edexcel ㅃ̈̈․

Mark Scheme (Results)
June 2014

Pearson Edexcel International GCSE Physics (4PH0) Paper 1PR

Pearson Edexcel Science Double Award (4SC0) Paper 1PR

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please visit our website at www.edexcel.com.

Our website subject pages hold useful resources, support material and live feeds from our subject advisors giving you access to a portal of information. If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.
www.edexcel.com/contactus

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

January 2014
Publications Code UG039754
All the material in this publication is copyright
© Pearson Education Ltd 2014

Question number	Answer	Notes	Marks
1 (a) (i)	B;		1
			1
(iii)	Similarity:- any wave property e.g. transfer energy, reflection, refraction, vibration;	Allow diffraction carry energy	1
	Difference:- any one of - Iongitudinal particles oscillate in \{same direction/ parallel to\} the direction of travel; - transverse \{particles oscillates/vibration\} at right angles to the direction of travel;	Allow - direction of energy transfer for direction of travel	1
		- only transverse waves can be polarised - transverse waves cannot travel through a liquid Ignore mention of vacuum/ medium	

(b)			5
	circle the mistake in this sentence	the correct word(s) is	
	They all travel at $3 \times 10^{2} \mathrm{~m} / \mathrm{s}$ in a vacuum.	10^{8}	
		GIVEN	
	Sound waves are electromagnetic.	any of	
	5	radio, micro(wave), infrared (IR), visible, ultraviolet (UV), X-ray or gamma	
	Infra-red waves are the most harmful to people.	gamma	
	Gamma waves are used for heating up food.	micro(waves)/ Infrared (IR)	
	Radio waves have the highest frequency.	Gamma (Y)	
	Gamma waves have a very long wavelength.	radio (waves)	
	each line for 1 mark;",7;		

| (c) | Any TWO from
 MP1 US is longitudinal wave
 OR
 MP1 UV is transverse wave;
 MP2 US needs a medium;
 MP3 UV an electromagnetic wave;
 MP4 UV has (much) higher frequency than US/
 RA;
 MP5 US has a lower speed than UV;
 MP6 UV has same speed as light; | Care- avoid giving two
 marks for MP1 |
| :---: | :--- | :--- | :--- |
| | allow equivalent
 statement about λ
 speed of $\sim 300 \mathrm{~m} / \mathrm{s}$ (in
 air)
 speed of $3 \times 10^{8} \mathrm{~m} / \mathrm{s}$ | |
| Ignore statements
 about harmful effects | | |

(Total for Question $2=11$ marks)

Question number	Answer	Notes	Marks
3 (a) (i)	```sub into E = I x V x t; evaluation; rounding to 2SF; e.g. (E=) 2.1 x 1.5 x 12 37.8(J) 38(J)```	Correct answer without working gains 3 marks	3
(ii)	GPE $=m \times \mathrm{g} \times \mathrm{h} ;$	accept: - word equations and rearrangements do not accept: - gravity for g - 10 for g - a 'units' only eqn	1
(iii)	sub into eqn; evaluation;	no POT error as eqn has ' g '	2
	$\begin{aligned} & \text { e.g. (GPE=) } 0.13 \times 10 \times 0.63 \\ & 0.82(J) \end{aligned}$	$\begin{aligned} & 0.819(\mathrm{~J}) \\ & \text { allow } 0.802(\mathrm{~J}) \text { (} \mathrm{g} \text { as } \\ & 9.81) \end{aligned}$	
(iv)	any TWO from: MP1 energy 'lost' as heat and/or sound; MP2 mass has gained KE; MP3 mass of string has been ignored / eq; MP4 motor not 100\% efficient;	allow eqn	2

Question number	Answer	Notes	Marks
3 (b)	Any FOUR from: MP1. Current in coil ; MP2. (Creates) magnetic field (around the wires of the coil); MP3. Interaction of (this) field with that of (permanent) magnets; MP4. There is a force on the wire(of coil); MP5. Reference to left hand rule; MP6. force up on one side and down on other side; MP7. Idea that commutator reverses current (every half turn);	allow credit for points shown labelled diagram current in circuit is not enough coil becomes an electromagnet can be shown on diagram idea of catapult field reference to moment/turning effect on the coil	4

Question number	Answer	Notes
(ii) (a) (i)	change of direction of a wave (as it changes from 1 medium to another);	allow definition in terms of change of speed condone 'bending of light'
MP1. right angle by eye;	allow normal labelled with right angle (900 or symbol)	
MP2. incident angle marked;		
MP3. incident angle value in range 310 to 340;	Give 2 marks (MP2 and MP3) for answer in range without a marked incident angle	

\(\left.\begin{array}{|l|l|l|l|}\hline iv \& \begin{array}{l}what happens inside the prism

ONE mark from:-

MP1. (blue light will) refract more (at the first

surface);

MP2. it will be nearer the normal;

MP3. 'r' will be smaller;

what happens on emergence:-\end{array} \& it will go slower;\end{array}\right]\)| |
| :--- |
| |
| |
| |
| |
| ONE mark from:- |
| MP4. it will bend even more; |
| MP5. so larger deviation than previously; |

Question number	Answer Notes	Marks
4 b i	Sugar concentration (\%) Refractometer reading 0 48 10 60 30 57 50 69 70 86 90 108 axes labelled with units; scales correct and linear to cover at least half the grid on one of the axes; points;; (-1 for each incorrect point to a maximum of 2) curve of best fit drawn;	5

(Total for Question $4=19$ marks)

Question number	Answer	Notes	Marks
$5(a)$	```any two from : a balance/scales; metre rule or measuring tape; stopwatch or stop-clock;```	allow newtonmeter	2
(b)	dependent $=$ time (taken for fall); independent = mass (of cupcake cases);	accept speed (of cupcake cases) accept number/weight (of cupcake cases)	2
(c)	Any ONE of - (constant) height; - still air/no (cross) wind; - from rest/zero force at launch; - identical (cupcake) cases;		1
(d)	time in s ; mass in g;	accept in either order accept mass in kg weight in N number of cupcake cases in numbers/no units	2

(e)	Any one of \bullet detail of any sensible and valid procedure; e.g. repeat readings for time and then average readings detail of more suitable conditions e.g. measure over a larger fall work indoors/reduce draughts;	allow more accurate timing methods;	1

Question number	Answer	Notes	Marks
5(f)	down arrow labelled weight;	allow gravitational force/pull ignore 'gravity'	2
(i)	up arrow labelled drag;	allow air resistance accept friction, upthrust ignore lift	
(ii)	any three from	do not credit repeat of the diagram above	3
	MP1. idea of unbalanced force; e.g. at the start, the only force is weight part way down, the weight is greater than the drag MP2. (this unbalanced) force causes acceleration; MP3. idea of balanced forces near the bottom; e.g. near the bottom the forces are equal MP4. therefore no acceleration; e.g. it reaches terminal velocity	there is no upward force at the start weight equals drag	

(Total for Question $5=13$ marks)

Question number	Answer	Notes	Marks
7 (a) (i)	can all be switched separately ; others stay alight when 1 bulb blows/eq; (ii) One of - to prevent overheating in the circuit / appliance/ wiring/ lamps; to switch off the circuit; to prevent current exceeding a certain value; (iii)	(if or when) current exceeds stated value/current too high; the fuse (over heats and) melts; this breaks the circuit/stops the current/ turns the circuit off;	1 ignore burns ignore 'stops the electricity'

Question number	Answer	Notes	Marks
7 (b) (i) (ii) (iii) (iv)	$\mathrm{P}=\mathrm{I} \times \mathrm{V} \text {; }$ rearrangement; sub into equation; evaluation; e.g. $I=P / V$ $=250 / 230$ $=1.1(\mathrm{~A})$ value 3 (A); fuse (value should only be) a little bigger than the current; In ANY order Any two from:- MP1. circuit breakers are resettable/eq; MP2. circuit breakers work instantly/ fuses do not work instantly; MP3. doesn't require earth wire; MP4. Circuit breakers are more sensitive;	Allow - rearrangements - standard abbreviations - equation in words rearrange and sub in either order allow a power of ten (POT) error for -1 1.09 (A) Allow ecf from bii	1 3 2 2
(c)	D		1

(iii)	any FIVE from: MP1. measure current at any known/fixed temperature; MP2. measure voltage at any known/fixed temperature; MP3. measure temperature; MP4. vary temp and take new readings; MP5. idea of allowing temp to equalise between readings; MP6. either change temp by heating water OR start at 100° C and allow to cool; MP7. either start from ice OR use ice cubes to take temp down below room temp; MP8. calculate V/I; MP9. repetition/averaging (at any stage); MP10. use of stirrer/digital thermometer;		

Question number	Answer	Notes	Marks
8 (b) (i) (ii)	no mark for the choice any valid explanation (dependant on choice of line or curve); e.g. A/curve it fits more points/all the points are closer to the line / eq; OR B /straight line it has 4 points above the line, 4 points below the line/eq; One of the following ideas:- - the new point could be nearer to one line than the other; - the lines are furthest apart at $10^{\circ} \mathrm{C}$;	accept theory says it should be a curve the resistance will not be zero at $100^{\circ} \mathrm{C}$ accept this measurement would give more data	1
(c)	Any one correct ; All three correct; ; L metal wire at constant temperature K diode J filament lamp		1

Question number	Answer	Notes	Marks
9 (a) (i)	surface sensor colour reading		2
	shiny black 87		
	dull black \rightarrow 61		
	dull silver 70		
	any one correct; all 3 correct;;		
(ii)	(different surfaces) emit heat at different rates/eq;	allow emit different amounts of heat / radiation	

Question number	Answer	Notes	Marks
$9 \text { (b) (i) }$ (ii)	$\begin{aligned} & \text { P = } \rho \times \mathrm{g} \times \mathrm{h} ; \\ & \\ & \\ & \\ & \\ & \\ & \\ & \text { sub into eqn for } P ; \\ & \text { evaluation; } \\ & \text { unit; } \\ & \text { e.g. } \\ & \text { (P=) } 1260 \times 10 \times 0.25 \\ & 3150 \\ & \text { Pa } \end{aligned}$	do not accept: - gravity for g - 10 for g - d for density accept: - word equations and rearrangements - for h allow height depth height difference no POT error as ' g ' used allow 9.8(1) for g $1260 \times 9.8 \times 0.25$ 3090 allow - $\mathrm{N} / \mathrm{m}^{2}$ - matching unit e.g. 3.15 kPa	1 3

(v)	MP1 it will give a bigger temperature (range)/eq; AND DOP a suitable comment e.g. MP2 a larger difference in water level; MP3 a larger difference in air volume; MP4 a larger difference in (kinetic) energy of air/gas molecules/particles; MP5 idea of upper limit to range;	Allow the girl is right amount of water for water level amount of air for air volume speed of molecules /particles water would reach the bulb if the second statement is chosen, no marks	2

