading or inaccurate reading of the ruler - damaged ruler - top sheet not flat ignore air gaps between sheets folded paper miscounting sheets different sizes of paper incorrect recording of measurements need for more precise instrument human error	1 2

Question number	Answer	Notes	Marks
10 (a) (i)	42 (m/s)	Allow range 42-43	1
(ii)	Attempt to calculate slope; Answer; Unit;	Allow value from (i) $\begin{gathered} \text { e.g. } 43 \mathrm{~m} / \mathrm{s} \rightarrow 2.9 \mathrm{~m} / \mathrm{s}^{2} \\ 42.5 \rightarrow 2.83 \mathrm{~m} / \mathrm{s}^{2} \\ 45 \rightarrow 3 \mathrm{~m} / \mathrm{s}^{2} \end{gathered}$	3
	$42 \div 15$	$\begin{aligned} & \text { not } 42 / 120 \\ & \text { allow } 42 / 20 \end{aligned}$	
	2.8		
	$\mathrm{m} / \mathrm{s}^{2}$		
(iii)	Attempt to calculate an area under graph line; Appropriate further working (e.g. adding areas); Answer;	Allow value from (i) e.g. $43 \mathrm{~m} / \mathrm{s} \rightarrow 4300 \mathrm{~m}$	3
	$\begin{aligned} & (1 / 2 \times 15 \times 42)+(80 \times 42)+(1 / 2 \times 25 \times 42) \\ & 315+3360+525 \end{aligned}$	first 2 MP may be gained using the trapezium method, i.e. $42 \times(120+80) / 2$	
	4200 (m)	Bald correct answer scores 3	

Question number	Answer	Notes	Marks
(b)	Any three from 1. Stopping distance affected by speed or mass; 2. For faster plane, stopping distance greater/ runway too short; 3. for heavier plane stopping distance greater/ runway too short; 4. Attempt to calculate stopping distance from graph; 5. Data shows most/all of runway already used;	Allow a momentum argument for MP1, 2, 3	
		Total	10

Question number	Answer	Notes	Marks
11 (a)	Idea of (correct) change of speed OR wavelength; (Refractive) index / (optical) density of glass > that of air (ORA);	Allow for 1 mark speed slower in glass OR wavelength shorter in glass (ORA) allow RI, n for refractive index	2
(b) (i)	$\sin c=1 / n ;$	Allow rearrangements ($n=1 /$ sin c) in words (incl critical angle)	1

Question number	Answer	Notes	Marks
11 (ii) (iii)	$(n=) 1 / \sin 43$ OR $\sin 43^{\circ}=0.682 ;$ $\mathrm{n}=1.47(\approx 1.5)$ Any three of 1. larger RI means smaller C; 2. TIR when $\mathbf{i}>\mathbf{c}$; 3. for diamond larger range of angles for TIR ; 4. Some appropriate calculation, e.g. for diamond $\mathrm{c}=25^{\circ}$; 5. 43° to 90° for TIR in opal;	(0.68199836) (1.466279) Refractive index must be shown to >2 sig fig Allow truncated values Reverse calculation can score 1 mark Reverse calculation with comparison can score both marks Bald answer can score 1 mark allow c is smaller in diamond TIR happens at angles smaller than in opal/43 ${ }^{\circ}$ $\left(1 / 2.4=0.417 \rightarrow c=24.6^{\circ}\right)$ Accept for 2 marks $\mathbf{2 5}{ }^{\circ}$ to $\mathbf{9 0}{ }^{\circ}$ for TI R in diamond; (MP2,4) I gnore more of the rays going TIR (repeat of stem) diamond has a higher RI than opal	1
		Total	8

Question number	Answer	Notes	Marks
12 (b)	any three from 1. Neutrons; 2. (product) nuclei/a named nucleus; 3. Appropriate qualification of either term above(DOP); 4. gamma (radiation)/thermal energy e.g. of MP3 neutrons - 2, 3, fast, high energy nuclei - daughter, lighter, e.g. for MP2 allowed nuclei include : krypton, barium, xenon,	Allow two correct named nuclei as MP2 \& MP3 Ignore extra as a qualifier for neutrons helium alpha beta atoms daughter atoms/cells	
(c) (i)	Any one of to slow down neutrons/eq; to increase rate of fission; to increase absorption of neutrons by uranium/fuel; Any two of 1. rate of reaction increases; 2. fewer neutrons absorbed by control rod OR more neutrons collide with uranium; 3. temperature increases;	allow reduce the (kinetic) energy of neutrons	1 (ii) rate of fission increases control rods absorb neutrons
more heat released (need for comparative)			
ignore risk of explosion			

Question number	Answer	Notes	Marks
12 (d)	Any five of the following ideas facts about radioactivity 1. idea of harmful nature of radiation / danger to life; 2. high (activity) levels; 3. long half-life / half-lives; consequences 4. difficulties for (emergency) workers to access the area, e.g. short safe working times / need for protective clothing; 5. (requirement for) special handling equipment OR difficulty in removing material; 6. idea of extensive time OR distance (exclusion/hazardous) zone; environmental effects local and distant 7. idea of radioactive material mixing with the local environment e.g. soil, plants, water, air; idea of further /more distant spreading of material e.g. by fire, wind, water;	I gnore repeat of the stem, i.e. radioactive material has been spread into the surrounding area can't be seen allow MP1 toxic, can kill, causes mutation, ionises cells MP5 a lot of (contaminated) material to deal with MP6 still radioactive after a long time takes a long time to go away	5
		Total	16

| Question
 number | Answer | Notes |
| :---: | :---: | :--- | :--- |
| 13 (c) | weight of ruler; | Accept other valid reasons
 allow
 force for weight
 ignore
 'it's got a force acting'
 'because of gravity' |

Question number	Answer	Notes	Marks
14 (a) (i) (ii)	$\text { pressure difference }=\text { height } \times \text { density } \times \mathrm{g}$ Substitution into correct equation; Calculation; $\begin{aligned} & 0.91 \times 1000 \times 10 \\ & 9100 \mathrm{~Pa} \end{aligned}$	Accept $\mathrm{P}=\mathrm{h} \rho \mathrm{g}$ $\mathrm{P}=\mathrm{hdg}$ correct answer with no working scores 2 marks Accept: - 9.1 kPa - $8918 \mathrm{~Pa}($ from $g=9.8$ $\mathrm{m} / \mathrm{s}^{2}$) - 8927 Pa (from $\mathrm{g}=9.81$ $\mathrm{m} / \mathrm{s}^{2}$) - h in cm / 910000 Pa for a max of 1	1 2

Question number	Answer	Notes	Marks
14 (b) (i) (ii)	the water level is the same on both sides Any three of the following ideas 1. pressure difference (relating to flow); 2. pressure equality (relating to flow ending); 3. reference to relevant pressure equation ; e.g. pressure causes force on water, pressure $=$ force $/$ area pressure $=$ h ρg; 4. (more) gravitational potential energy (in A) /ORA; (fluid) pressure acts in all directions;	allow some wobbles on the B side area shaded Allow force or weight instead of pressure for either MP1 OR MP2 but not both MP3 allow 'pressure pushes water' 'height difference pushes water'	3
		Total	7
		Total for paper	120

Telephone 01623467467
Fax 01623450481
Email publication.orders@edexcel.com
Order Code UG037251 Summer 2013

Llywodraeth Cynulliad Cymru
For more information on Edexcel qualifications, please visit our website www.edexcel.com

