Mark Scheme (Results)

Summer 2017

Pearson Edexcel International GCSE in Physics (4PH0) Paper 1PR

Pearson Edexcel International GCSE in Science (Double Award) (4SC0) Paper 1PR

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2017
Publications Code 4PH0_1PR_1706_MS
All the material in this publication is copyright
© Pearson Education Ltd 2017

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Question number	Answer	Notes	Marks
1 (a) (i)	C - Holmes; The only correct answer is C A is not correct because it's a planet B is not correct because it's a galaxy D is not correct because it's a moon	1	
(ii)	B - Hoag's Object; The only correct answer is B A is not correct because it's a planet C is not correct because it's a comet D is not correct because it's a moon		
(b)	B - Milky Way; The only correct answer is B A is not correct because it's a different galaxy C is not correct because it's a different galaxy D is not correct because it's a different galaxy	1	

Total for question $1=3$ marks

Question number	Answer	Notes	Marks
2 (a)	clear recognition that stationary is the horizontal sections; 3.5 (minutes);	seen on graph or in working e.g. use of 1.5 or 2 allow $31 / 2$	2
(b)	A; idea of line having smallest gradient;	allow 'line is shallowest' / 'least steep' etc. allow calculated speeds	2
(c) (i) (ii)	```(average) speed = distance (moved) / time (taken); substitution; evaluation; matching unit; e.g. (speed =) 200 / 60 (speed =) 3.3 m/s```	allow in standard symbols or in words e.g. $s=d / t O R v=s / t$ must match units used in calculation allow 3, 3.33, 3.333 etc. condone 3.34 200 metres per minute receives 3 marks $12 \mathbf{k m} / \mathbf{h}$ (condone kph) receives 3 marks $200 \mathrm{~m} / \mathrm{s}$ receives 2 marks allow any suitable unit of speed for 1 mark if no other mark scored	1 3
(d)	any 2 of: speed of car; mass / weight of car; road / weather conditions; road slope / angle; condition / type / age of tyres; condition / age of brakes; wind speed / direction;	ignore references to reaction time, thinking distance, stopping distance etc. road surface, rain, ice, snow etc. ignore fog, mist etc.	2

Total for question $2=10$ marks

Question number	Answer	Notes	Marks
3 (a)	X drawn at the horizontal centre AND below the vertical centre (by eye); i.e.	allow any clear symbol in place of the X X must be in the area marked by the dashed lines	1
(b)	A - the final speed of the card; The only correct answer is A B is not correct because it's the independent variable C is not correct because it's a control variable D is not correct because it's a control variable		1
(c) (i)	correct value; given to 2 decimal places; e.g. 3.3966... 3.40	allow any value given to 2 d.p. 3.39 gains 1 mark only	2

\begin{tabular}{|c|c|c|c|c|}
\hline (ii) \& \begin{tabular}{l}
suitable linear scale chosen (>50\% of grid used); \\
axes labelled with quantities and unit; plotting correct to nearest half square (minus one for each plotting error); ;
\end{tabular} \& \begin{tabular}{l}
ignore o \\
ignore fi i.e. two errors = for plott
\end{tabular} \& \begin{tabular}{l}
ntation \\
point tting marks
\end{tabular} \& 4 \\
\hline (iii) \& (40.0,2.45) identified clearly; \& \& \& 1 \\
\hline (iv)
(v) \& \begin{tabular}{l}
line (curve) of best fit acceptable, ignoring anomalous point; \\
idea that (average final) speed increases with height; \\
idea that relationship is non-linear;
\end{tabular} \& \begin{tabular}{l}
i.e. smo within 1 square of ignore p outside points if extrapol \\
allow RA ignore `p correlati ignore ren line bein allow not prop allow ide gradient
\end{tabular} \& \begin{tabular}{l}
curve \\
nall \\
each point s of curve tted \\
d \\
itive \\
rences to curved \\
tional of hanging
\end{tabular} \& 1

2

\hline
\end{tabular}

(d)	any two of:	ignore references to precision, human error, repeats allow 'ruler' for scale	2
	MP1. move scale closer to card / use a ruler and place it nearer the light gate;	MP2. measure height at eye level / parallax; MP3. drop using a clamp / eq;	allow idea of consistent release mechanism
MP4. make sure scale is vertical / perpendicular to ground / use a set square;	MP5. idea of accounting for zero error;	allow put light gate at zero	

Total for question 3 = 14 marks

Question number	Answer		Notes	Marks
4 (a)	1 mark for each correct line; ; ;		symbols do not need to have connecting wires shown at each side arrow can be any direction but must be diagonal only ignore 'battery' allow filament lamp symbol	4
	Name of component	Circuit symbol		
	fixed resistor	$-\square$		
	variable resistor			
	cell	_		
	lamp	$-$		
	fuse / circuit breaker	\exists		
(b) (i) (ii)	voltage $=$ current \times substitution OR rea evaluation; e.g. $\begin{aligned} & \mathrm{R}=\mathrm{V} / \mathrm{I}=8.0 / 0.50 \\ & \mathrm{R}=16 \text { (ohms) } \end{aligned}$	sistance; ngement;	allow in standard symbols or in words e.g. $V=I \times R$ either seen	1 2
(c)	axes labelled with \{light intensity / lig brightness $\}$; resistance decreas increases; curve of decreasin e.g.	stance and / intensity / as light intensity adient;	ignore units and orientation allow 'dark' and 'light' labels DOP DOP	3

(d)	vibrations / oscillations / disturbance; (are) parallel or perpendicular to direction of energy transfer / wave (travel/movement); correct identification of both types; e.g. gets 3 marks	allow suitably labelled diagrams	3

Total for question $5=8$ marks

| Question
 number | Answer | Marks |
| :---: | :--- | :--- | :---: |
| 6 (a) | MP1. any internal reflection at first
 surface;
 MP2. approximately correct angle of
 reflection at first surface;
 MP3. ray reflects from second surface and
 emerges parallel to incident ray (by
 eye); | gets MP1 only |

Total for question $6=8$ marks

Question number	Answer	Notes	Marks
7 (a)	D - kinetic to electrical; The only correct answer is D A is not correct because it's the wrong energy transfer B is not correct because it's the wrong energy transfer C is not correct because it's the wrong energy transfer		1
(b)	any 2 methods: hydroelectric; photovoltaic (panels / cells); geothermal; biomass; tidal; waves;	allow solar (panels / cells / farm)	2
(c) (i) (ii)	any 1 of: sound; thermal; Sankey diagram giving: MP1. one input and more than one output; MP2. two correct labels; MP3. roughly correct proportions; e.g.	ignore 'noise' allow 'heat' allow output arrows in either direction output arrows in same direction 2 from: - input/kinetic/total - useful/electrical - wasted/heat/thermal/sound judge by eye	1 3

\begin{tabular}{|c|c|c|c|}
\hline Question number \& Answer \& Notes \& Marks \\
\hline 8 (a) \& faster; expands; decreases; convection; \& must be in this order \& 4 \\
\hline \begin{tabular}{l}
(b) (i) \\
(ii) \\
(iii)
\end{tabular} \& \begin{tabular}{l}
gravitational (potential) energy = mass \(\times \mathrm{g} \times\) height; \\
substitution; \\
evaluation; \\
e.g. \\
(GPE =) \(50 \times 10 \times 80\) \\
(GPE =) 40000 (joules) \\
same answer as (b)(ii);
\end{tabular} \& \begin{tabular}{l}
allow in standard symbols or in words e.g. \\
GPE \(=m \times g \times h\) reject 'gravity' for \(g\) \\
allow use of \(\mathrm{g}=9.8\) / 9.81 \\
allow 40 kJ, 39 200, 39240 (J) \\
allow 40000 (J)
\end{tabular} \& 1
2

1

\hline
\end{tabular}

Total for question $8=8$ marks

\begin{tabular}{|c|c|c|c|}
\hline Question number \& Answer \& Notes \& Marks \\
\hline 9 (a) \& \begin{tabular}{l}
downward arrow labelled weight; \\
upward arrow of equal length to downward arrow (by eye);
\end{tabular} \& ignore starting position of arrows horizontal arrows allow force of gravity ignore label on upward force \& 2 \\
\hline \begin{tabular}{l}
(b) (i) \\
(ii)
\end{tabular} \& \begin{tabular}{l}
\[
\text { pressure difference }=\text { height } \times \text { density } \times \mathrm{g}
\] \\
substitution; \\
answer seen in pascals / conversion to kPa; \\
e.g.
\[
\begin{aligned}
\& (\mathrm{P}=) 48 \times 1030 \times 10 \\
\& (\mathrm{P}=) 490000(\mathrm{~Pa})
\end{aligned}
\]
\end{tabular} \& \begin{tabular}{l}
allow in standard symbols or in words e.g.
\[
\mathrm{p}=\mathrm{h} \times \rho \times \mathrm{g}
\] \\
condone d for density \\
allow use of \(g=9.8\) \\
allow \(\div 1000\) seen anywhere 1 mark max for RA \\
allow 494 400, 500000 (Pa)
\end{tabular} \& 1

2

\hline | (c) (i) |
| :--- |
| (ii) |\& ``

600 (kPa);
substitution into p}\mp@subsup{p}{1}{}\mp@subsup{V}{1}{}=\mp@subsup{p}{2}{}\mp@subsup{V}{2}{}
rearrangement;
evaluation;
e.g.
100 x 24=600 x V V
V}=100\times24/60
(}\mp@subsup{\textrm{V}}{2}{}=)4.0(\mp@subsup{\textrm{m}}{}{3}

``` & \begin{tabular}{l}
allow 594.4, 594, 590 (kPa) ecf from (b)(ii) ecf from (c)(i) -1 for POT error allow 2 marks max for use of 500 ( kPa ) as final pressure, giving \(4.8 \mathrm{~m}^{3}\) \\
allow answers in range \(4.0-4.1\left(\mathrm{~m}^{3}\right)\)
\end{tabular} & 1
3 \\
\hline
\end{tabular}

Total for question \(9=9\) marks
\begin{tabular}{|c|c|c|c|}
\hline Question number & Answer & Notes & Marks \\
\hline 10 (a) & \begin{tabular}{l}
any suitable method, e.g. \\
place plotting compass near magnet; \\
note direction of compass; \\
move compass to different position (and repeat); \\
OR \\
place magnet under paper / plastic; use of iron filings; \\
tap paper gently (to reveal shape);
\end{tabular} & \begin{tabular}{l}
allow suitably clear diagrams reject for one mark 'charges' \\
allow using multiple compasses \\
allow steel dust, iron powder for iron filings
\end{tabular} & 3 \\
\hline (b) & \begin{tabular}{l}
MP1. field line connecting one pole to the other; \\
MP2. at least two complete field lines, but none touching / crossing; \\
MP3. field line are more concentrated near the poles;
\end{tabular} & \begin{tabular}{l}
ignore direction of field lines throughout allow small gap where field line joins magnet ignore field lines inside the magnet \\
ignore field lines that start outside the pole region judge by eye
\end{tabular} & 3 \\
\hline (c) (i) & \begin{tabular}{l}
C - out of the page; \\
The only correct answer is \(C\) \\
A is not correct because it's the wrong direction \\
\(B\) is not correct because it's the wrong direction \\
D is not correct because it's the wrong direction
\end{tabular} & & 1 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|c|} 
(ii) & \begin{tabular}{l} 
(change that would reverse) direction of \\
(magnetic) field; \\
(change that would reverse) direction of \\
current; \\
(iii)
\end{tabular} & \begin{tabular}{l} 
e.g. swap the \\
magnets round \\
e.g. reverse the \\
voltage \\
(because) magnetic field becomes non- \\
uniform / weaker;
\end{tabular} & \begin{tabular}{l} 
DOP \\
allow 'field lines get \\
further apart'
\end{tabular}
\end{tabular}

Total for question \(10=11\) marks
\begin{tabular}{|c|c|c|c|}
\hline Question number & Answer & Notes & Marks \\
\hline 11 (a) & \begin{tabular}{l}
MP1. ammeter connected in series with filament lamp; \\
MP2. voltmeter connected in parallel with filament lamp; \\
MP3. suitable method of varying the voltage (e.g. by using variable resistor or using variable power supply);
\end{tabular} & \begin{tabular}{l}
marks are for how components are connected so ignore circuit symbols throughout \\
allow voltmeter connected in parallel with lamp and ammeter
\end{tabular} & 3 \\
\hline (b) & \begin{tabular}{l}
any 4 of: \\
MP1. read ammeter / voltmeter OR record current / voltage; \\
MP2. current is measured for more than one voltage; \\
MP3. repeat readings and calculate average (mean); \\
MP4. plot graph; \\
MP5. suitable experimental precaution, e.g. check meters for zero error / switch off current between readings;
\end{tabular} & & 4 \\
\hline
\end{tabular}

Total for question \(11=7\) marks
\begin{tabular}{|c|c|c|c|}
\hline Question number & Answer & Notes & Marks \\
\hline \begin{tabular}{l}
12 (a) (i) \\
(ii)
\end{tabular} & \begin{tabular}{l}
smoke (particles) in air (in smoke cell) \\
OR pollen (grains) on water \\
OR dust (particles) in air; \\
MP1. large (observed) particles move randomly; \\
MP2. (because) tiny / small particles are hitting them; \\
MP3. tiny / small particles are not visible (by eye);
\end{tabular} & allow named large particle e.g. smoke, pollen, dust allow named tiny particle e.g. air, water allow invisible & 1
3 \\
\hline (b) & \begin{tabular}{l}
MP1. (particles) collide with walls (of container); \\
MP2. idea that force is produced (by bombarding molecules); \\
MP3. pressure is force on an area;
\end{tabular} & bombard, hit, impact upon allow Newton's Laws / momentum argument allow \(p=F / A\) & 3 \\
\hline (c) (i) & pressure = force / area; & allow in standard symbols or in words e.g.
\[
\mathrm{p}=\mathrm{F} / \mathrm{A}
\] & 1 \\
\hline (ii) & \begin{tabular}{l}
substitution; \\
rearrangement; \\
evaluation; \\
e.g. \\
193,000 = F / 0.013 \\
\((F=) 193,000 \times 0.013\) \\
( \(\mathrm{F}=\) ) \(2500(\mathrm{~N})\)
\end{tabular} & \begin{tabular}{l}
-1 for POT error \\
allow 2510, 2509 \\
2.509 ( \(N\) ) gets 2 marks 2.509 kN gets 3 marks
\end{tabular} & 3 \\
\hline (iii) & \begin{tabular}{l}
area decreases; \\
with any 2 of: \\
- particles move faster / have more KE; \\
- particles hit (tyre) wall more frequently / with more force / harder; \\
- pressure increases (and force of vehicle weight stays the same);
\end{tabular} & \begin{tabular}{l}
allow molecules for particles throughout \\
reject if incorrect reference to volume increasing
\end{tabular} & 3 \\
\hline
\end{tabular}

Total for question \(12=14\) marks
\begin{tabular}{|c|c|c|c|}
\hline Question number & Answer & Notes & Marks \\
\hline 13 (a) & \begin{tabular}{l}
B - 143; \\
The only correct answer is B \\
A is not correct because it's the number of protons \\
\(C\) is not correct because it's the number of nucleons \\
\(D\) is not correct because it's the number of nucleons + protons
\end{tabular} & & 1 \\
\hline \begin{tabular}{l}
(b) (i) \\
(ii)
\end{tabular} & \begin{tabular}{l}
1 mark for each correct label; ; e.g. largest circle labelled as parent (nucleus) either second largest circle labelled as daughter (nucleus) \\
MP1. more neutrons released (in fission); \\
MP2. neutrons can be absorbed by other (uranium) nuclei; \\
MP3. causing further fissions / splitting;
\end{tabular} & \begin{tabular}{l}
allow 2 / 3 \\
neutrons released allow 'collides', 'hits', 'enters' for 'absorbed' allow 'process repeats'
\end{tabular} & \begin{tabular}{l}
2 \\
3
\end{tabular} \\
\hline (c) & \begin{tabular}{l}
absorb neutrons; \\
to vary / control \{rate of reaction / energy output\};
\end{tabular} & allow slow down / speed up reaction allow 'prevent overheating' ignore 'stop reaction' & 2 \\
\hline
\end{tabular}
\begin{tabular}{|c|l|l|l|l|} 
(d) (i) & slow down neutrons; & 1 \\
(ii) & \begin{tabular}{l} 
allow reduce \\
(kinetic) energy of \\
neutrons
\end{tabular} & \begin{tabular}{l} 
any 2 of: \\
graphite (ends) did not absorb neutrons; \\
more (uranium nuclei underwent) fission;
\end{tabular} & \begin{tabular}{l} 
allow more \\
'neutrons absorbed \\
by (uranium) \\
nuclei' \\
allow 'caused a \\
large chain \\
reaction'
\end{tabular} & \begin{tabular}{l} 
increased \{rate of reaction / amount of \\
energy produced / rate of fission\};
\end{tabular}
\end{tabular}```

